首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
Summary A simple and efficient micropropagation method was established for direct protocorm-like body (PLB) formation and plant regeneration from flower stalk internodes of a sympodial orchid, Epidendrum radicans. Small transparent tissues formed on surfaces and cut ends of flower stalk internodes on a modified half-strength Murashige and Skoog basal medium with or without thidiazuron (TDZ) after 1–2 wk of culture. In the light, the transparent tissues enlarged and turned into organized calluses on most of the explants. However, PLBs formed only on a medium supplemened with 0.45 μM TDZ within 2 mo. of culture. Sucrose, NH4NO3, and KNO3 were used in media to test their effects on PLB proliferation and shooting. The best response on number of PLBs per tube was 23.6 at 40 gl−1 sucrose, 825 mgl−1 NH4NO3, and 950 mgl−1 KNO3, and the highest number of PLBs with shoots was found at 10 gl−1 sucrose, 825 mgl−1 NH4NO3, and 950 mgl−1 KNO3. Homogenized PLB tissues produced by blending were used to test the effects of four cytokinins [TDZ, N6-benzyladenine (BA), zeatin-riboside, and kinetin] on PLB proliferation and shoot formation. The best responses on number of PLBs per tube, proliferation rate, and number of PLBs with shoots per tube were obtained at 4.44 μM BA, 0.28 μM zeatin-riboside, and 1.39 μM kinetin, respectively. Normal plantlets converted from PLBs on the same TDZ-containing medium after 1 mo. of culture. The optimized procedure required about 12–13 wk from the initiation of PLBs to plantlet formation. The regenerated plants grew well with an almost 100% survival rate when acclimatized in a greenhouse.  相似文献   

2.
Summary An efficient in vitro propagation system was developed for Arnebia euchroma, an important Chinese traditional medicinal plant. The present study utilized thidiazuron (TDZ) for the induction of shoot organogenesis on cotyledon and hypocotyl explants. The maximal number of shoots was obtained on the modified Linsmaier and Skoog (LS) medium supplemented with 1.0 mgl−1 (4.5 μM) TDZ for 12d on cotyledon explants (8.6 shoots per cotyledon explant). Other cytokinins (kinetin and 6-benzyladenine) and auxin (α-naphthaleneacetic acid) were not efficient in inducing regeneration on cotyledon explants. Browning of the basal portion of the subcultured shoots could be significantly reduced when they were cultured on the modified LS medium supplemented with 100 mgl−1 (33.3 μM) polyvinylpyrrolidone. Well-developed shoots formed roots on the same medium containing 1.0 mgl−1 (4.9 μM) indole-3-butyric acid. The efficient regeneration protocol reported here provides an important means of micropropagation of this plant. Furthermore, this protocol is essential to future genetic improvement of plants via transformation protocols.  相似文献   

3.
Summary Carbohydrate type and concentration and their interactive effects on in vitro shoot proliferation of three lingonberry (Vaccinium vitis-idaea ssp. vitis-idaea L.) cultivars (‘Regal’, ‘Splendor’, and ‘Erntedank’) and two V. vitis-idaea ssp. minus (Lodd) clones (‘NL1’ and ‘NL2’) were studied. Nodal explants were grown in vitro on medium with 2 μM zeatin and either glucose, sorbitol, or sucrose at a concentration of 0, 10, 20, or 30 gl−1. The interactive effects of carbohydrate type and concentration and genotype were important for shoot proliferation. The best response was afforded by sucrose at 20 gl−1 both in terms of explant response and shoot developing potential, although glucose supported shoot growth equally well, and in ‘NL1’ at 10 gl−1 it resulted in better in vitro growth than sucrose. Carbohydrate concentration had little effect on shoot vigor. The genotypes differed in terms of shoots per explant, length, and vigor, leaves per shoot, and callus formation at the base of explants; this was manifested with various types and concentrations of carbohydrate. Changing the positioning of explants on the medium from vertically upright to horizontal increased the shoot and callus size, but decreased shoot height and leaves per shoot. Proliferated shoots were rooted on a peat:perlite (1∶1, v/v) medium and the plantlets were acclimatized and eventually established in the greenhouse.  相似文献   

