首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 790 毫秒
1.
A staphylococcal coagglutination test was developed for the rapid detection of infectious hematopoietic necrosis virus (IHNV) in cell cultures and infected fish. The test could be completed in 15 min but required a minimum IHNV titer of 10(6) PFU/ml to obtain a positive reaction. All IHNV isolates, representing the five electropherotypes taken from a wide variety of species and different geographic ranges, caused coagglutination of Staphylococcus aureus cells sensitized with rabbit polyclonal serum against the Round Butte IHNV isolate. The coagglutination reaction was blocked by preincubation of IHNV with homologous antiserum, and IHNV did not cause coagglutination of S. aureus cells sensitized with normal rabbit serum. In specificity tests, cells sensitized with rabbit anti-IHNV serum or normal serum did not coagglutinate in the presence of infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, cell culture medium components, or media from cultures of cell lines of salmonid and nonsalmonid origin. Most importantly, the coagglutination test was able to detect and identify IHNV directly from experimentally infected rainbow trout fry, the organs of naturally infected adult kokanee salmon and winter steelhead trout, and ovarian fluids of the winter steelhead trout. The coagglutination test is very suitable for field use, since it is inexpensive, simple to interpret, sensitive, and rapid and requires no specialized equipment.  相似文献   

2.
Molecular filtration for recovery of waterborne viruses of fish.   总被引:1,自引:1,他引:0       下载免费PDF全文
The effectiveness of tangential flow filtration (TFF) for the recovery of infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) from large volumes of water was evaluated. In laboratory studies, virus recovery from IHNV-seeded water following concentration by TFF was approximately 13%. However, the addition of 0.1 and 1% fetal bovine serum to deionized water stabilized the virus, increasing virus recoveries to 95%. The addition of 0.03 and 0.3% beef extract resulted in IHNV recoveries of 80 and 61%, respectively. Similar results were obtained with IPNV-seeded water. Field studies using the TFF procedure were conducted with water from areas where IHNV is endemic. IHNV was detected in effluent from an adult steelhead trout (Salmo gairdneri) holding pond at an estimated concentration of 1 PFU/5 ml of water. It was also detected at levels of 1 PFU/50 ml in water from a 2-m-diameter circular tank containing IHNV-infected steelhead trout fry. IHNV isolated in samples taken from the Metolius River was detected by TFF at estimated levels of 1 PFU/3 liters.  相似文献   

3.
The effectiveness of tangential flow filtration (TFF) for the recovery of infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) from large volumes of water was evaluated. In laboratory studies, virus recovery from IHNV-seeded water following concentration by TFF was approximately 13%. However, the addition of 0.1 and 1% fetal bovine serum to deionized water stabilized the virus, increasing virus recoveries to 95%. The addition of 0.03 and 0.3% beef extract resulted in IHNV recoveries of 80 and 61%, respectively. Similar results were obtained with IPNV-seeded water. Field studies using the TFF procedure were conducted with water from areas where IHNV is endemic. IHNV was detected in effluent from an adult steelhead trout (Salmo gairdneri) holding pond at an estimated concentration of 1 PFU/5 ml of water. It was also detected at levels of 1 PFU/50 ml in water from a 2-m-diameter circular tank containing IHNV-infected steelhead trout fry. IHNV isolated in samples taken from the Metolius River was detected by TFF at estimated levels of 1 PFU/3 liters.  相似文献   

4.
The resistance of rainbow trout (Oncorhynchus mykiss) to an infectious haematopoietic necrosis virus (IHNV) challenge following a preceding non-lethal infection with infectious pancreatic necrosis virus (IPNV) was investigated through experimental dual infections. Trout initially infected with IPNV were inoculated 14 days later with IHNV. Single infections of trout with 1 of the 2 viruses or with cell culture supernatant were also carried out and constituted control groups. No mortality was noted in fish after a single infection with IPNV. This virus had no influence on the head kidney leucocyte phagocytic activity and plasma haemolytic complement activity. IHNV induced a high mortality (72%) and reduced the macrophage phagocytic activity and complement haemolytic activity. It also induced a late production of anti-IHNV antibodies which occurred after clearance of the virus in the fish. In trout co-infected with both viruses, a mortality rate of 2% occurred and the immune parameters were similar to those observed in the fish infected with IPNV only, demonstrating that in co-infected trout IPNV inhibits the effects of IHNV. The studied parameters did not allow us to define the mechanism of interference occurring between these 2 viruses, but some hypothesis are put forward to explain the interference between the 2 viruses.  相似文献   

