首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and β1 integrin co-signaling pathway. By using α5 null cells, β1 integrin functional blocking antibody, and a α5β1 integrin targeting peptide A5-1, we demonstrate that the α5 and β1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCα is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.  相似文献   

2.
Tissue transglutaminase (TG2) has been identified as an important extracellular crosslinking enzyme involved in matrix turnover and in bone differentiation. Here we report a novel cell adhesion/survival mechanism in human osteoblasts (HOB) which requires association of FN bound TG2 with the cell surface heparan sulphates in a transamidase independent manner. This novel pathway not only enhances cell adhesion on FN but also mediates cell adhesion and survival in the presence of integrin competing RGD peptides. We investigate the involvement of cell surface receptors and their intracellular signalling molecules to further explore the pathway mediated by this novel TG-FN heterocomplex. We demonstrate by siRNA silencing the crucial importance of the cell surface heparan sulphate proteoglycans syndecan-2 and syndecan-4 in regulating the compensatory effect of TG-FN on osteoblast cell adhesion and actin cytoskeletal formation in the presence of RGD peptides. By use of immunoprecipitation and inhibitory peptides we show that syndecan-4 interacts with TG2 and demonstrate that syndecan-2 and the α5β1 integrins, but not α4β1 function as downstream modulators in this pathway. Using function blocking antibodies, we show activation of α5β1 occurs by an inside out signalling mechanism involving activation and binding of protein kinase PKCα and phosphorylation of focal adhesion kinase (FAK) at Tyr861 and activation of ERK1/2.  相似文献   

3.
The ADAMs (a disintegrin and metalloprotease) comprise a large family of multidomain proteins with cell-binding and metalloprotease activities. The ADAM12 cysteine-rich domain (rADAM12-cys) supports cell attachment using syndecan-4 as a primary cell surface receptor that subsequently triggers beta(1) integrin-dependent cell spreading, stress fiber assembly, and focal adhesion formation. This process contrasts with cell adhesion on fibronectin, which is integrin-initiated but syndecan-4-dependent. In the present study, we investigated ADAM12/syndecan-4 signaling leading to cell spreading and stress fiber formation. We demonstrate that syndecan-4, when present in significant amounts, promotes beta(1) integrin-dependent cell spreading and stress fiber formation in response to rADAM12-cys. A mutant form of syndecan-4 deficient in protein kinase C (PKC)alpha activation or a different member of the syndecan family, syndecan-2, was unable to promote cell spreading. GF109203X and G?6976, inhibitors of PKC, completely inhibited ADAM12/syndecan-4-induced cell spreading. Expression of syndecan-4, but not syn4DeltaI, resulted in the accumulation of activated beta(1) integrins at the cell periphery in Chinese hamster ovary beta1 cells as revealed by 12G10 staining. Further, expression of myristoylated, constitutively active PKCalpha resulted in beta(1) integrin-dependent cell spreading, but additional activation of RhoA was required to induce stress fiber formation. In summary, these data provide novel insights into syndecan-4 signaling. Syndecan-4 can promote cell spreading in a beta(1) integrin-dependent fashion through PKCalpha and RhoA, and PKCalpha and RhoA likely function in separate pathways.  相似文献   

4.
The fibronectin (FN)-binding integrins alpha4beta1 and alpha5beta1 confer different cell adhesive properties, particularly with respect to focal adhesion formation and migration. After analyses of alpha4+/alpha5+ A375-SM melanoma cell adhesion to fragments of FN that interact selectively with alpha4beta1 and alpha5beta1, we now report two differences in the signals transduced by each receptor that underpin their specific adhesive properties. First, alpha5beta1 and alpha4beta1 have a differential requirement for cell surface proteoglycan engagement for focal adhesion formation and migration; alpha5beta1 requires a proteoglycan coreceptor (syndecan-4), and alpha4beta1 does not. Second, adhesion via alpha5beta1 caused an eightfold increase in protein kinase Calpha (PKCalpha) activation, but only basal PKCalpha activity was observed after adhesion via alpha4beta1. Pharmacological inhibition of PKCalpha and transient expression of dominant-negative PKCalpha, but not dominant-negative PKCdelta or PKCzeta constructs, suppressed focal adhesion formation and cell migration mediated by alpha5beta1, but had no effect on alpha4beta1. These findings demonstrate that different integrins can signal to induce focal adhesion formation and migration by different mechanisms, and they identify PKCalpha signaling as central to the functional differences between alpha4beta1 and alpha5beta1.  相似文献   

