首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Sensorial analysis based on the utilisation of human senses, is one of the most important and straightforward investigation methods in food and chemical analysis. An electronic nose has been used to detect in vivo Urinary Tract Infections from 45 suspected cases that were sent for analysis in a UK Health Laboratory environment. These samples were analysed by incubation in a volatile generation test tube system for 4-5 h. The volatile production patterns were then analysed using an electronic nose system with 14 conducting polymer sensors. An intelligent model consisting of an odour generation mechanism, rapid volatile delivery and recovery system, and a classifier system based on learning techniques has been considered. The implementation of an Extended Normalised Radial Basis Function network with advanced features for determining its size and parameters and the concept of fusion of multiple classifiers dedicated to specific feature parameters has been also adopted in this study. The proposed scheme achieved a very high classification rate of the testing dataset, demonstrating in this way the efficiency of the proposed scheme compared with other approaches. This study has shown the potential for early detection of microbial contaminants in urine samples using electronic nose technology.  相似文献   

2.
AIMS: Use of an electronic nose (zNose(TM)) to discriminate between volatile organic molecules delivered during bacterial/fungal growth on agar and in broth media. METHODS AND RESULTS: Cultures of bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli) and yeasts (two Candida albicans strains) were grown on agar and in broth media and incubated for 24 h at 37 degrees C. Headspace samples from microbial cultures were analysed by the zNose(TM), a fast gas chromatography-surface acoustic wave detector. Olfactory images of volatile production patterns were observed to be different for the various species tested after 24 h. Moreover, some strains (two K. pneumoniae, two C. albicans) did not show changes in volatile production patterns within our species. CONCLUSIONS: Our experiments demonstrate that the electronic nose system can recognize volatile production patterns of pathogens at species level. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results, although preliminary, promise exciting challenges for microbial diagnostics.  相似文献   

3.
Two series of experiments are reported which result in the discrimination between Helicobacter pylori and other bacterial gastroesophageal isolates using a newly developed odour generating system, an electronic nose and a hybrid intelligent odour recognition system. In the first series of experiments, after 5 h of growth (37 degrees C), 53 volatile 'sniffs' were collected over the headspace of complex broth cultures of the following clinical isolates: Staphylococcus aureus, Klebsiella sp., H. pylori, Enterococcus faecalis (10(7) ml(-1)), Mixed infection (Proteus mirabilis, Escherichia coli, and E. faecalis 3 x 10(6) ml each) and sterile cultures. Fifty-six normalised variables were extracted from 14 conductive polymer sensor responses and analysed by a 3-layer back propagation neural network (NN). The NN prediction rate achieved was 98% and the test data (37.7% of all data) was recognised correctly. Successful clustering of bacterial classes was also achieved by discriminant analysis (DA) of a normalised subset of sensor data. Cross-validation identified correctly seven 'unknown' samples. In the second series of experiments after 150 min of microaerobic growth at 37 degrees C, 24 volatile samples were collected over the headspace of H. pylori cultures in enriched (HPP) and normal (HP) media and 11 samples over sterile (N) cultures. Forty-eight sensor parameters were extracted from 12 sensor responses and analysed by a 3-layer NN previously optimised by a genetic algorithm (GA). GA-NN analysis achieved a 94% prediction rate of 'unknown' data. Additionally the 'genetically' selected 16 input neurones were used to perform DA-cross validation that showed a clear clustering of three groups and reclassified correctly nine 'sniffs'. It is concluded that the most important factors that govern the performance of an intelligent bacterial odour detection system are: (a) an odour generation mechanism, (b) a rapid odour delivery system similar to the mammalian olfactory system, (c) a gas sensor array of high reproducibility and (d) a hybrid intelligent model (expert system) which will enable the parallel use of GA-NNs and multivariate techniques.  相似文献   