5.
Eleven European National Reference Laboratories participated in an inter-laboratory comparison of the susceptibility of 5 selected cell lines to 3 fish pathogenic viruses. The test included viral hemorrhagic septicaemia virus (VHSV); infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV), and the cell lines derived from bluegill fry (BF-2), chinook salmon embryo (CHSE-214), epithelioma papulosum cyprini (EPC), fathead minnow (FHM) and rainbow trout gonad (RTG-2). The results showed that for isolation of VHSV, BF-2 and RTG-2 cells performed equally well and had higher sensitivity compared to the other cell lines. For IHNV, EPC and FHM cells gave the best results, and for IPNV it was BF-2 and CHSE-214 cells. FHM cells showed the largest variability among laboratories, whereas EPC was the cell line showing the smallest variability.  相似文献   

6.
Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus which causes devastating epizootics of trout and salmon fry in hatcheries around the world. In laboratory and field studies, epizootic survivors are negative for infectious virus by plaque assay at about 50 days postexposure. Survivors are considered virus free with no sequelae and, thus, are subsequently released into the wild. When adults return to spawn, infectious virus can again be isolated. Two hypotheses have been proposed to account for the source of virus in these adults. One hypothesis contends that virus in the epizootic survivors is cleared and that the adults are reinfected with IHNV from a secondary source during their migration upstream. The second hypothesis contends that IHNV persists in a subclinical or latent form and the virus is reactivated during the stress of spawning. Numerous studies have been carried out to test these hypotheses and, after 20 years, questions still remain regarding the maintenance of IHNV in salmonid fish populations. In the study reported here, IHNV-specific lesions in the hematopoietic tissues of rainbow trout survivors, reared in specific-pathogen-free water, were detected 1 year after the epizootic. The fish did not produce infectious virus. The presence of viral protein detected by immunohistochemistry, in viral RNA by PCR amplification, and in IHNV-truncated particles by immunogold electron microscopy confirmed the presence of IHNV in the survivors and provided the first evidence for subclinical persistence of virus in the tissues of IHNV survivors.  相似文献   

7.
A simple and rapid staphylococcal coagglutination test for the detection of Toxoplasma gondii antigens in mice urine is described. A suspension of protein-A containing Staphylococcus aureus coated with rabbit hyperimmune serum was used as reagent. The sensitivity of the antigen assay was found to be at least 118 ng of the antigen protein per ml. No coagglutination was observed when the reagent was challenged against antigenic solutions of other parasites. The suitability of the method for detecting antigens of T. gondii in urine samples was studied by experimental toxoplasma infection in mice. Before the staphylococcal test, the urine samples were double serially diluted in 0.1 M PBS. From the second day on all samples from infected mice were positive at 1/16 dilution. At this dilution, all samples from non infected mice were negative or did not produce coagglutination. This method might be used in the rapid etiological diagnosis also in human cases of acute toxoplasmosis.  相似文献   

8.
The detection of infectious hematopoietic necrosis virus (IHNV) in infected rainbow trout Oncorhynchus mykiss and in cell culture supernatants stored under different conditions was studied. IHNV-positive fish visceral organ homogenates and cell culture supernatants were incubated at 4 and 25 degrees C. Virus titre was measured by virus isolation on epithelioma papulosum cyprini (EPC) cells and the IHNV RNA was detected by RT-PCR and semi-nested RT-PCR. The influence of repeated freezing and thawing on the virus isolation from organ homogenates and from cell culture supernatants was studied as well. It was possible to isolate the virus from IHNV-positive organ material during the 3 d of incubation at 4 degrees C but, only on the first day of incubation at 25 degrees C. Viral RNA could be amplified during the incubation period of 35 d at 4 degrees C but only during 8 d of incubation at 25 degrees C. In IHNV-infected cell culture supernatant stored at 4 degrees C, it was possible to detect virus for 36 and 16 d in supernatant stored at 25 degrees C. Viral RNA could be followed by using molecular methods during the entire experimental period of 123 d. Each cycle of freezing and thawing of samples resulted in a reduction of IHNV titre in the suspension of visceral organs, while the virus titre in cell culture supernatant remained almost the same following 33 freezing-thawing cycles. The present results show that rapid laboratory processing and storage of potentially virus-containing tissue samples as well as the use of different detection methods are very important for efficient IHNV diagnosis.  相似文献   