5.
Syndecans are cell surface heparan sulfate proteoglycans with regulatory roles in cell adhesion, proliferation, and differentiation [Annu. Rev. Biochem. 68 (1999) 729]. While the syndecan heparan sulfate chains are essential for matrix binding, less is known about the signaling role of their core proteins. To mimic syndecan-specific adhesion, MDA-MB-231 mammary carcinoma cells were plated on antibodies against syndecan-4 or syndecan-1. While cells adherent via syndecan-4 spread, cells adherent via syndecan-1 do not. However, cells adherent via syndecan-1 can be induced to spread by Mn(2+), suggesting that activation of a beta(1) or beta(3) integrin partner is required. Surprisingly, pretreatment of cells with a function-activating beta(1) antibody does not induce spreading, whereas function-blocking beta(1) integrin antibodies do, suggesting involvement of a beta(1)-to-beta(3) integrin cross-talk. Indeed, blockade of beta(1) integrin activation induces alpha(v)beta(3) integrin activation detectable by soluble fibrinogen binding. Spreading in response to syndecan-1 is independent of integrin-ligand binding. Furthermore, competition with soluble murine syndecan-1 ectodomain, which does not disrupt cell adhesion, nonetheless blocks the spreading mechanism. These data suggest that the ectodomain of the syndecan-1 core protein directly participates in the formation of a signaling complex that signals in cooperation with alpha(v)beta(3) integrins; signaling via this complex is negatively regulated by beta(1) integrins.  相似文献   

6.
Tenascin-C (TN-C) is unique for its cell adhesion modulatory function. We have shown that TNIIIA2, a synthetic 22-mer peptide derived from TN-C, stimulated beta1 integrin-mediated cell adhesion of nonadherent and adherent cell types, by inducing activation of beta1 integrin. The active site of TNIIIA2 appeared cryptic in the TN-C molecule but was exposed by MMP-2 processing of TN-C. The following results suggest that cell surface heparan sulfate (HS) proteoglycan (HSPG), including syndecan-4, participated in TNIIIA2-induced beta1 integrin activation: 1) TNIIIA2 bound to cell surface HSPG via its HS chains, as examined by photoaffinity labeling; 2) heparitinase I treatment of cells abrogated beta1 integrin activation induced by TNIIIA2; 3) syndecan-4 was isolated by affinity chromatography using TNIIIA2-immobilized beads; 4) small interfering RNA-based down-regulation of syndecan-4 expression reduced TNIIIA2-induced beta1 integrin activation, and consequent cell adhesion to fibronectin; 5) overexpression of syndecan-4 core protein enhanced TNIIIA2-induced activation of beta1 integrin. However, treatments that targeted the cytoplasmic region of syndecan-4, including ectopic expression of its mutant truncated with the cytoplasmic domains and treatment with protein kinase Calpha inhibitor G?6976, did not influence the TNIIIA2 activity. These results suggest that a TNIIIA2-related matricryptic site of the TN-C molecule, exposed by MMP-2 processing, may have bound to syndecan-4 via its HS chains and then induced conformational change in beta1 integrin necessary for its functional activation. A lateral interaction of beta1 integrin with the extracellular region of the syndecan-4 molecule may be involved in this conformation change.  相似文献   

7.
Horowitz A  Murakami M  Gao Y  Simons M 《Biochemistry》1999,38(48):15871-15877
Recent studies have demonstrated that the cytoplasmic tail of syndecan-4, a widely expressed transmembrane proteoglycan, can activate protein kinase Calpha in vitro, in combination with phosphatidylinositol-4,5-bisphosphate (PI-4,5-P(2)). Syndecan-4 is involved in growth factor binding as well as in adhesion to extracellular matrix proteins, while PI-4,5-P(2) synthesis is modulated by growth factor and adhesion-generated signaling. The cooperative activation of PKCalpha by the proteoglycan and the phosphatidylinositol may constitute, therefore, an essential part of the cell's response to these extracellular signals. To characterize the activation mechanism of PKCalpha, we addressed here the nature of the interplay between syndecan-4, PI-4,5-P(2), and PKCalpha by measuring their mutual binding affinities and the specificity of their interactions. We found that the cytoplasmic tail of syndecan-4 is unlikely to bind directly to PKCalpha, and that this interaction critically depends on PI-4,5-P(2). The PI-4,5-P(2) specificity of the activation of PKCalpha is conferred by the cytoplasmic tail of syndecan-4, which has higher binding affinity for this phosphatidylinositol over phosphatidylinositol-3,4-bisphosphate and the -3,4,5-trisphospate. The activation is specific to PKCalpha and does not encompass the novel protein kinase C delta isoenzyme.  相似文献   

