首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary metabolites are a diverse set of plant compounds believed to have numerous functions in plant-environment interactions. Despite this importance, little is known about the regulation of secondary metabolite accumulation. We are studying the regulation of glucosinolates, a large group of secondary metabolites, in Arabidopsis to investigate how secondary metabolism is controlled. We utilized Ler and Cvi, two ecotypes of Arabidopsis that have striking differences in both the types and amounts of glucosinolates that accumulate in the seeds and leaves. QTL analysis identified six loci determining total aliphatic glucosinolate accumulation, six loci controlling total indolic glucosinolate concentration, and three loci regulating benzylic glucosinolate levels. Our results show that two of the loci controlling total aliphatic glucosinolates map to biosynthetic loci that interact epistatically to regulate aliphatic glucosinolate accumulation. In addition to the six loci regulating total indolic glucosinolate concentration, mapping of QTL for the individual indolic glucosinolates identified five additional loci that were specific to subsets of the indolic glucosinolates. These data show that there are a large number of variable loci controlling glucosinolate accumulation in Arabidopsis thaliana.  相似文献   

2.
The glucosinolate content of various organs of the model plant Arabidopsis thaliana (L.) Heynh., Columbia (Col-0) ecotype, was analyzed at different stages during its life cycle. Significant differences were noted among organs in both glucosinolate concentration and composition. Dormant and germinating seeds had the highest concentration (2.5-3.3% by dry weight), followed by inflorescences, siliques (fruits), leaves and roots. While aliphatic glucosinolates predominated in most organs, indole glucosinolates made up nearly half of the total composition in roots and late-stage rosette leaves. Seeds had a very distinctive glucosinolate composition. They possessed much higher concentrations of several types of aliphatic glucosinolates than other organs, including methylthioalkyl and, hydroxyalkyl glucosinolates and compounds with benzoate esters than other organs. From a developmental perspective, older leaves had lower glucosinolate concentrations than younger leaves, but this was not due to decreasing concentrations in individual leaves with age (glucosinolate concentration was stable during leaf expansion). Rather, leaves initiated earlier in development simply had much lower rates of glucosinolate accumulation per dry weight gain throughout their lifetimes. During seed germination and leaf senescence, there were significant declines in glucosinolate concentration. The physiological and ecological significance of these findings is briefly discussed.  相似文献   

3.
The concentrations of glucosinolates in the tissue water of leaves, stems, floral buds and developing pods were measured at defined stages of development in four oilseed rape cultivars known to have different seed glucosinolate concentrations (Bienvenu, Ariana, Cobra and Capricorn). Five alkenyl, two aromatic and three indolyl compounds were identified in the vegetative and reproductive organs. Substantial differences developed in the profiles of compounds present during vegetative growth. The 2-hydroxy-3-butenyl glucosinolate was primarily associated with developing and mature seeds and germinated seedlings. The 4-pentyl glucosinolate occurred mainly during the later stages of vegetative growth in spring, when leaves contained higher concentrations than stems, and during the early stages of flowering. The 2-phenylethyl and 3-indolymethyl glucosinolates were present earlier in vegetative growth when similar concentrations were present in leaves and stems. Differences between cultivars in the tissue-water concentrations of individual glucosinolates were small during vegetative growth. The leaves of Cobra and Capricorn had smaller concentrations of the 3-pentyl glucosinolate than Bienvenu and Ariana especially early in spring, and the stems of Capricorn had smaller concentration of the 3-pentyl and 2-phenylethyl glucosinolates. Greater differences between cultivars developed during pod growth and involved large increases in the concentrations of the 2-hydroxy-3-butenyl and 3-butenyl glucosinolates, especially in Bienvenu and Ariana. The implications of these changes in the types and concentrations of glucosinolates in the different organs for the incidence of pests and diseases are discussed.  相似文献   