9.
This is the first comprehensive region wide, spatially explicit epidemiologic analysis of surveillance data of the aquatic viral pathogen infectious hematopoietic necrosis virus (IHNV) infecting native salmonid fish. The pathogen has been documented in the freshwater ecosystem of the Pacific Northwest of North America since the 1950s, and the current report describes the disease ecology of IHNV during 2000–2012. Prevalence of IHNV infection in monitored salmonid host cohorts ranged from 8% to 30%, with the highest levels observed in juvenile steelhead trout. The spatial distribution of all IHNV‐infected cohorts was concentrated in two sub‐regions of the study area, where historic burden of the viral disease has been high. During the study period, prevalence levels fluctuated with a temporal peak in 2002. Virologic and genetic surveillance data were analyzed for evidence of three separate but not mutually exclusive transmission routes hypothesized to be maintaining IHNV in the freshwater ecosystem. Transmission between year classes of juvenile fish at individual sites (route 1) was supported at varying levels of certainty in 10%–55% of candidate cases, transmission between neighboring juvenile cohorts (route 2) was supported in 31%–78% of candidate cases, and transmission from adult fish returning to the same site as an infected juvenile cohort was supported in 26%–74% of candidate cases. The results of this study indicate that multiple specific transmission routes are acting to maintain IHNV in juvenile fish, providing concrete evidence that can be used to improve resource management. Furthermore, these results demonstrate that more sophisticated analysis of available spatio‐temporal and genetic data is likely to yield greater insight in future studies.  相似文献   

10.
The fish rhabdovirus infectious hematopoietic necrosis virus (IHNV) was rapidly inactivated by extremely low concentrations of iodine in water. A 99.9% virus reduction was obtained in 7.5 s when virus (105 PFU/ml) and iodine (0.1 mg/liter, final concentration) were combined in distilled-deionized or hatchery water. Iodine efficacy decreased at pHs greater than 7.5 or when proteinaceous material was added to the water. Bovine serum albumin blocked iodine inactivation of the virus more effectively than did equal concentrations of fetal bovine serum or river sediment. Sodium thiosulfate effectively neutralized free iodine. Powder, iodophor, and crystalline iodine solutions inactivated IHNV equally. Iodine rapidly inactivated IHNV isolates representing each of the five electropherotypes. Under the conditions used in this study, inactivation was not affected by temperature, salinity, or water hardness. When Dworshak National Fish Hatchery water was continuously treated to provide a free iodine concentration of 0.14 mg/liter, a 7.5-s exposure to iodine was sufficient to inactivate 99.9% of the IHNV. Iodine added to water that contained IHNV prevented infection of rainbow trout (Oncorhynchus mykiss) fry. These results suggest that the waterborne route of IHNV transmission can be blocked by adding low iodine concentrations to the water supplies of hatcheries.  相似文献   

11.
Herpes simplex virus (HSV) type 1 antigens were detected in infected human embryonic lung cells with the aid of specific antiserum and Staphylococcus aureus rich in protein A. When such staphylococci carrying specific anti-HSV IgG on their surface were interacted with various suspension of virus, a reduction in the initial virus titre of about 65% was obtained. However, no direct coagglutination was observed between cell-free supernatants of HSV or HSV-infected cells and sensitized staphylococci. When monolayers or suspended cells infected with the virus were treated with dilutions of specific anti-HSV antiserum followed by non-sensitized staphylococci (indirect method), an "aureola" of the bacteria was detected around the cells expressing the viral antigens. A similar picture was observed when infected cells were interacted directly with sensitized staphylococci. Viral antigens were detected already 12 hours post infection, well before the appearance of cytopathic effect. The sensitivity of the indirect method was found to be higher than that of the direct one and dependent on the multiplicity of infection and the serum dilution used. The method is proposed as a rapid means of identifying viral antigens in diagnostic and experimental virology.  相似文献   

12.
A cell culture virus isolation procedure for infectious haematopoietic necrosis virus (IHNV) in the epithelioma papulosum cyprini cell line (EPC) is described. Ovarian fluid samples were collected from fish and tested for IHNV at 9 farms. The samples were inoculated in parallel on 24 h old EPC cell monolayers and in freshly trypsinized cells. The titre of the initial virus isolation and of first passages were compared using the 2 methods for each sample. Titres were consistently higher in suspended cells and this method also proved more sensitive for isolation of IHN virus from ovarian fluids of infected fish.  相似文献   