4.
Urinary tract infection (UTI) is a common disease with significant morbidity and economic burden, accounting for a significant part of the workload in clinical microbiology laboratories. Current clinical chemisty point-of-care diagnostics rely on imperfect dipstick analysis which only provides indirect and insensitive evidence of urinary bacterial pathogens. An electronic nose (eNose) is a handheld device mimicking mammalian olfaction that potentially offers affordable and rapid analysis of samples without preparation at athmospheric pressure. In this study we demonstrate the applicability of ion mobility spectrometry (IMS) –based eNose to discriminate the most common UTI pathogens from gaseous headspace of culture plates rapidly and without sample preparation. We gathered a total of 101 culture samples containing four most common UTI bacteries: E. coli, S. saprophyticus, E. faecalis, Klebsiella spp and sterile culture plates. The samples were analyzed using ChemPro 100i device, consisting of IMS cell and six semiconductor sensors. Data analysis was conducted by linear discriminant analysis (LDA) and logistic regression (LR). The results were validated by leave-one-out and 5-fold cross validation analysis. In discrimination of sterile and bacterial samples sensitivity of 95% and specificity of 97% were achieved. The bacterial species were identified with sensitivity of 95% and specificity of 96% using eNose as compared to urine bacterial cultures. In conclusion: These findings strongly demonstrate the ability of our eNose to discriminate bacterial cultures and provides a proof of principle to use this method in urinanalysis of UTI.  相似文献   

5.
The use of volatile production patterns produced by Mycobacterium tuberculosis and associated bacterial infections from sputum samples were examined in vitro and in situ using an electronic nose based on a 14 sensor conducting polymer array. In vitro, it was possible to successfully discriminate between M. tuberculosis (TB) and control media, and between M. tuberculosis and M. avium, M. scrofulaceum and Pseudomonas aeruginosa cultures in the stationary phase after 5-6h incubation at 37 degrees C based on 35 samples. Using neural network (NN) analysis and cross-validation it was possible to successfully identify 100% of the TB cultures from others. A second in vitro study with 61 samples all four groups were successfully discriminated with 14 of 15 unknowns within each of the four groups successfully identified using cross-validation and discriminant function analysis. Subsequently, lipase enzymes were added to 46 sputum samples directly obtained from patients and the head space analysed. Parallel measurements of bacterial contamination were also carried out for confirmation using agar media. NN analysis was carried out using some of the samples as a training set. Based on the NN and genetic algorithms of up to 10 generations it was possible to successfully cross-validate 9 of 10 unknown samples. PCA was able to discriminate between TB infection alone, the controls, M. avium, P. aeruginosa and a mixed infection. These findings will have significant implications for the development of rapid qualitative systems for screening of patient samples and clinical diagnosis of tuberculosis.  相似文献   

6.
AIMS: Early detection of spoilage fungi (two Eurotium spp., a Penicillium chrysogenum species) in bread analogues over periods of 72 h at 25 degrees C and 0.95 water activity was evaluated using volatile production patterns, hydrolytic enzyme production, and changes in fungal populations. METHODS AND RESULTS: Using an electronic nose system it was possible to differentiate between uninoculated controls and samples contaminated with P. chrysogenum within 28 h. After 40-48 h it was possible to differentiate between the Eurotium spp., P. chrysogenum and the control using Principal Component Analysis (PCA). Cluster analyses could differentiate between the control, P. chrysogenum and the Eurotium spp. after 40 h. Of seven hydrolytic enzymes examined after 48 h, the specific activities of three were significantly different from uninoculated control bread. There were also differences between the mould species in production of three enzymes. Penicillium chrysogenum populations increased fastest, from about 10(3) cfu g(-1) to 10(6)-10(7) cfu g(-1) after 72 h. For the Eurotium spp. this increase was slower. CONCLUSIONS: Overall, this study suggests, for the first time, that an electronic nose system using a surface polymer sensor array is able to detect qualitative changes in volatile production patterns for the early detection of the activity of spoilage moulds in bakery products. SIGNIFICANCE AND IMPACT OF THE STUDY: Potential exists for application of such systems for microbial quality assurance in intermediate moisture food products.  相似文献   