4.
Gentiana dinarica Beck, rare and endangered species of Balkan Dinaric alps, was in vitro propagated (micropropagated) from axillary buds of plants collected at Mt. Tara, Serbia. G. dinarica preferred MS to WPM medium, with optimal shoot multiplication on MS medium with 3% sucrose, 1.0 mg l−1 BA and 0.1 mg l−1 NAA. Rooting was not clearly separated from shoot multiplication since BA did not completely inhibit root initiation. Spontaneous rooting on plant growth regulator-free medium occurred in some 30% of shoot explants. Rooting was stimulated mostly by decreased mineral salt nutrition and a medium with 0.5 MS salts, 2% sucrose and 0.5–1.0 mg l−1 IBA was considered to be optimal for rooting. Rooted plantlets were successfully acclimated and further cultured in peat-based substrate.  相似文献   

5.
An efficient system was developed for direct plant regeneration from in vitro-derived leaf explants of Pistacia vera L. cv. Siirt. The in vitro procedure involved four steps that included (1) induction of shoot initials from the regenerated mature leaf tissue, (2) regeneration and elongation of shoots from the shoot initials, (3) rooting of the shoots, and (4) acclimatization of the plantlets. The induction of shoot initials was achieved on an agarified Murashige and Skoog (MS) medium with Gamborg vitamins supplemented in different concentrations of benzylaminopurine (BA) and indole-3-acetic acid (IAA). The best medium for shoot induction was a MS medium with 1 mgl−1 IAA and 2 mgl−1 BA. Numerous shoot primordia developed within 2–3 wk on the leaf margin and the midrib region, without any callus phase. In the second step, the shoot clumps were separated from the leaf explants and transferred to a MS medium supplemented with 1 mgl−1 BA, resulting in a differentiation of the shoot initials into well-developed shoots. The elongated shoots (>3 cm long) were rooted on a full-strength MS basal medium supplemented with 2 mgl−1 of indole-3-butyric acid in the third stage. Finally, the rooted plants were transferred to soil with an 80% success rate. This protocol was utilized for the in vitro clonal propagation of this important recalcitrant plant species.  相似文献   

6.
North American oak species, with their characteristic strong episodic seasonal shoot growth, are highly problematic for clonal micropropagation, resulting in the inability to achieve a stabilized shoot multiplication stage. The potential for initiating and proliferating shoot cultures derived from Quercus alba, Q. bicolor and Q. rubra explants was investigated, and a micropropagation method for these species was developed. Branch segments from 6 to 7-year-old trees were forced-flushed and the forced shoots were used as source of explants for culture initiation. A consistent shoot multiplication stage was achieved, in 13 of the 15 genotypes established in vitro, although marked differences occurred in explants from different genotypes/species. The control of efficient shoot multiplication involved the culture of decapitated shoots in a stressful horizontal position on cytokinin-containing medium with a sequence of transfers within a 6-week subculture cycle, which was beneficial to overcoming the episodic character of shoot growth. During each subculture cycle, the horizontally placed explants were cultured on media containing 0.2 mg l−1 benzyladenine (BA) for 2 weeks with two successive transfers (2 weeks each) to fresh medium with 0.1 mg l−1 BA, giving a 6-week subculture cycle. The general appearance and vigor of Q. alba and Q. bicolor shoot cultures were improved by the inclusion of both 0.1 mg l−1 BA and 0.5 mg l−1 zeatin in the medium used for the second transfer within the 6-week subculture cycle. Addition of AgNO3 (3 mg l−1) to the shoot proliferation medium of Q. rubra had a significant positive effect on shoot development pattern by reducing deleterious symptoms, including shoot tip necrosis and early senescence of leaves. The three species showed acceptable in vitro rooting rates by culturing microcuttings in medium containing 25 mg l−1 indolebutyric acid for 48 h with subsequent transfer to auxin-free medium supplemented with 0.4% activated charcoal. Although an initial 5-day dark period generally improved the rooting response, it was detrimental to the quality of regenerated plantlets. However, activated charcoal stimulated not only the rooting frequencies, but it also enhanced plant quality, as evidenced by root, shoot and leaf growth.  相似文献   

