首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Murine models are a crucial component of gut microbiome research. Unfortunately, a multitude of genetic backgrounds and experimental setups, together with inter-individual variation, complicates cross-study comparisons and a global understanding of the mouse microbiota landscape. Here, we investigate the variability of the healthy mouse microbiota of five common lab mouse strains using 16S rDNA pyrosequencing.

Results

We find initial evidence for richness-driven, strain-independent murine enterotypes that show a striking resemblance to those in human, and which associate with calprotectin levels, a marker for intestinal inflammation. After enterotype stratification, we find that genetic, caging and inter-individual variation contribute on average 19%, 31.7% and 45.5%, respectively, to the variance in the murine gut microbiota composition. Genetic distance correlates positively to microbiota distance, so that genetically similar strains have more similar microbiota than genetically distant ones. Specific mouse strains are enriched for specific operational taxonomic units and taxonomic groups, while the ''cage effect'' can occur across mouse strain boundaries and is mainly driven by Helicobacter infections.

Conclusions

The detection of enterotypes suggests a common ecological cause, possibly low-grade inflammation that might drive differences among gut microbiota composition in mammals. Furthermore, the observed environmental and genetic effects have important consequences for experimental design in mouse microbiome research.  相似文献   

2.
Cranberries have multiple health effects but their impact on gut microbiota has not been examined in randomized controlled feeding trials. We evaluated the relationship between the microbiota and cranberries in the context of an animal-based diet. In a randomized, double-blind, cross-over, controlled design trial, 11 healthy adults consumed for 5 days each a control diet (animal-based diet plus 30 g/day placebo powder) and a cranberry diet (animal-based diet plus 30 g/day freeze-dried whole cranberry powder). The animal-based diet included meats, dairy products, and simple sugars. Stool, urine, and blood samples were obtained before and after each intervention phase. As compared to the pre-control diet, control diet modified 46 taxonomic clades, including an increase in the abundance of Firmicutes and decrease in Bacteroidetes. Moreover, it increased bacteria-derived deoxycholic acid and decreased acetate and butyrate in stool. As compared to the post-intervention phase of control diet, the cranberry diet modified 9 taxonomic clades, including a decrease in the abundance of Firmicutes and increase in Bacteroidetes. Further, the cranberry diet attenuated control diet-induced increase in secondary bile acids and decrease in short-chain fatty acids (SCFA), and increased urinary anthocyanins and bacterially derived phenolic acids. No changes were found in fecal trimethylamine and plasma cytokines. In conclusion, an animal-based diet altered the microbiota composition to a less favorable profile, increased carcinogenic bile acids, and decreased beneficial SCFA. Cranberries attenuated the impact of the animal-based diet on microbiota composition, bile acids, and SCFA, evidencing their capacity to modulate the gut microbiota.  相似文献   

3.

Introduction

The human gut microbiota has the ability to modulate host metabolism. Metabolic profiling of the microbiota and the host biofluids may determine associations significant of a host–microbe relationship. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a long-term disorder of fatigue that is poorly understood, but has been linked to gut problems and altered microbiota.

Objectives

Find changes in fecal microbiota and metabolites in ME/CFS and determine their association with blood serum and urine metabolites.

Methods

A workflow was developed that correlates microbial counts with fecal, blood serum and urine metabolites quantitated by high-throughput 1H NMR spectroscopy. The study consists of thirty-four females with ME/CFS (34.9?±?1.8 SE years old) and twenty-five non-ME/CFS female (33.0?±?1.6 SE years old).

Results

The workflow was validated using the non-ME/CFS cohort where fecal short chain fatty acids (SCFA) were associated with serum and urine metabolites indicative of host metabolism changes enacted by SCFA. In the ME/CFS cohort a decrease in fecal lactate and an increase in fecal butyrate, isovalerate and valerate were observed along with an increase in Clostridium spp. and a decrease in Bacteroides spp. These differences were consistent with an increase in microbial fermentation of fiber and amino acids to produce SCFA in the gut of ME/CFS patients. Decreased fecal amino acids positively correlated with substrates of gluconeogenesis and purine synthesis in the serum of ME/CFS patients.