7.
We documented the normal conjunctival bacterial flora from 17 opossums (Didelphis virginiana) and 10 raccoons (Procyon lotor) trapped in Manhattan, Kansas (USA) from November 1999 to January 2000. Both raccoons and opossums were free of apparent ocular disease. The inferior conjunctival sacs of each animal were swabbed for aerobic bacterial and Mycoplasma culture and polymerase chain reaction (PCR) for Mycoplasma and Chlamydia detection. All conjunctival samples were positive for one or more species of aerobic bacteria. The most common isolate from opossums was Staphylococcus spp. Other isolates included Streptococcus spp., Bacillus spp., Corynebacterium spp., and Enterococcus faecalis. The most common isolates in raccoons was Bacillus spp. Other isolates included Streptococcus spp., Staphylococcus spp., non-hemolytic Escherichia coli, and Enterococcus faecalis. Mycoplasma culture was negative in samples from opossums and raccoons. Evidence of Mycoplasma and Chlamydia presence was detected by PCR.  相似文献   

8.
AIMS: Use of an electronic nose (e.nose) system to differentiation between anaerobic bacteria grown in vitro on agar media. METHODS AND RESULTS: Cultures of Clostridium spp. (14 strains) and Bacteroides fragilis (12 strains) were grown on blood agar plates and incubated in sampling bags for 30 min before head space analysis of the volatiles. Qualitative analyses of the volatile production patterns was carried out using an e.nose system with 14 conducting polymer sensors. Using data analysis techniques such as principal components analysis (PCA), genetic algorithms and neural networks it was possible to differentiate between agar blanks and individual species which accounted for all the data. A total of eight unknowns were correctly discriminated into the bacterial groups. CONCLUSIONS: This is the first report of in vitro complex volatile pattern recognition and differentiation of anaerobic pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest the potential for application of e.nose technology in early diagnosis of microbial pathogens of medical importance.  相似文献   

9.
Selected ion flow tube-mass spectrometry has been used to measure the volatile compounds occurring in the headspace of urine samples inoculated with common urinary tract infection (UTI)-causing microbes Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterococcus faecalis, or Candida albicans. This technique has the potential to offer rapid and simple diagnosis of the causative agent of UTIs.  相似文献   

10.
A universal protocol for PCR detection of 13 species of foodborne pathogens in foods wasdeveloped. The protocol used a universal culture medium and the same PCR conditions with 13sets of specific primers. The 13 species of foodborne pathogens examined were Escherichiacoli, E. coli- ETEC, E. coli -O157:H7, Shigella spp. , Salmonella spp. , Yersinia enterocolitica, Y. pseudotuberculosis, Vibrio cholerae, V.parahaemolyticus, V. vulnificus , Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus . No interference was observed using the PCR assay when foodsample was artificially inoculated with each individual bacterial species. Twelve different seafoodsamples and two soft cheese samples without artificial inoculation were examined by thisprotocol. Vibrio vulnificus, Salmonella spp. , E. coli,Listeria monocytogenes and Bacillus cereus were detected in some foods.Internal probe hybridization and nested PCR procedures were used to confirm the above findings.  相似文献   

11.
To address the shortcomings of urine culture for the rapid identification of urinary tract infection (UTI), we applied (1)H-nuclear magnetic resonance (NMR) spectroscopy as a surrogate method for fast screening of microorganisms. Study includes 682 urine samples from suspected UTI patients, 50 healthy volunteers, and commercially available standard strains of gram negative bacilli (GNB) (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii) and gram positive cocci (GPC) (Enterococcus faecalis, Streptococcus group B, Staphylococcus saprophyticus). Acetate, lactate, ethanol, succinate, creatinine, trimethylamine (TMA), citrate, trimethylamin-N-oxide, glycine, urea, and hippurate were measured by (1)H NMR spectroscopy. All urine specimens were evaluated with culture method. Multivariate discriminant function analysis (DFA) reveals that acetate, lactate, succinate, and formate were able to differentiate, with high accuracy (99.5%), healthy controls from UTI patients. This statistical analysis was also able to classify GNB to GPC infected urine samples with high accuracy (96%). This technique appears to be a promising, rapid, and noninvasive approach to probing GNB and GPC infected urine specimens with its distinguishing metabolic profile. The determination of infection will be very important for rapidly and efficiently measuring the efficacy of a tailored treatment, leading to prompt and appropriate care of UTI patients.  相似文献   