7.
A micropropagation protocol through multiple shoot formation was developed for Thlaspi caerulescens L., one of the most important heavy metals hyperaccumulator plants. In vitro seed-derived young seedlings were used for the initiation of multiple shoots on Murashige and Skoog (MS) medium with combinations of benzylaminopurine (BA; 0.5–1.0 mg dm−3), naphthaleneacetic acid (NAA; 0–0.2 mg dm−3), gibberellic acid (GA3; 0–1.0 mg dm−3) and riboflavin (0–3.0 mg dm−3). The maximum number of shoots was developed on medium containing 1.0 mg dm−3 BA and 0.2 mg dm−3 NAA. GA3 (0.5 mg dm−3) in combination with BA significantly increased shoot length. In view of shoot numbers, shoot length and further rooting rate, the best combination was 1.0 mg dm−3 BA + 0.5 mg dm−3 GA3 + 1.0 mg dm−3 riboflavin. Well-developed shoots (35–50 mm) were successfully rooted at approximately 95 % on MS medium containing 20 g dm−3 sucrose, 8 g dm−3 agar and 1.0 mg dm−3 indolebutyric acid. Almost all in vitro plantlets survived when transferred to pots.  相似文献   

8.
Summary Axillary and terminal buds from suckers of Ananas comosus cv. Phuket were established on Murashige and Tucker-based (MT) medium with 2.0 mgl−1 (9.8 μM) indolebutyric acid, 2.0 mgl−1 (10.74 μM) naphthaleneacetic acid, and 2.0 mgl−1 (9.29 μM) kinetin, followed by multiplication on Murashige and Skoog-based (MS) medium containing 2.0 mgl−1 (8.87 μM) benzyladenine (BA) to provide a continuous supply of axenic shoots. Leaves, excised from such cultured shoots, produced adventitious shoots from their bases when these explants were cultured on MS medium containing 0.5 mgl−1 (2.26 μM) 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 mgl−1 (8.87 μM) BA. Embryogenic callus was produced when leaf explants were cultured on MS medium with 3.0 mgl−1 (12.42 μM) 4-amino-3,5,6-trichloropicolinic acid (picloram). Somatic embryos developed into shoots following transfer of embryogenic tissues to MS medium with 1.0 mgl−1 (4.44 μM) BA. Cell suspensions, initiated by transfer of embryogenic callus to liquid MS medium with 1.0 mgl−1 (4.14 μM) picloram or 1.0 mgl−1 (4.52 μM) 2,4-D, also regenerated shoots by somatic embryogenesis, on transfer of cells to semisolid MS medium with 1.0 mgl−1 (4.44 μM) BA. All regenerated shoots rooted on growth regulator-free MS medium, prior to ex vitro acclimation and transfer to the glasshouse. These studies provide a baseline for propagation, conservation, and genetic manipulation of elite pineapple germplasms.  相似文献   

9.
Summary An efficient regeneration and transformation system was developed for two elite aspen hybrid clones (Populus canescens × P. grandidentada and P. tremuloides × P. davidiana). Callus was induced from in vitro leaf explants on modified Murashige and Skoog medium (MSA) and woody plant medium (WPM) containing four different combinations of cytokinins and auxins. Callus tissues regenerated into shoots on WPM medium supplemented with 2.0 mgl−1 (9.12 μM) zeatin or 0.01 mgl−1 (0.045 μM) thidiazuron. P. canescens × P. grandidentata exhibited the higher callus and shoot production. In vitro leaf explants from the two hybrid clones were cocultivated with Agrobacterium tumefaciens strain EHA105 harboring the binary Ti plasmid pBI121 carrying the uidA gene encoding for β-glucuronidase (GUS) and the npt II gene encoding for neomycin phosphotransferase II. Transformation was confirmed by GUS assays, polymerase chain reaction, and Southern blot analyses. Agrobacterium concentration, acetosyringone, and pH of the cocultivation medium were evaluated for enhancing transformation efficiency with the clone P. canescens × P. grandidentata.  相似文献   