Conclusion

Increased production of SCFA by microbial fermentation in the gut of ME/CFS patients may be associated with deleterious effects on the host energy metabolism.
  相似文献   

4.
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R?=?0.462, P?=?0.046?<?0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.  相似文献   

5.
X Zhang  Y Zhao  M Zhang  X Pang  J Xu  C Kang  M Li  C Zhang  Z Zhang  Y Zhang  X Li  G Ning  L Zhao 《PloS one》2012,7(8):e42529
Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD)-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs), most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA)-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q(2)>0.6) for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.  相似文献   

6.
We tested the hypothesis that changing the gut microbiota using pectic oligosaccharides (POS) or inulin (INU) differently modulates the progression of leukemia and related metabolic disorders. Mice were transplanted with Bcr-Abl-transfected proB lymphocytes mimicking leukemia and received either POS or INU in their diet (5%) for 2 weeks. Combination of pyrosequencing, PCR-DGGE and qPCR analyses of the 16S rRNA gene revealed that POS decreased microbial diversity and richness of caecal microbiota whereas it increased Bifidobacterium spp., Roseburia spp. and Bacteroides spp. (affecting specifically B. dorei) to a higher extent than INU. INU supplementation increased the portal SCFA propionate and butyrate, and decreased cancer cell invasion in the liver. POS treatment did not affect hepatic cancer cell invasion, but was more efficient than INU to decrease the metabolic alterations. Indeed, POS better than INU delayed anorexia linked to cancer progression. In addition, POS treatment increased acetate in the caecal content, changed the fatty acid profile inside adipose tissue and counteracted the induction of markers controlling β-oxidation, thereby hampering fat mass loss. Non digestible carbohydrates with prebiotic properties may constitute a new nutritional strategy to modulate gut microbiota with positive consequences on cancer progression and associated cachexia.  相似文献   

7.
Resveratrol is a natural polyphenol that has been reported to reduce the risk of obesity and nonalcoholic fatty liver disease (NAFLD). Recent evidence has demonstrated that the gut microbiota plays an important role in the protection against NAFLD and other metabolic diseases. The present study aimed to investigate the relationship between the gut microbiota and the beneficial effects of resveratrol on the amelioration of NAFLD in mice. We observed marked decreases in body weight and liver steatosis and improved insulin resistance in high-fat diet (HFD)-fed mice treated with resveratrol. Furthermore, we found that resveratrol treatment alleviated NAFLD in HFD-fed mice by improving the intestinal microenvironment, including gut barrier function and gut microbiota composition. On the one hand, resveratrol improved gut intestinal barrier integrity through the repair of intestinal mucosal morphology and increased the expression of physical barrier- and physiochemical barrier-related factors in HFD-fed mice. On the other hand, in HFD-fed mice, resveratrol supplementation modulated the gut bacterial composition. The resveratrol-induced gut microbiota was characterized by a decreased abundance of harmful bacteria, including Desulfovibrio, Lachnospiraceae_NK4A316_group and Alistipes, as well as an increased abundance of short-chain fatty acid (SCFA)-producing bacteria, such as Allobaculum, Bacteroides and Blautia. Moreover, transplantation of the HFDR-microbiota into HFD-fed mice sufficiently decreased body weight, liver steatosis and low-grade inflammation and improved hepatic lipid metabolism. Collectively, resveratrol would provide a potentially dietary intervention strategy against NAFLD through modulating the intestinal microenvironment.  相似文献   