8.
Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.  相似文献   

9.
Syndecan-1-expressing Raji lymphoid cells (Raji-S1 cells) bind and spread rapidly when attaching to matrix ligands that contain heparan sulfate-binding domains. However, these ligands also contain binding sites for integrins, which are widely known to signal, raising the question of whether the proteoglycan core protein participates in generation of the signal for spreading. To address this question, the spreading of the Raji-S1 cells is examined on ligands specific for either beta1 integrins, known to be present on the Raji cells, or the syndecan-1 core protein. The cells adhere and spread on invasin, a ligand that activates beta1 integrins, the IIICS fragment of fibronectin, which is a specific ligand for the alpha4beta1 integrin, or mAb281.2, an antibody specific for the syndecan-1 core protein. The signaling resulting from adhesion to the syndecan-specific antibody appears integrin independent as (i) the morphology of the cells spreading on the antibody is distinct from spreading initiated by the integrins alone; (ii) spreading on the syndecan or integrin ligands is affected differently by the kinase inhibitors tyrphostin 25, genistein, and staurosporine; and (iii) spreading on the syndecan-specific antibody is not disrupted by blocking beta1 integrin activation with mAb13, a beta1 inhibitory antibody. These data demonstrate that ligation of syndecan-1 initiates intracellular signaling and suggest that this signaling occurs when cells expressing syndecan-1 adhere to matrix ligands containing heparan sulfate-binding domains.  相似文献   

10.
Specific association of tissue transglutaminase (tTG) with matrix fibronectin (FN) results in the formation of an extracellular complex (tTG-FN) with distinct adhesive and pro-survival characteristics. tTG-FN supports RGD-independent cell adhesion of different cell types and the formation of distinctive RhoA-dependent focal adhesions following inhibition of integrin function by competitive RGD peptides and function blocking anti-integrin antibodies alpha5beta1. Association of tTG with its binding site on the 70-kDa amino-terminal FN fragment does not support this cell adhesion process, which seems to involve the entire FN molecule. RGD-independent cell adhesion to tTG-FN does not require transamidating activity, is mediated by the binding of tTG to cell-surface heparan sulfate chains, is dependent on the function of protein kinase Calpha, and leads to activation of the cell survival focal adhesion kinase. The tTG-FN complex can maintain cell viability of tTG-null mouse dermal fibroblasts when apoptosis is induced by inhibition of RGD-dependent adhesion (anoikis), suggesting an extracellular survival role for tTG. We propose a novel RGD-independent cell adhesion mechanism that promotes cell survival when the anti-apoptotic role mediated by RGD-dependent integrin function is reduced as in tissue injury, which is consistent with the externalization and binding of tTG to fibronectin following cell damage/stress.  相似文献   

11.
The fibronectin receptors alpha(5)beta(1) integrin and syndecan-4 cocluster in focal adhesions and coordinate cell migration by making individual contributions to the suppression of RhoA activity during matrix engagement. p190Rho-guanosine triphosphatase-activating protein (GAP) is known to inhibit RhoA during the early stages of cell spreading in an Src-dependent manner. This paper dissects the mechanisms of p190RhoGAP regulation and distinguishes the contributions of alpha(5)beta(1) integrin and syndecan-4. Matrix-induced tyrosine phosphorylation of p190RhoGAP is stimulated solely by engagement of alpha(5)beta(1) integrin and is independent of syndecan-4. Parallel engagement of syndecan-4 causes redistribution of the tyrosine-phosphorylated pool of p190RhoGAP between membrane and cytosolic fractions by a mechanism that requires direct activation of protein kinase C alpha by syndecan-4. Activation of both pathways is necessary for the efficient regulation of RhoA and, as a consequence, focal adhesion formation. Accordingly, we identify p190RhoGAP as the convergence point for adhesive signals mediated by alpha(5)beta(1) integrin and syndecan-4. This molecular mechanism explains the cooperation between extracellular matrix receptors during cell adhesion.  相似文献   