4.
5.
The hydrolytic products of glucosinolates in brassica crops are bioactive compounds. Some glucosinolate derivatives such as oxazolidine-2-thione from progoitrin in brassica oilseed meal are toxic and detrimental to animals, but some isothiocyanates such as sulforaphane are potent anti-carcinogens that have preventive effects on several human cancers. In most B. rapa, B. napus and B. juncea vegetables and oilseeds, there is no or only trace amount of glucoraphanin that is the precursor to sulforaphane. In this paper, RNA interference (RNAi) of the GSL-ALK gene family was used to down-regulate the expression of GSL-ALK genes in B. napus. The detrimental glucosinolate progoitrin was reduced by 65 %, and the beneficial glucosinolate glucoraphanin was increased to a relatively high concentration (42.6 μmol g(-1) seed) in seeds of B. napus transgenic plants through silencing of the GSL-ALK gene family. Therefore, there is potential application of the new germplasm with reduced detrimental glucosinolates and increased beneficial glucosinolates for producing improved brassica vegetables.  相似文献   

6.
The genetic variation that underlies the glucosinolate phenotype of Arabidopsis lyrata ssp. petraea was investigated between and within populations. A candidate glucosinolate biosynthetic locus (MAM, containing methylthioalkylmalate synthase genes) was mapped in A. lyrata to a location on linkage group 6 corresponding to the homologous location for MAM in A. thaliana. In A. thaliana MAM is responsible for side chain elongation in aliphatic glucosinolates, and the MAM phenotype can be characterized by the ratios of long- to short-chain glucosinolates. A quantitative trait loci (QTL) analysis of glucosinolate ratios in an A. lyrata interpopulation cross found one QTL at MAM. Additional QTL were identified for total indolic glucosinolates and for the ratio of aliphatic to indolic glucosinolates. MAM was then used as the candidate gene for a within-population cosegregation analysis in a natural A. lyrata population from Germany. Extensive variation in microsatellite markers at MAM was found and this variation cosegregated with the same glucosinolate ratios as in the QTL study. The combined results indicate that both between- and within-population genetic variation in the MAM region determines phenotypic variation in glucosinolate side chains in A. lyrata.  相似文献   

7.
Epidemiological and mechanistic studies show health-promoting effects of glucosinolates and their breakdown products. In literature, differences in non-enzymatic glucosinolate degradation rates during food processing between different vegetables are described, which provide the basis for studying the genetic effects of this trait and breeding vegetables with high glucosinolate retention during food processing. Non-enzymatic glucosinolate degradation, induced by heat, was studied in a publicly available Brassica oleracea doubled haploid population. Data were modeled to obtain degradation rate constants that were used as phenotypic traits to perform quantitative trait loci (QTL) mapping. Glucosinolate degradation rate constants were determined for five aliphatic and two indolic glucosinolates. Degradation rates were independent of the initial glucosinolate concentration. Two QTL were identified for the degradation rate of the indolic glucobrassicin and one QTL for the degradation of the aliphatic glucoraphanin, which co-localized with one of the QTL for glucobrassicin. Factors within the plant matrix might influence the degradation of different glucosinolates in different genotypes. In addition to genotypic effects, we demonstrated that growing conditions influenced glucosinolate degradation as well. The study identified QTL for glucosinolate degradation, giving the opportunity to breed vegetables with a high retention of glucosinolates during food processing, although the underlying mechanisms remain unknown.  相似文献   

8.
Seedlings of nine commercial cultivars of oilseed rape were exposed to the field slug Deroceras reticulatum immediately after sowing in compost in trays. There was a small reduction in seedling numbers in the presence of slugs which was not related to glucosinolate concentration in seeds or seedlings. However, the number and leaf-area of seedlings with damage symptoms were strongly and inversely related to the total concentration of glucosinolates in seeds and one wk-old seedlings. The presence of barley seedlings as alternative food did not significantly affect this relationship. The glucosinolate concentration of seeds was closely correlated with that of wk-old seedlings. Analysis of individual glucosinolates in four cultivars spanning the range of concentrations found, showed that the concentration of most components declined as total glucosinolate concentration decreased. However, 2-phenyl ethyl-glucosinolate (gluconasturtiin) concentration tended to increase in seeds and 3-indolyl methyl-glucosinolate (glucobrassicin) increased in seedlings as total glucosinolate concentration decreased. Damage by slugs was inversely related to the concentration of those glucosinolates which decreased and was positively correlated with the two compounds which increased as total glucosinolate concentration decreased. The results support the hypothesis that glucosinolates in brassicas protect them from polyphagous herbivores, and, in particular, that an important function of glucosinolates in rape seeds is to protect seedlings from slugs. As glucosinolate concentrations of oilseed rape cultivars continue to decline, so the risk of slug damage to seedlings may well increase.  相似文献   