12.
We aimed to determine the effects of oxidative stress in urinary tract infection (UTI). One hundred sixty-four urine samples obtained from patients with the prediagnosis of acute UTI admitted to the Faculty of Medicine, Kahramanmaras Sutcu Imam University, were included in this study. Urine cultures were performed according to standard techniques. Urinary isolates were identified by using API ID 32E. The catalase and superoxide dismutase activity and the lipid peroxidation levels known as oxidative stress markers were measured in all urine samples. Thirty-six pathogen microorganisms were identified in positive urine cultures. These microorganisms were as follows: 23 (63.8%) E coli, 5 (13.8%) P mirabilis, 4 (11.1%) K pneumoniae, 2 (5.5%) Candida spp, 1 (2.7%) S saprophyticus, and 1 (2.7%) P aeruginosa. It was observed that lipid peroxidation levels were increased while catalase and superoxide dismutase activities were decreased in positive urine cultures, compared to negative cultures. We conclude that urinary tract infection causes oxidative stress, increases lipid peroxidation level, and leads to insufficiency of antioxidant enzymes.  相似文献   

13.
An electronic nose (EN) device was used to detect microbial and viral contaminations in a variety of animal cell culture systems. The emission of volatile components from the cultures accumulated in the bioreactor headspace, was sampled and subsequently analysed by the EN device. The EN, which was equipped with an array of 17 chemical gas sensors of varying selectivity towards the sampled volatile molecules, generated response patterns of up to 85 computed signals. Each 15 or 20 min a new gas sample was taken generating a new response pattern. A software evaluation tool visualised the data mainly by using principal component analysis. The EN was first used to detect microbial contaminations in a Chinese hamster ovary (CHO) cell line producing a recombinant human macrophage colony stimulating factor (rhM-CSF). The CHO cell culture was contaminated by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida utilis which all were detected. The response patterns from the CHO cell culture were compared with monoculture references of the microorganisms. Second, contaminations were studied in an Sf-9 insect cell culture producing another recombinant protein (VP2 protein). Contaminants were detected from E. coli, a filamentous fungus and a baculovirus. Third, contamination of a human cell line, HEK-293, infected with E. coli exhibited comparable results. Fourth, bacterial contaminations could also be detected in cultures of a MLV vector producer cell line. Based on the overall experiences in this study it is concluded that the EN method has in a number of cases the potential to be developed into a useful on-line contamination alarm in order to support safety and economical operation for industrial cultivation.  相似文献   

14.
15.
A multiplex PCR assay was devised and compared with standard conventional methods for quality evaluation of pharmaceutical raw materials and finished products with low levels of microbial contamination. Samples which were artificially contaminated with <10 colony forming units of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella species and possibly contaminated samples were incubated for 16 h with different enrichment media. Primers that deduce 559 bp fragment of the 16S rRNA gene was employed in amplifying E. coli species, similarly invasion protein gene with 275 bp fragment size was used as target for detecting Salmonella spp., in case of S. aureus a 461 bp amplicon from m-RNA nuclease gene, and an 709 bp fragment from oprL gene was used for amplifying P. aeruginosa. The detection limits for artificially contaminants by multiplex PCR was 1 CFU/g, where as in case of conventional method the detection limit was >2 CFU/g. Similarly, when tested with possibly contaminated samples, 35% were detected for E. coli, Salmonella spp., S. aureus and P. aeruginosa species with multiplex PCR, while only 21% were detected with standard conventional microbial methods. Multiplex PCR assay provides sensitive and reliable results and allows for the cost-effective detection of all four bacterial pathogens in single reaction tube.  相似文献   