8.
Voluntary training and food modulate the fecal microbiota in humans and mice. Although there are some reports of the timing effects of voluntary training and feeding on metabolism, the timing effects of these factors on microbiota have not been investigated. Therefore, we investigated the effects of the timing of voluntary training and feeding on the gut microbiota.The ICR mice were housed under conditions with an early (in the morning) or late (evening) active phase of increased physical activity. Furthermore, to investigate why voluntary training affects the gut microbiota, mice were housed in a cold environment and received propranolol administration with increased physical activity. After that, we collected cecal contents and feces and measured cecal pH. Short-chain fatty acids (SCFA) were measured from cecal contents. Microbiota was determined using sequencing of the V3-V4 region of the 16S rDNA gene.This study found that increased evening physical activity rather than morning activity decreases cecal pH, increases SCFA, and changes the microbiota. It is especially important that increased evening physical activity is induced under the post-prandial voluntary training condition. Also, we found that cold room housing, sympathetic blockade, or both suppressed the increased physical activity-induced changes in cecal pH, SCFA, and microbiota. Allobaculum responded to increased physical activity through body temperature increases and sympathetic activation.Post-prandial increased physical activity, rather than pre-prandial increased physical activity by evening voluntary wheel training, altered the microbiota composition, which may be related to the increase in body temperature and sympathetic nervous system activation.  相似文献   

9.
Metabolic syndrome is associated with disturbances in gut microbiota composition. We aimed to investigate the effect of Lactobacillus casei Shirota (LcS) on gut microbiota composition, gut barrier integrity, intestinal inflammation and serum bile acid profile in metabolic syndrome. In a single-centre, prospective, randomised controlled pilot study, 28 subjects with metabolic syndrome received either LcS for 12 weeks (n = 13) or no LcS (n = 15). Data were compared to healthy controls (n = 16). Gut microbiota composition was characterised from stool using 454 pyrosequencing of 16S rRNA genes. Serum bile acids were quantified by tandem mass spectrometry. Zonulin and calprotectin were measured in serum and stool by ELISA. Bacteroidetes/Firmicutes ratio was significantly higher in healthy controls compared to metabolic syndrome but was not influenced by LcS. LcS supplementation led to enrichment of Parabacteroides. Zonulin and calprotectin were increased in metabolic syndrome stool samples but not influenced by LcS supplementation. Serum bile acids were similar to controls and not influenced by LcS supplementation. Metabolic syndrome is associated with a higher Bacteroidetes/Firmicutes ratio and gut barrier dysfunction but LcS was not able to change this. LcS administration was associated with subtle microbiota changes at genus level.

Trial Registration

ClinicalTrials.gov NCT01182844  相似文献   

10.
The aim of this study was to investigate the gut microbiota in preschool children with and without overweight and obesity. Twenty overweight or obese children and twenty children with BMI within the normal range (age: 4–5 years) were recruited from the south of Sweden. The gut microbiota was accessed by quantitative PCR (qPCR) and terminal restriction fragment length polymorphism and calprotectin was measured in feces. Liver enzymes were quantified in obese/overweight children. The concentration of the gram‐negative family Enterobacteriaceae was significantly higher in the obese/overweight children (P = 0.036), whereas levels of Desulfovibrio and Akkermansia muciniphila‐like bacteria were significantly lower in the obese/overweight children (P = 0.027 and P = 0.030, respectively). No significant differences were found in content of Lactobacillus, Bifidobacterium or the Bacteroides fragilis group. The diversity of the dominating bacterial community tended to be less diverse in the obese/overweight group, but the difference was not statistically significant. Concentration of Bifidobacterium was inversely correlated to alanine aminotransferase (ALT) in obese/overweight children. The fecal levels of calprotectin did not differ between the study groups. These findings indicate that the gut microbiota differed among preschool children with obesity/overweight compared with children with BMI within the normal range.  相似文献   

11.
In this study, we compared the fecal microbiota and metabolomes of 26 healthy subjects before (HS) and after (HSB) 2 months of diet intervention based on the administration of durum wheat flour and whole-grain barley pasta containing the minimum recommended daily intake (3 g) of barley β-glucans. Metabolically active bacteria were analyzed through pyrosequencing of the 16S rRNA gene and community-level catabolic profiles. Pyrosequencing data showed that levels of Clostridiaceae (Clostridium orbiscindens and Clostridium sp.), Roseburia hominis, and Ruminococcus sp. increased, while levels of other Firmicutes and Fusobacteria decreased, from the HSB samples to the HS fecal samples. Community-level catabolic profiles were lower in HSB samples. Compared to the results for HS samples, cultivable lactobacilli increased in HSB fecal samples, while the numbers of Enterobacteriaceae, total coliforms, and Bacteroides, Porphyromonas, Prevotella, Pseudomonas, Alcaligenes, and Aeromonas bacteria decreased. Metabolome analyses were performed using an amino acid analyzer and gas chromatography-mass spectrometry solid-phase microextraction. A marked increase in short-chain fatty acids (SCFA), such as 2-methyl-propanoic, acetic, butyric, and propionic acids, was found in HSB samples with respect to the HS fecal samples. Durum wheat flour and whole-grain barley pasta containing 3% barley β-glucans appeared to be effective in modulating the composition and metabolic pathways of the intestinal microbiota, leading to an increased level of SCFA in the HSB samples.  相似文献   