9.
Single and double low varieties of oilseed rape were grown in the 1987/88 and 1988/89 seasons to study changes in the concentrations of total and individual glucosinolates within pods during development. Total glucosinolate concentration in seeds of all varieties increased during development when expressed on a fresh weight basis. The levels of the major alkenyl glucosinolates present in the seed; 2–hydroxy-3–butenyl, 3–butenyl and 4–pentenyl had been reduced in the transition from single to double low varieties. The major indole glucosinolates in the seed, 4–hydroxy-3–indolylmethyl and 3–indolylmethyl were present in the same amounts in single and double low varieties but in the latter represented a greater proportion of the total seed glucosinolate content. A decline in the total glucosinolate concentration in the pod walls with time together with the analogous profile of individual glucosinolates in the seeds and pod walls suggests that the pod wall is a major site of seed glucosinolate synthesis. Other plant parts may also have an important role to play in provision of intact glucosinolates or precursors to the pod walls for glucosinolate biosynthesis.  相似文献   

10.
Composition and content of glucosinolates in developing Arabidopsis thaliana   总被引:14,自引:0,他引:14  
Petersen BL  Chen S  Hansen CH  Olsen CE  Halkier BA 《Planta》2002,214(4):562-571
The glucosinolate composition and content in various tissues of Arabidopsis thaliana (L.) Heynh. ecotype Columbia during development from seeds to bolting plants were determined in detail by high-performance liquid chromatography. Comparison of the glucosinolate profiles of leaves, roots and stems from mature plants with those of green siliques and mature seeds indicated that a majority of the seed glucosinolates were synthesized de novo in the silique. A comparison of the glucosinolate profile of mature seeds with that of cotyledons indicated that a major part of seed glucosinolates was retained in the cotyledons. Turnover of glucosinolates was studied by germination of seeds containing radiolabelled p-hydroxybenzylglucosinolate (p-OHBG). Approximately 70% of the content of [14C]p-OHBG in the seeds was detected in seedlings at the cotyledon stage and [14C]p-OHBG was barely detectable in young plants with rosettes of six to eight leaves. The turn-over of p-OHBG was found to coincide with the expression of the glucosinolate-degrading enzyme myrosinase, which was detectable at very low levels in seedlings at the cotyledon stage, but which dramatically increased in leaves from plants at later developmental stages. This indicates that there is a continuous turnover of glucosinolates during development and not only upon tissue disruption.  相似文献   

11.
Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.  相似文献   

12.
The Arabidopsis ref2 mutant was identified in a screen for plants having altered fluorescence under UV light. Characterization of the ref2 mutants showed that they contained reduced levels of a number of phenylpropanoid pathway-derived products: sinapoylmalate in leaves, sinapoylcholine in seeds, and syringyl lignin in stems. Surprisingly, positional cloning of the REF2 locus revealed that it encodes CYP83A1, a cytochrome P450 sharing a high degree of similarity to CYP83B1, an enzyme involved in glucosinolate biosynthesis. Upon further investigation, ref2 mutants were found to have reduced levels of all aliphatic glucosinolates and increased levels of indole-derived glucosinolates in their leaves. These results show that CYP83A1 is involved in the biosynthesis of both short-chain and long-chain aliphatic glucosinolates and suggest a novel metabolic link between glucosinolate biosynthesis, a secondary biosynthetic pathway found only in plants in the order Capparales, and phenylpropanoid metabolism, a pathway found in all plants and considered essential to the survival of terrestrial plant species.  相似文献   

13.
Glucosinolates are biologically active secondary metabolites of the Brassicaceae and related plant families that influence plant/insect interactions. Specific glucosinolates can act as feeding deterrents or stimulants, depending upon the insect species. Hence, natural selection might favor the presence of diverse glucosinolate profiles within a given species. We determined quantitative and qualitative variation in glucosinolates in the leaves and seeds of 39 Arabidopsis ecotypes. We identified 34 different glucosinolates, of which the majority are chain-elongated compounds derived from methionine. Polymorphism at only five loci was sufficient to generate 14 qualitatitvely different leaf glucosinolate profiles. Thus, there appears to be a modular genetic system regulating glucosinolate profiles in Arabidopsis. This system allows the rapid generation of new glucosinolate combinations in response to changing herbivory or other selective pressures. In addition to the qualitative variation in glucosinolate profiles, we found a nearly 20-fold difference in the quantity of total aliphatic glucosinolates and were able to identify a single locus that controls nearly three-quarters of this variation.  相似文献   