12.
Syndecan-4 modulates focal adhesion kinase phosphorylation   总被引:7,自引:0,他引:7  
The cell-surface heparan sulfate proteoglycan syndecan-4 acts in conjunction with the alpha(5)beta(1) integrin to promote the formation of actin stress fibers and focal adhesions in fibronectin (FN)-adherent cells. Fibroblasts seeded onto the cell-binding domain (CBD) fragment of FN attach but do not fully spread or form focal adhesions. Activation of Rho, with lysophosphatidic acid (LPA), or protein kinase C, using the phorbol ester phorbol 12-myristate 13-acetate, or clustering of syndecan-4 with antibodies directed against its extracellular domain will stimulate formation of focal adhesions and stress fibers in CBD-adherent fibroblasts. The distinct morphological differences between the cells adherent to the CBD and to full-length FN suggest that syndecan-4 may influence the organization of the focal adhesion or the activation state of the proteins that comprise it. FN-null fibroblasts (which express syndecan-4) exhibit reduced phosphorylation of focal adhesion kinase (FAK) tyrosine 397 (Tyr(397)) when adherent to CBD compared with FN-adherent cells. Treating the CBD-adherent fibroblasts with LPA, to activate Rho, or the tyrosine phosphatase inhibitor sodium vanadate increased the level of phosphorylation of Tyr(397) to match that of cells plated on FN. Treatment of the fibroblasts with PMA did not elicit such an effect. To confirm that this regulatory pathway includes syndecan-4 specifically, we examined fibroblasts derived from syndecan-4-null mice. The phosphorylation levels of FAK Tyr(397) were lower in FN-adherent syndecan-4-null fibroblasts compared with syndecan-4-wild type and these levels were rescued by the addition of LPA or re-expression of syndecan-4. These data indicate that syndecan-4 ligation regulates the phosphorylation of FAK Tyr(397) and that this mechanism is dependent on Rho but not protein kinase C activation. In addition, the data suggest that this pathway includes the negative regulation of a protein-tyrosine phosphatase. Our results implicate syndecan-4 activation in a direct role in focal adhesion regulation.  相似文献   

13.
Endothelium extracellular matrix (ECM) interactions can provide distinct spatial and molecular signals which control cellular proliferation, migration, and differentiation. Here, we investigated the role of fibronectin (FN), a major ECM protein, on the functions of lymphatic endothelial cells (LEC). We observed that FN, the ligand for integrin alpha5beta1, selectively promoted the growth of LEC as compared with vitronectin (VN) in the presence of the ligand for vascular endothelial growth factor receptor 3 [VEGFR-3 (VEGF-C156S)]. Upon investigating the mechanisms whereby ECM components regulate VEGFR-3 signaling, we found that FN transactivated VEGFR-3 and significantly enhanced the phosphorylation of VEGFR-3 induced by VEGF-C156S as compared to VN. An enhanced association of the integrin subunit alpha5 or beta1 with VEGFR-3, after stimulation with VEGF-C156S, was observed by co-immunoprecipitation. While blockade of integrin alpha5beta1 inhibited the VEGF-C156S-induced phosphorylation of VEGFR-3, no similar effect was obtained by blocking integrin alphavbeta3. FN also protected the endothelial cells from serum deprivation-induced apoptosis. Moreover, while the specific PI3 kinase inhibitor, LY294002, abolished this FN-mediated cell survival, the MAPK kinase inhibitor, PD98059, had no significant effect. Furthermore, a dominant-negative mutant of VEGFR-3 (G857R) reduced VEGF-C156S or FN-mediated cell survival, as well as the activities of PI3 kinase/Akt. Our results indicate that integrin alpha5beta1 participates in the activation of both VEGFR-3 and its downstream PI3 kinase/Akt signaling pathway, which is essential for FN-mediated lymphatic endothelial cell survival and proliferation.  相似文献   