12.
The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host’s health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF), or a high-fat/low-fiber (HF) diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA) profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P<0.001) and Faecalibacterium prausnitzii (P<0.05) were higher in the LF pigs, while Enterobacteriaceae were more abundant in the HF pigs (P<0.001). Higher numbers of proteins affiliated to Enterobacteriaceae were also present in the HF samples. Proteins for polysaccharide breakdown did almost exclusively originate from Prevotellaceae. Total and individual fecal SCFA concentrations were higher for pigs of the LF treatment (P<0.05), whereas fecal ammonia concentrations did not differ between treatments (P>0.05). Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05), while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions.Data are available via ProteomeXchange with identifier PXD003447.  相似文献   

13.
Most plant-origin fiber sources used in pig production contains a mixture of soluble and insoluble non-starch polysaccharides (NSP). The knowledge about effects of these sources of NSP on the gut microbiota and its fermentation products is still scarce. The aim of this study was to investigate effects of feeding diets with native sources of NSP on the ileal and fecal microbial composition and the dietary impact on the concentration of short-chain fatty acids (SCFA) and lactic acid. The experiment comprised four diets and four periods in a change-over design with seven post valve t-cecum cannulated growing pigs. The four diets were balanced to be similar in NSP content and included one of four fiber sources, two diets were rich in pectins, through inclusion of chicory forage (CFO) and sugar beet pulp, and two were rich in arabinoxylan, through inclusion of wheat bran (WB) and grass meal. The gut microbial composition was assessed with terminal restriction fragment (TRF) length polymorphism and the abundance of Lactobacillus spp., Enterobacteriaceae, BacteroidesPrevotellaPorphyromonas and the β-xylosidase gene, xynB, were assessed with quantitative PCR. The gut microbiota did not cluster based on NSP structure (arabinoxylan or pectin) rather, the effect was to a high degree ingredient specific. In pigs fed diet CFO, three TRFs related to Prevotellaceae together consisted of more than 25% of the fecal microbiota, which is about 3 to 23 times higher (P<0.05) than in pigs fed the other diets. Whereas pigs fed diet WB had about 2 to 22 times higher abundance (P<0.05) of Megasphaera elsdenii in feces and about six times higher abundance (P<0.05) of Lactobacillus reuteri in ileal digesta than pigs fed the other diets. The total amount of digested NSP (r=0.57; P=0.002), xylose (r=0.53; P=0.004) and dietary fiber (r=0.60; P=0.001) in ileal digesta were positively correlated with an increased abundance of BacteroidesPrevotellaPorphyromonas. The effect on SCFA was correlated to specific neutral sugars where xylose increased the ileal butyric acid proportion, whereas arabinose increased the fecal butyric acid proportion. Moreover, chicory pectin increased the acetic acid proportion in both ileal digesta and feces.  相似文献   

14.

Background

Prebiotics, probiotics and synbiotics can be used to modulate both the composition and activity of the gut microbiota and thereby potentially affecting host health beneficially. The aim of this study was to investigate the effects of eight synbiotic combinations on the composition and activity of human fecal microbiota using a four-stage semicontinuous model system of the human colon.