10.
Summary An efficient in vitro plant regeneration system from cotyledons was established in tetraploid Isatis indigotica Fort. Factors influencing shoot regeneration from cotyledons, including culture medium type, combinations of plant growth regulators, and sucrose concentrations in the medium, as well as illumination were investigated. Murashige and Skoog's (MS) medium was found to be best for promoting shoot regeneration, followed by Gamborg's B5 and White's medium. The highest shoot regeneration frequency was achieved from cotyledons cultured on MS medium supplemented with 2.0 mgl−1 (8.9 μM) 6-benzyladenine and 1.0 mgl−1 (5.4 μM) α-naphthaleneacetic acid (NAA), with 97.9% regeneration, associated with a high number of multiple shoots developed per explant (8.6 shoots per explant). A sucrose concentration of 3% present in the medium and light conditions were beneficial for shoot regeneration. The shoots developed were rooted in a half-strength MS medium supplemented with 1.0 mgl−1 (5.4 μM) NAA and successfully transplanted in soil in pots with over 85% survival. The establishment of an efficient plant regeneration procedure from cotyledons provides a basis for the rapid in vitro multiplication of tetraploid Isatis indigotica Fort., one of the most extensively used medicinal plants in China currently under great shortage.  相似文献   

11.
Summary Culture media, environmental and genotypic factors affecting regeneration from multi-shoot cultures derived from corn seedling apical explants were investigated. The frequency of shoot regeneration was highes for seedlings that were 4–5 cm in length. Flow cytometry was used to show that the most responsive culturs contained a high proportion of cells in the G1 phase. Proline in the multi-shoot induction medium (MSI) significantly increased the shoot induction frequency. Continuous low light (30–40 μEm−2s−1) stimulated multi-shoot induction. The highest number of multi-shoots developed in medium containing 4 gl−1 proline, 2 mgl−1 (8.8 μM) 6-benzylaminopurine (BA), and 1 mgl−1 (4.5 μM) 2,4-dichlorophenoxyacetic acid (2,4-D). Multi-shoots were induced in this culture system from 44 of 45 corn genotypes and approximately 70% of the genotypes exhibited a high to moderate response (greater than 20 shoots per explant in 4 wk of culture). This culture procedure is an efficient and widely applicable method for corn regeneration that may be a useful target for transformation.  相似文献   

12.
Summary A micropropagation procedure for the adult cherimoya tree (Annona cherimola Mill.) is described. Axillary shoot proliferation was obtained after culturing nodal sections from Annona cherimola cv. ‘Fino de Jete’, on Murashige and Skoog (MS) medium supplemented with 2.28 μM zeatin. Roots were induced after preincubation of shoots for 3d in light on MS basal medium supplemented with lgl−1 activated charcoal, followed by culturing for 10 d (7 d dark and 3 d light) on MS medium with 492 μM indole-3-butyrie acid (IBA), 15 gl−1 sucrose, and 200 mgl−1 citric acid. Sixty-eight percent of induced shoots rooted after transferring to the same medium without auxin and with the macroelements at half strength and the sucrose at 20gl−1. About 65% of rooted shoots survived after acclimatization. The procedures described herein may prove useful for clonal micropropagation of selected genotypes of cherimoya.  相似文献   