14.
The pathological hallmark of the host response to Mycobacterium tuberculosis is the granuloma where T cells and macrophages interact with the extracellular matrix (ECM) to control the infection. Recruitment and retention of T cells within inflamed tissues depend on adhesion to the ECM. T cells use integrins to adhere to the ECM, and fibronectin (FN) is one of its major components. We have found that the major M. tuberculosis cell wall glycolipid, phosphatidylinositol mannoside (PIM), induces homotypic adhesion of human CD4+ T cells and T cell adhesion to immobilized FN. Treatment with EDTA and cytochalasin D prevented PIM-induced T cell adhesion. PIM-induced T cell adhesion to FN was blocked with mAbs against alpha5 integrin chain and with RGD-containing peptides. Alpha5beta1 (VLA-5) is one of two major FN receptors on T cells. PIM was found to bind directly to purified human VLA-5. Thus, PIM interacts directly with VLA-5 on CD4+ T lymphocytes, inducing activation of the integrin, and promoting adhesion to the ECM glycoprotein, FN. This is the first report of direct binding of a M. tuberculosis molecule to a receptor on human T cells resulting in a change in CD4+ T cell function.  相似文献   

15.
Integrin activation generates different signalings in a cell type-dependent manner and stimulates cell proliferation through the Ras/Raf-1/Mek/Erk pathway. In this study, we demonstrate that integrin stimulation by fibronectin (FN), besides activating the Ras/Erk pathway, generates an auxiliary calcium signal that activates calmodulin and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). This signal regulates Raf-1 activation by Ras and modulates the FN-stimulated extracellular signal-regulated kinase (Erk-1/2). The binding of soluble FN to integrins induced increase of intracellular calcium concentration associated with phosphorylation and activation of CaMKII. In two different cell lines, inhibition of CaMKII activity by specific inhibitors inhibited Erk-1/2 phosphorylation. Whereas CaMK inhibition affected neither integrin-stimulated Akt phosphorylation nor p21Ras or Mek-1 activity, it was necessary for Raf-1 activity. FN-induced Raf-1 activity was abrogated by the CaMKII specific inhibitory peptide ant-CaNtide. Integrin activation by FN induced the formation of a Raf-1/CaMKII complex, abrogated by inhibition of CaMKII. Active CaMKII phosphorylated Raf-1 in vitro. This is the first demonstration that CaMKII interplays with Raf-1 and regulates Erk activation induced by Ras-stimulated Raf-1. These findings also provide evidence supporting the possible existence of cross-talk between other intracellular pathways involving CaMKII and Raf-1.  相似文献   

16.
We have recently shown that the platelet integrin alpha(IIb)beta(3) is activated by von Willebrand factor (vWF) binding to its platelet receptor, glycoprotein Ib-IX (GPIb-IX), via the protein kinase G (PKG) signaling pathway. Here we show that GPIb-IX-mediated activation of integrin alpha(IIb)beta(3) is inhibited by dominant negative mutants of Raf-1 and MEK1 in a reconstituted integrin activation model in Chinese hamster ovary (CHO) cells and that the integrin-dependent platelet aggregation induced by either vWF or low dose thrombin is inhibited by MEK inhibitors PD98059 and U0126. Thus, mitogen-activated protein kinase (MAPK) pathway is important in GPIb-IX-dependent activation of platelet integrin alpha(IIb)beta(3). Furthermore, vWF binding to GPIb-IX induces phosphorylation of Thr-202/Tyr-204 of extracellular signal-regulated kinase 2 (ERK2). GPIb-IX-induced ERK2 phosphorylation is inhibited by PKG inhibitors and enhanced by overexpression of recombinant PKG. PKG activators also induce ERK phosphorylation, indicating that activation of MAPK pathway is downstream from PKG. Thus, our data delineate a novel integrin activation pathway in which ligand binding to GPIb-IX activates PKG that stimulates MAPK pathway, leading to integrin activation.  相似文献   

17.
BACKGROUND: Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis, tumor cell metastasis, inflammation, the immune response, and hemostasis. A final step in integrin activation is the binding of talin, a cytoskeletal protein, to integrin beta cytoplasmic domains. Many different signaling molecules that regulate integrin affinity have been described, but a pathway that connects agonist stimulation to talin binding and activation has not been mapped. RESULTS: We used forward, reverse, and synthetic genetics to engineer and order an integrin activation pathway in cells expressing a prototype activatable integrin, platelet alphaIIbbeta3. Phorbol myristate acetate (PMA) activated alphaIIbbeta3 only after the increased expression of both recombinant protein kinase Calpha (PKCalpha) and talin to levels approximating those in platelets. Inhibition of Rap1 GTPase reduced alphaIIbbeta3 activation, whereas activated Rap1A(G12V) bypassed the requirement for PKC, establishing that Rap1 is downstream of PKC. Talin binding to integrins mediates Rap1-induced activation because Rap1A(G12V) failed to activate alphaIIbbeta3 in cells expressing integrin binding-defective talin (W359A). Rap1 activated integrins by forming an integrin-associated complex containing talin in combination with the Rap effector, RIAM. Furthermore, siRNA-mediated knockdown of RIAM blocked integrin activation. CONCLUSIONS: We have, for the first time, ordered a pathway from agonist stimulation to integrin activation and established the Rap1-induced formation of an "integrin activation complex," containing RIAM and talin, that binds to and activates the integrin.  相似文献   