14.
The genetic control of seed glucosinolate content in oilseed rape was investigated using two intervarietal backcross populations. Four QTLs segregating in the population derived from a Brassica napus L. 'Victor' x Brassica napus L. 'Tapidor' cross, together accounting for 76% of the phenotypic variation, were mapped. Three of these loci also appeared to control the accumulation of seed glucosinolates in a Brassica napus L. 'Bienvenu' x 'Tapidor' cross, and accounted for 86% of the phenotypic variation. The three QTLs common to both populations mapped to homoeologous regions of the B. napus genome, suggesting that seed glucosinolate accumulation is controlled by duplicate genes. It was possible to extend the comparative analysis of QTLs controlling seed glucosinolate accumulation by aligning the published genetic maps generated by several research groups. This comparative mapping demonstrated that high-glucosinolate varieties often carry low-glucosinolate alleles at one or more of the loci controlling seed glucosinolate accumulation.  相似文献   

15.
The glucosinolate content of leaves, stems and roots of a range of Chinese oilseed rape (Brassica napus L.) breeding lines was analysed. Total content and spectrum of individual glucosinolates varied widely, and there was no correlation between seed and vegetative tissue glucosinolate content. Lines with low seed glucosinolates (00) did not necessarily have low glucosinolate content in vegetative tissues; nor did high seed glucosinolate lines always have high vegetative tissue content. There was no correlation between the glucosinolate content of leaf, stem, and root in any given line. It appears that glucosinolate synthesis and accumulation is under tissue-specific control, and the mutation which blocks accumulation of glucosinolates in seeds does not influence other tissues. The responses of these lines to elicitors was also examined. Methyl jasmonate and salicylic acid treatments produced increases in leaf indolyl and aromatic glucosinolates respectively. However, the extent of such increases differed widely between the lines, and there were other, less consistent, effects on other classes of glucosinolate. There seems to be greater variation in glucosinolate accumulation in rape than has previously been reported, and the lines described here have considerable potential for evaluating the effects of manipulating glucosinolate profiles on pest and disease interactions.  相似文献   

16.
Several products derived from processed maca hypocotyls (Lepidium peruvianum Chacón, previously known asL. meyenii Walp.) were surveyed for glucosinolate content and quantified by HPLC analysis. These included pills, capsules, flour, liquor, tonic and mayonnaise. Different plant organs such as fresh hypocotyls and leaves, seeds, dry hypocotyls, and sprouts were also included in the survey. The most abundant glucosinolates detected in fresh and dry hypocotyls and leaves were the aromatic glucosinolates, benzylglucosinolate (glucotropaeolin) and p-methoxybenzylglucosinolate. Maca seeds and sprouts differed in profile from hypocotyls and leaves due to the modification of benzylglucosinolate. No glucosinolates were detected in liquor and tonic, while mayonnaise had only trace amounts of those glucosinolates. It had instead allylglucosinolate (sinigrin), which is an aliphatic glucosinolate. The pills, capsules and flour had the same glucosinolates as those observed in hypocotyls, but in variable amounts. The richest sources of glucosinolates were seeds, fresh hypocotyls and sprouts, in that order.  相似文献   