16.
Studies have been carried out to determine the potential for the detection of different microbial species (Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa), alone and in the presence of low concentrations of different heavy metals (As, Cd, Pb and Zn) in bottled, reverse osmosis (RO) and tap water, using an electronic nose. Studies show that it is possible to discriminate control water samples from water contaminated with 0.5 ppm of a mixture of metals. The presence of heavy metals may modify the activity of microorganisms and thus the volatile production patterns. Bacterial species at 10(2)-10(4) colony forming units (CFUs) ml(-1) could be detected after 24 h of incubation. Work is in progress to identify the limits of detection for a range of other microorganisms, including, fungi and cyanobacteria, and chlorinated phenols using electronic nose technology.  相似文献   

17.
Samples of urine collected from patients with complicated urology infection and hospitalized to the Moscow Region Research Clinical Institute in 1986, 1991, 1995 and 1999 were analysed. Of 11,444 samples examined, bacteriuria was estimated in 7143 samples. 9786 strains (29 genus) of bacteria were isolated--56.9 per cent as mono culture and 43.1 per cent as associations. Susceptibility to 21 antibiotic was determined by disk diffusion method for 1607 strains; beta-lactamase production was determined in 198 strains, MIC was determined for 41 antibiotics. Gram-negative rods relative amount among pathogens decreased substantially (84.7 per cent in 1986 against 61.6 per cent in 1999), particularly Enterobacteriaceae (74.7 per cent in 1986 against 41.4 per cent in 1999). Nonfermenting Gram-negative rods (NFGNR) relative amount increased (10.8 per cent against 19.2 per cent), along with Gram-positive cocci (19.8 per cent against 64.2 per cent), particularly coagulasenegative staphylococci (CNS) (10.8 per cent against 35.9 per cent) and enterococci (5 per cent against 16.5 per cent) and candida and fungi (0.5 per cent in 1986 against 15.9 per cent in 1999). At the period 1986-1999 the main pathogens in urology infection were E. coli, Enterobacter spp., NFGNR (including P. aeruginosa), Staphylococcus, CNS, Enterococcus spp. The problem pathogens for urological department were the following: E. coli, Klebsiella spp., Enterobacter spp., Proteus spp., NFGNR including P. aeruginosa, CNS, Enterococcus spp., candida and fungi. At the period 1991-1997 Gram-negative pathogens susceptibility to amikacin, ofloxacin, ciprofloxacin, imipenem, ceftazidime, cefotaxime was not changed in general, Gram-positive cocci (staphylococci and enterococci) retained the same susceptibility to vancomicin, cefamandol and amoxyclave. Staphylococci were also susceptible to amikacin, imipenem, rifampicin, oxacillin, ciprofloxacin, and ofloxacin. Production of beta-lactamase was registered for 38.7 per cent of CNS, 26.5 per cent of E. coli, 38.5 per cent of K. pneumoniae, 25 per cent of P. mirabilis and 55.6 per cent of P. aeruginosa strains.  相似文献   

18.
Urinary tract infection (UTI) is among the most common bacterial infections and poses a significant healthcare burden. Escherichia coli is the most common cause of UTI accounting for up to 70?% and a variable contribution from Proteus mirabilis, Pseudomonas aeruginosa and Klebsiella pneumoniae. To establish a complete diagnostic system, we have developed a single-tube multiplex PCR assay (mPCR) for the detection of the above-mentioned four major uropathogens. The sensitivity of the assay was found to be as low as 10(2)?cfu/ml of cells. The mPCR evaluated on 280 clinical isolates detected 100?% of E. coli, P. aeruginosa, P. mirabilis and 95?% of K. pneumonia. The assay was performed on 50 urine samples and found to be specific and sensitive for clinical diagnosis. In addition, the mPCR was also validated on spiked urine samples using 40 clinical isolates to demonstrate its application under different strain used in this assay. In total, mPCR reported here is a rapid and simple screening tool that can compete with conventional biochemical-based screening assays that may require 2-3?days for detection.  相似文献   