Methods and Findings

Carbohydrates were selected by their ability to enhance growth of the probiotic bacteria Lactobacillus acidophilus NCFM (NCFM) and Bifidobacterium animalis subsp. lactis Bl-04 (Bl-04) under laboratory conditions. The most effective carbohydrates for each probiotic were further investigated, using the colonic model, for the ability to support growth of the probiotic bacteria, influence the composition of the microbiota and stimulate formation of short-chain fatty acids (SCFA).The following combinations were studied: NCFM with isomaltulose, cellobiose, raffinose and an oat β-glucan hydrolysate (OBGH) and Bl-04 with melibiose, xylobiose, raffinose and maltotriose. All carbohydrates showed capable of increasing levels of NCFM and Bl-04 during fermentations in the colonic model by 103–104 fold and 10–102 fold, respectively. Also the synbiotic combinations decreased the modified ratio of Bacteroidetes/Firmicutes (calculated using qPCR results for Bacteroides-Prevotella-Porphyromonas group, Clostridium perfringens cluster I, Clostridium coccoides - Eubacterium rectale group and Clostridial cluster XIV) as well as significantly increasing SCFA levels, especially acetic and butyric acid, by three to eight fold, as compared to the controls. The decreases in the modified ratio of Bacteroidetes/Firmicutes were found to be correlated to increases in acetic and butyric acid (p = 0.04 and p = 0.03, respectively).

Conclusions

The results of this study show that all synbiotic combinations investigated are able to shift the predominant bacteria and the production of SCFA of fecal microbiota in a model system of the human colon, thereby potentially being able to manipulate the microbiota in a way connected to human health.  相似文献   

15.
The critically endangered New Zealand parrot, the kakapo, is subject to an intensive management regime aiming to maintain bird health and boost population size. Newly hatched kakapo chicks are subjected to human intervention and are frequently placed in captivity throughout their formative months. Hand rearing greatly reduces mortality among juveniles, but the potential long-term impact on the kakapo gut microbiota is uncertain. To track development of the kakapo gut microbiota, fecal samples from healthy, prefledged juvenile kakapos, as well as from unrelated adults, were analyzed by using 16S rRNA gene amplicon pyrosequencing. Following the original sampling, juvenile kakapos underwent a period of captivity, so further sampling during and after captivity aimed to elucidate the impact of captivity on the juvenile gut microbiota. Variation in the fecal microbiota over a year was also investigated, with resampling of the original juvenile population. Amplicon pyrosequencing revealed a juvenile fecal microbiota enriched with particular lactic acid bacteria compared to the microbiota of adults, although the overall community structure did not differ significantly among kakapos of different ages. The abundance of key operational taxonomic units (OTUs) was correlated with antibiotic treatment and captivity, although the importance of these factors could not be proven unequivocally within the bounds of this study. Finally, the microbial community structure of juvenile and adult kakapos changed over time, reinforcing the need for continual monitoring of the microbiota as part of regular health screening.  相似文献   

16.
Despite a long-suspected role in the development of human colorectal cancer (CRC), the composition of gut microbiota in CRC patients has not been adequately described. In this study, fecal bacterial diversity in CRC patients (n=46) and healthy volunteers (n=56) were profiled by 454 pyrosequencing of the V3 region of the 16S ribosomal RNA gene. Both principal component analysis and UniFrac analysis showed structural segregation between the two populations. Forty-eight operational taxonomic units (OTUs) were identified by redundancy analysis as key variables significantly associated with the structural difference. One OTU closely related to Bacteroides fragilis was enriched in the gut microbiota of CRC patients, whereas three OTUs related to Bacteroides vulgatus and Bacteroides uniformis were enriched in that of healthy volunteers. A total of 11 OTUs belonging to the genera Enterococcus, Escherichia/Shigella, Klebsiella, Streptococcus and Peptostreptococcus were significantly more abundant in the gut microbiota of CRC patients, and 5 OTUs belonging to the genus Roseburia and other butyrate-producing bacteria of the family Lachnospiraceae were less abundant. Real-time quantitative PCR further validated the significant reduction of butyrate-producing bacteria in the gut microbiota of CRC patients by measuring the copy numbers of butyryl-coenzyme A CoA transferase genes (Mann–Whitney test, P<0.01). Reduction of butyrate producers and increase of opportunistic pathogens may constitute a major structural imbalance of gut microbiota in CRC patients.  相似文献   