17.
Mechanical wounding of the petioles of six laboratory-grown rapeseed ( Brassica napus ) cultivars induced physiological changes in the plant, markedly affecting the levels of individual glucosinolates. Greatest increases were observed for the indole glucosinolates, glucobrassicin and neoglucobrassicin. Such changes were usually associated with large decreases in the levels of aliphatic glucosinolates. The total glucosinolate content of the wounded plant was thus a reflection of these two opposing trends and wounding produced a greater relative indole glucosinolate content in this total figure. Thus increasing wounding was associated with an increase in indole glucosinolates and a decrease in aliphatic compounds.
Infestation of field- and laboratory-grown rapeseed with cabbage stem flea beetle ( Psylliodes chrysocephala ) produced similar effects, which were observed in various parts of the plant. Differences in response between field- and laboratory-grown infested plants are attributed to the different physiological ages of the harvested material.
Laboratory-grown kale and mustards also showed wound-induced glucosinolate changes. The kale, cv. Fribor, produced elevated levels of both indoles and aliphatics after wounding. Total glucosinolate content in the mustards, which, unlike rape and kale, normally contain only traces of indole glucosinolates in the unstressed state, was increased following wounding. This was, however, not associated with elevated levels of indole glucosinolates, but with accumulation of aliphatic ( Brassica nigra, B. juncea ) and aromatic ( Sinapis alba ) glucosinolates. The significance of these findings is discussed.  相似文献   

18.
目的:加密油菜控制硫甙性状QTL区间,并进行QTL整合预测候选基因。方法:利用生物信息学方法根据已知测序的白菜BAC序列信息设计引物,在油菜TN DH群体中进行多态性扩增和定位,并根据加密后构建的遗传连锁图重新检测QTL,进行QTL整合。结果:将根据白菜BAC设计的3对多态性标记成功定位到油菜控制硫甙性状QTL区间,进行QTL整合后将QTL置信区间进一步缩小,并判定了初步的候选基因。结论:充分利用白菜已测序的BAC或者基因组信息,将能加快油菜基础研究的步伐。  相似文献   

19.
Plant growth and development are tightly linked to primary metabolism and are subject to natural variation. In order to obtain an insight into the genetic factors controlling biomass and primary metabolism and to determine their relationships, two Arabidopsis thaliana populations [429 recombinant inbred lines (RIL) and 97 introgression lines (IL), derived from accessions Col-0 and C24] were analyzed with respect to biomass and metabolic composition using a mass spectrometry-based metabolic profiling approach. Six and 157 quantitative trait loci (QTL) were identified for biomass and metabolic content, respectively. Two biomass QTL coincide with significantly more metabolic QTL (mQTL) than statistically expected, supporting the notion that the metabolic profile and biomass accumulation of a plant are linked. On the same basis, three out the six biomass QTL can be simulated purely on the basis of metabolic composition. QTL based on analysis of the introgression lines were in substantial agreement with the RIL-based results: five of six biomass QTL and 55% of the mQTL found in the RIL population were also found in the IL population at a significance level of P  ≤ 0.05, with >80% agreement on the allele effects. Some of the differences could be attributed to epistatic interactions. Depending on the search conditions, metabolic pathway-derived candidate genes were found for 24–67% of all tested mQTL in the database AraCyc 3.5. This dataset thus provides a comprehensive basis for the detection of functionally relevant variation in known genes with metabolic function and for identification of genes with hitherto unknown roles in the control of metabolism.  相似文献   

20.
Glucosinolates and their breakdown products have been recognized for their effects on plant defense, human health, flavor and taste of cruciferous vegetables. Despite this importance, little is known about the regulation of the biosynthesis and degradation in Brassica rapa. Here, the identification of quantitative trait loci (QTL) for glucosinolate accumulation in B. rapa leaves in two novel segregating double haploid (DH) populations is reported: DH38, derived from a cross between yellow sarson R500 and pak choi variety HK Naibaicai; and DH30, from a cross between yellow sarson R500 and Kairyou Hakata, a Japanese vegetable turnip variety. An integrated map of 1068 cM with 10 linkage groups, assigned to the international agreed nomenclature, is developed based on the two individual DH maps with the common parent using amplified fragment length polymorphism (AFLP) and single sequence repeat (SSR) markers. Eight different glucosinolate compounds were detected in parents and F(1)s of the DH populations and found to segregate quantitatively in the DH populations. QTL analysis identified 16 loci controlling aliphatic glucosinolate accumulation, three loci controlling total indolic glucosinolate concentration and three loci regulating aromatic glucosinolate concentrations. Both comparative genomic analyses based on Arabidopsis-Brassica rapa synteny and mapping of candidate orthologous genes in B. rapa allowed the selection of genes involved in the glucosinolate biosynthesis pathway that may account for the identified QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号