18.
BACKGROUND: Convergence extension movements are conserved tissue rearrangements implicated in multiple morphogenetic events. While many of the cell behaviors involved in convergent extension are known, the molecular interactions required for this process remain elusive. However, past evidence suggests that regulation of cell adhesion molecule function is a key step in the progression of these behaviors. RESULTS: Antibody blocking of fibronectin (FN) adhesion or dominant-negative inhibition of integrin beta 1 function alters cadherin-mediated cell adhesion, promotes cell-sorting behaviors in reaggregation assays, and inhibits medial-lateral cell intercalation and axial extension in gastrulating embryos and explants. Embryo explants were used to demonstrate that normal integrin signaling is required for morphogenetic movements within defined regions but not for cell fate specification. The binding of soluble RGD-containing fragments of fibronectin to integrins promotes the reintegration of dissociated single cells into intact tissues. The changes in adhesion observed are independent of cadherin or integrin expression levels. CONCLUSIONS: We conclude that integrin modulation of cadherin adhesion influences cell intercalation behaviors within boundaries defined by extracellular matrix. We propose that this represents a fundamental mechanism promoting localized cell rearrangements throughout development.  相似文献   

19.
Apoptosis of terminally differentiated chondrocytes allows the replacement of growth plate cartilage by bone. Despite its importance, little is known about the regulation of chondrocyte apoptosis. We show that overexpression of annexin V, which binds to the cytoplasmic domain of beta5 integrin and protein kinase C alpha (PKCalpha), stimulates apoptotic events in hypertrophic growth plate chondrocytes. To determine whether the balance between the interactions of annexin V/beta5 integrin and annexin V/active PKCalpha play a role in the regulation of terminally differentiated growth plate chondrocyte apoptosis, a peptide mimic of annexin V (Penetratin (Pen)-VVISYSMPD) that binds to beta5 integrin but not to PKCalpha was used. This peptide stimulated apoptotic events in growth plate chondrocytes. Suppression of annexin V expression using small interfering ribonucleic acid decreased caspase-3 activity and increased cell viability in Pen-VVISYSMPD-treated growth plate chondrocytes. An activator of PKC resulted in a further decrease of cell viability and further increase of caspase-3 activity in Pen-VVISYSMPD-treated growth plate chondrocytes, whereas inhibitors of PKCalpha led to an increase of cell viability and decrease of caspase-3 activity of Pen-VVISYSMPD-treated cells. These findings suggest that binding of annexin V to active PKCalpha stimulates apoptotic events in growth plate chondrocytes and that binding of annexin Vto beta5 integrin controls these interactions and ultimately apoptosis.  相似文献   

20.
We previously reported that the enterocytic differentiation of human colonic Caco-2 cells correlated with down-regulation of fibronectin (FN) and laminin (LN), two extracellular matrix components interacting with cell surface integrin receptors. We now investigated whether Caco-2 cell differentiation was associated with alterations in integrin signaling with special interest in the expression and activity of focal adhesion kinase (FAK) and mitogen-activated protein (MAP) kinase. The differentiation of Caco-2 cells was associated with: 1) down-regulation of beta1 integrin expression at the mRNA and protein levels; 2) increased FAK expression together with decreased FAK autophosphorylation; 3) decreased FAK's ability to associate with PI3-kinase and pp60c-src; and 4) increased MAP kinase expression along with decreased MAP activity. In addition, we show that FAK and MAP kinase belong to distinct integrin signaling pathways and that both pathways remain functional during Caco-2 cell differentiation since the coating of differentiating cells on FN and LN but not on polylysine increased the tyrosine phosphorylation of FAK and of its endogenous substrate paxillin, and stimulated MAP kinase activity. In conclusion, our results provide evidence that FAK and MAP kinase, two signaling molecules activated independently by beta1 integrins in Caco-2 cells, undergo alterations of both expression and activity during the enterocytic differentiation of this cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号