19.
ABSTRACT: BACKGROUND: Urinary tract infection (UTI) is a common health problem among pregnant women. Proper investigation and prompt treatment are needed to prevent serious life threatening condition and morbidity due to urinary tract infection that can occur in pregnant women. Recent report in Addis Ababa, Ethiopia indicated the prevalence of UTI in pregnant women was 11.6 % and Gram negative bacteria was the predominant isolates and showed multi drug resistance. This study aimed to assess bacterial profile that causes urinary tract infection and their antimicrobial susceptibility pattern among pregnant women visiting antenatal clinic at University of Gondar Teaching Hospital, Northwest Ethiopia. METHODS: A cross-sectional study was conducted at University of Gondar Teaching Hospital from March 22 to April 30, 2011. Mid stream urine samples were collected and inoculated into Cystine Lactose Electrolyte Deficient medium (CLED). Colony counts yielding bacterial growth of 105/ml of urine or more of pure isolates were regarded as significant bacteriuria for infection. Colony from CLED was sub cultured onto MacConkey agar and blood agar plates. Identification was done using cultural characteristics and a series of biochemical tests. A standard method of agar disc diffusion susceptibility testing method was used to determine susceptibility patterns of the isolates. RESULTS: The overall prevalence of UTI in pregnant women was 10.4 %. The predominant bacterial pathogens were Escherichia coli 47.5 % followed by coagulase-negative staphylococci 22.5 %, Staphylococcus aureus 10 %, and Klebsiella pneumoniae 10 %. Gram negative isolates were resulted low susceptibility to co-trimoxazole (51.9 %) and tetracycline (40.7 %) whereas Gram positive showed susceptibility to ceftriaxon (84.6 %) and amoxicillin-clavulanic acid (92.3 %). Multiple drug resistance (resistance to two or more drugs) was observed in 95 % of the isolates. CONCLUSION: Significant bacteriuria was observed in asymptomatic pregnant women. Periodic studies are recommended to check the outcome of asymptomatic bacteriuria and also monitor any changes in the susceptibility patterns of urinary tract pathogens in pregnant women.  相似文献   

20.
Uropathogenic Escherichia coli (UPEC) and Staphylococcus saprophyticus (S. saprophyticus) are responsible for the majority of community-acquired urinary tract infections (UTI). Agar plating, a gold standard for detection of bacterial uropathogens, is labor intensive, limited for distinguishing between environmental contaminants and pathogens, and fails to effectively detect mixed infections. A reliable method for specific and sensitive quantitative assessment of infections would allow cost-effective evaluation of large numbers of experimental samples. A methodology such as quantitative PCR (qPCR) addresses the limitations of agar plating. We developed and validated highly specific and sensitive qPCR assays to assist researchers in the evaluation of potential vaccines and interventions in preclinical models of UPEC and S. saprophyticus UTI. The developed UPEC PCR targeted a highly conserved region of the UPEC hemolysin D (hlyD) gene that reproducibly detected type strains CFT073 and J96 over a 9 log range with high precision. To quantify S. saprophyticus genomes, a separate qPCR assay targeting the Trk transport gene was developed with an 8 log range. Neither assay detected bacterial species predicted to be sample contaminants. Using our optimized workflow that includes automated steps, up to 200 urine or tissue samples can be processed in as few as 3 h. Additionally, sequence comparisons of our primers and probe to other UTI bacterial strains indicated the broad applicability of these assays. These optimized qPCR assays provide a cost-effective and time-saving method for quantification of bacterial burdens in tissues and body fluids to assess the effectiveness of candidate vaccines or interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号