17.
Co-evolved as an integral component of our immune system, the gut microbiota provides specific immunological services at different ages, supporting the immune education during our infancy and sustaining a well-balanced immunological homeostasis during the course of our life. In order to figure out whether this involves differences in the microbial groups primarily interacting with the host immune system, we developed a non-invasive HT29 cell-based minimal model to fingerprint the enterocyte-associated microbiota fraction in infants and adults. After depicting the fecal microbial community of 12 breast-fed infants and 6 adults by 16S rDNA amplicon pools 454 pyrosequencing, their respective HT29 cell-associated gut microbiota fractions were characterized by the universal phylogenetic array platform HTF-Microbi.Array, both in the presence and absence of a tumor necrosis factor-alpha (TNF-α)-mediated pro-inflammatory stimulus. Our data revealed remarkable differences between the enterocyte-associated microbiota fractions in breast-fed infants and adults, being dominated by Bifidobacterium and Enterobacteriaceae the first and Bacteroides-Prevotella and Clostridium clusters IV and XIVa the second. While in adults TNF-α resulted in a profound impairment of the structure of the enterocyte-associated microbiota fraction, in infants it remained unaffected. Differently from the adult-type gut microbial community, the infant-type microbiota is structured to cope with inflammation, being co-evolved to prime the early immune response by means of transient inflammatory signals from gut microorganisms.  相似文献   

18.
Western-style diet (WSD), which is high in fat and low in fiber, lacks nutrients to support gut microbiota. Consequently, WSD reduces microbiota density and promotes microbiota encroachment, potentially influencing colonization resistance, immune system readiness, and thus host defense against pathogenic bacteria. Here we examined the impact of WSD on infection and colitis in response to Citrobacter rodentium. We observed that, relative to mice consuming standard rodent grain-based chow (GBC), feeding WSD starkly altered the dynamics of Citrobacter infection, reducing initial colonization and inflammation but frequently resulting in persistent infection that associated with low-grade inflammation and insulin resistance. WSD’s reduction in initial Citrobacter virulence appeared to reflect that colons of GBC-fed mice contain microbiota metabolites, including short-chain fatty acids, especially acetate, that drive Citrobacter growth and virulence. Citrobacter persistence in WSD-fed mice reflected inability of resident microbiota to out-compete it from the gut lumen, likely reflecting the profound impacts of WSD on microbiota composition. These studies demonstrate potential of altering microbiota and their metabolites by diet to impact the course and consequence of infection following exposure to a gut pathogen.  相似文献   

19.

Background

Carnosic acid (CA) and rosemary extracts (RE) show body-weight, energy metabolism and inflammation regulatory properties in animal models but the mechanisms are not yet understood. Gut microbiota plays an important role in the host metabolism and inflammatory status and is modulated by the diet. The aim of this research was to investigate whether a RE enriched in CA affected caecum microbiota composition and activity in a rat model of genetic obesity.

Methods and Principal Findings

A RE (40% CA) was administered with the diet (0.5% w/w) to lean (fa/+) and obese (fa/fa) female Zucker rats for 64 days. Changes in the microbiota composition and β-glucosidase activity in the caecum and in the levels of macronutrients and short chain fatty acids (SCFA) in feces were examined. The RE increased the Blautia coccoides and Bacteroides/Prevotella groups and reduced the Lactobacillus/Leuconostoc/Pediococccus group in both types of animals. Clostridium leptum was significantly decreased and Bifidobacterium increased only in the lean rats. β-Glucosidase activity was significantly reduced and fecal fiber excretion increased in the two genotypes. The RE also increased the main SCFA excreted in the feces of the obese rats but decreased them in the lean rats reflecting important differences in the uptake and metabolism of these molecules between the two genotypes.

Conclusions

Our results indicate that the consumption of a RE enriched in CA modifies microbiota composition and decreases β-glucosidase activity in the caecum of female Zucker rats while it increases fiber fecal elimination. These results may contribute to explain the body weight gain reducing effects of the RE. The mutated leptin receptor of the obese animals significantly affects the microbiota composition, the SCFA fecal excretion and the host response to the RE intake.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号