13.
The organogenic competence of leaf explants of eleven Carthamus species including C. tinctorius on Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) + α-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) + NAA was investigated. Highly prolific adventitious shoot regeneration was observed in C. tinctorius and C. arborescens on both growth regulator combinations and the shoot regeneration frequency was higher on medium supplemented with TDZ + NAA. Nodal culture of nine Carthamus species on media supplemented with BA and kinetin (KIN) individually revealed the superiority of media supplemented with BA over that of KIN in facilitating a higher shoot proliferation index. Proliferating shoots from axillary buds and leaf explants were transferred to medium supplemented with 1.0 mg dm−3 KIN or 0.5 mg dm−3 BA for shoot elongation. Elongated shoots were rooted on half-strength MS medium supplemented with 1.0 mg dm−3 each of indole-butyric acid (IBA) and phloroglucinol. The plantlets thus obtained were hardened and transferred to soil.  相似文献   

14.
Direct shoot regeneration was achieved from immature inflorescence explants of Chlorophytum arundinaceum and C. borivilianum on half-strength Murashige & Skoog (MS) medium supplemented with 3.0 mg L−1 BA, 150 mg L−1 Ads, 0.1 mg L−1 NAA and 3% (w/v) sucrose under a 16-h photoperiod. The shoot buds developed within 2–3 weeks of culture. High frequency of shoot bud regeneration was achieved when cultured on similar medium in subsequent subcultures. The apex portion (Type I) of the inflorescence produced more shoot buds as compared to the middle ones (type II). More than 75% of the terminal segment explants produced shoot buds within 4-week of culture. Response of basal portion (Type III) was negative for shoot bud initiation. Shoots rooted on half-strength basal MS medium supplemented with half-strength MS medium, 0.1 mg L−1 IAA and 2% (w/v) sucrose. Micropropagated plantlets were hardened in the green house and successfully established in the soil where 90% of the plants survived. This protocol would be useful for commercial micropropagation and genetic improvement prograrmme.  相似文献   

15.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

16.
An efficient regeneration protocol via somatic embryogenesis was optimized for mung bean [Vigna radiata (L.) Wilczek; cv. Vamban 1]. Primary leaf explants were used for embryogenic callus induction in MMS medium (Murashige and Skoog salts with B5 vitamins) containing 2.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D), 150 mg dm−3 glutamine and 3 % sucrose. Fast growing, highly embryogenic cell suspensions were established from 21-d-old calli in MMS medium supplemented with 0.5 mg dm−3 2,4-D and 50 mg dm−3 proline (Pro), and maximum recovery of globular (39.0 %), heart-shaped (26.3 %) and torpedo-stage (21.0 %) somatic embryos were observed in this medium. Mature cotyledonary-stage somatic embryos were cultured for 5 d in half strength B5 liquid medium containing 0.05 mg dm−3 2,4-D, 20 mg dm−3 Pro, 5 μM abscisic acid, 1000 mg dm−3 KNO3, 50 mg dm−3 polyethylene glycol (PEG 6000) and 30 g dm−3 D-mannitol. Mature somatic embryos were germinated after dessication for 3 d and complete development of plantlets accomplished in MMS medium containing 30 g dm−3 maltose, 0.5 mg dm−3 benzyladenine and 500 mg dm−3 KNO3. Profuse lateral roots, and regeneration frequency (up to 60 %) were observed in half-strength MMS medium containing 0.5 mg dm−3 indolebutyric acid (IBA). The regenerated plants were grown to fruiting and were morphologically normal and fertile.  相似文献   

17.
Summary In vitro methods were applied to the only remaining plant of the Meelup Mallee (Eucalyptus phylacis), a critically endangered species from the southwest of Western Australia. Shoot explants were initiated into culture using a 1/2 MS [Murashige and Skoog basal medium (BM) for all experiments] liquid medium supplemented with 1% (w/v) activated charcoal, which was replenished twice daily, followed by transfer of explants to agar medium supplemented with 0.5 μM zeatin. Explants were cultured under low intensity lighting (PPFD of 5–10 μmol m−2s−1) to minimize blackening of tissues, and some explants were induced to produce nodular green calluses in response to BM supplemented with 5 μM thidiazuron. Nodular green calluses were induced to form adventitious shoots following transfer to medium supplemented with 0.5 μM zeatin and 1 μM gibberellic acid, A4 isomer (GA4). Development of shoots was completed on 1 μM zeatin + 0.1 μM 6-benzylaminopurine (BA) in vented culture tubes. Regenerated shoots were sequentially cultured on medium containing 0.5 μM zeatin + 0.2 μM indoleacetic acid (IAA) followed by either 0.5 μM zeatin + 1μM GA4 for shoot elongation or 1 μM zeatin + 0.5 μM IAA to optimize shoot growth. Rooted microshoots were produced after 4 weeks on 5 μM indolebutyric acid (IBA) and survived acclimatization and transfer to potting mixture.  相似文献   

18.
Summary A characteristic phenotype of highly embryogenic explants along with the location of embryogenesis- and transformation-competent cells/tissues on immature cotyledons of soybean [Glycine max (L.) Merrill.] under hygromycin selection was identified. This highly embryogenic immature cotyledon was characterized with emergence of somatic embryos and incidence of browning/necrotic tissues along the margins and collapsed tissues in the mid-region of an explant incubated upwards on the selection medium. The influences of various parameters on induction of somatic embryogenesis on immature cotyledons following Agrobacterium tumefaciens-mediated transformation and selection were investigated. Using cotyledon explants derived from immature embryos of 5–8 mm in length, a 1∶1 (v/v; bacterial cells to liquid D40 medium) concentration of bacterial suspension and 4-wk cocultivation period significantly increased the frequency of transgenic somatic embryos. Whereas, increasing the infection period of explants or subjecting explants to either wounding or acetosyringone treatments did not increase the frequency of transformation. An optimal selection regime was identified when inoculated immature cotyledons were incubated on either 10 or 25 mgl−1 hygromycin for a 2-wk period, and then maintained on selection media containing 25 mgl−1 hygromycin in subsequent selection periods. However, somatic embryogenesis was completely inhibited when inoculated immature cotyledons were incubated on a kanamycin selection medium. These findings clearly demonstrated that the tissue culture protocols for transformation of soybean should be established under both Agrobacterium and selection conditions.  相似文献   

19.
A rapid and efficient plant regeneration protocol for a wide range of alfalfa genotypes was developed via direct organogenesis. Through a successive excision of the newly developed apical and axillary shoots, a lot of adventitious buds were directly induced from the cotyledonary nodes when hypocotyl of explants were vertically inserted into modified Murashige and Skoog (MS) medium supplemented with 0.025 mg dm−3 thidiazuron (TDZ) and 3 mg dm−3 AgNO3. When the lower part of shoots excised from explants were immersed into the liquid medium with 1.0 mg dm−3 α-naphthaleneacetic acid (NAA) for 2 min, and then transferred to hormone free half-strength MS medium, over 83.3 % of the shoots developed roots, and all plantlets could acclimatize and establish in soil. The protocol has been successfully applied to eight genotypes, with regeneration frequencies ranging from 63.8 to 82.5 %.  相似文献   

20.
A liquid meristematic root primordia culture (RPC) of Solanum lycopersicoides Dun. based on persistent rhizogenesis in a modified Murashige and Skoog (1962) medium supplemented with NAA (15 mg·l−1) or 2,4-D (1 mg·l−1) was described. The meristematic clumps (2–3 mm in diameter) originating from NAA supplemented medium were capable of regenerating plants through the callus stage (up to 70 %). Efficient direct plant regeneration (up to 21 %) was possible from numerous single globular-shaped root primordia (RP) structures liberated from the parental aggregates in 2,4-D supplemented proliferation medium without NH4NO3 and with a 2.5 fold increase in KNO3. The RP converted into plantlets (artificial seedlings) on solid or liquid media without growth growth regulators through the unipolar followed by the mace-shaped bipolar structure stages. The use of apical shoot bud, root apices or root segments as a primary explants brought about RPC induction and plant regeneration. The plants derived from 2 years old culture were phenotypically identical to their parental S. lycopersicoides plants and possessed the same ploidy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号