13.
We examined the ability of several fish viruses to induce protection against homologous or heterologous viruses in single or double infections, and assessed whether such protection is correlated with innate immunity or expression of the Mx gene. Monolayers of BF2 cells pre-treated with supernatants of brown trout (Salmo trutta L.) macrophage cultures that had been stimulated with either polyinosinic polycytidylic acid (poly I:C) or viruses, such as infectious pancreatic necrosis virus (IPNV), infectious haematopoietic necrosis virus (IHNV) or a mixture of the two, showed varying degrees of protection against viral infections. The virus showing the strongest induction was IPNV, and the antiviral activity against IHNV was also high: around 6 log(10) reduction of virus yield. Consequently, the IPNV-IHNV co-infection yield was also reduced by varying amounts. In vivo, the cumulative mortality observed in the IPNV-IHNV co-infected fish was always less than that in those with a single infection. Stimulation with poly I:C for 7 days significantly reduced cumulative mortality in single-infected fish, but not in the double-infected, in which the IPNV was the only virus isolated from moribund animals. By RT-PCR, Mx was expressed in all the organ samples tested (kidney, liver and spleen) from virus-stimulated fish at 1, 2 and 3 days. By qRT-PCR the extent and timing of Mx expression was shown to differ in the poly I:C and the single or dual viral infections. The highest increase in Mx expression (21.6-fold above basal levels) occurred (after 24 h) in fish infected with the IHNV, and expression remained high until day 7. Mx expression in fish infected with IPNV peaked later, at 2 days post infection, and also remained high until day 7. The dual infection with IPNV-IHNV induced high Mx expression on day 1, which peaked on day 2 and remained high until day 7. These results indicate that activation of the immune system could explain the interference and loss of IHNV in the IPNV-IHNV co-infections.  相似文献   

14.
The occurrence of homologous interference in the replication of infectious pancreatic necrosis virus was demonstrated after successive passages of partially purified virus at high input multiplicities in trout and Atlantic salmon cell cultures. Pretreatment of cell cultures with interfering virus inhibited the replication of homologous standard infectious virus but not unrelated viruses. The ability of infectious pancreatic interfering virus to interfere with homologous virus was abolished with UV irradiation, immune serum, and freeze-thawing.  相似文献   

15.
Several recombinant infectious hematopoietic necrosis viruses (IHNV) were produced by reverse genetics and their pathogenicity in trout was evaluated and compared to that of the wild type (wt) viruses IHNV and viral haemorrhagic septicemia virus (VHSV). Recombinant IHNVs used in this study were: rIHNV, identical to the wtIHNV; rIHNV-Gvhsv, a recombinant virus expressing the VHSV G gene instead of the IHNV G gene; rIHNV-Gmut, which possesses 2 targeted mutations in the glycoprotein; and rIHNVmut-Gmut, which is similar to the rIHNV-Gmut, but exhibits additional mutations along the genome. Results obtained in experimental infections showed that the rIHNV and rIHNV-Gmut were the most virulent recombinant viruses. Severity of the lesions induced by the different recombinant viruses was in agreement with mortality data. The kidney and the liver were the organs most affected by the most pathogenic viruses, and the lesions observed resembled those produced by wtIHNV. The introduction of mutations did not alter the tissue tropism of the virus. The recombinant viruses were able to replicate in fish, as shown by immunoperoxidase assay and RT-PCR. Antibodies against IHNV were detected in the fish inoculated with IHNV, rIHNV, rIHNV-Gmut and rIHNVmut-Gmut, and antibodies against VHSV were also found in fish infected with rIHNV-Gvhsv. Finally, antibody production was highest in fish infected with the rIHNVmut-Gmut even though this virus was the least virulent.  相似文献   

16.
The virulence of 5 European and 1 North American isolate of infectious haematopoietic necrosis virus (IHNV) was compared by infecting female sibling rainbow trout ('Isle of Man' strain) of different weights and ages (2, 20 and 50 g). The fish were exposed to 10(4) TCID50 IHNV per ml of water by immersion, and the mortality was recorded for 28 d. Two new IHNV isolates from Germany were included in the investigation. One was isolated from European eels kept at 23 degrees C (+/- 2 degrees C) and the other was not detectable by immunofluorescence with commercially available monoclonal antibodies recognising the viral G protein. The results showed that IHNV isolates of high or low virulence persisted in rainbow trout of all ages/weights for 28 d, with the exception of fish over 15 g in the eel IHNV (DF [diagnostic fish] 13/98)-infected groups from which the virus could not be reisolated on Day 28. The smallest fish were most susceptible to an infection with any of the IHNV isolates. The lowest cumulative mortality (18%) was observed in fingerlings infected with the North American isolate HAG (obtained from Hagerman Valley), and the highest mortality (100%) in DF 04/99 infected fish. The DF 04/99 and O-13/95 viruses caused mortality in fish independent of their weight or age. The isolates FR-32/87 and I-4008 were virulent in fish up to a weight of 20 g and caused no mortality in larger fish. In the IHNV HAG- and DF 13/98 (eel)-infected rainbow trout, no signs of disease were observed in fish weighing between 15 and 50 g. An age/weight related susceptibility of rainbow trout was demonstrated under the defined conditions for all IHNV isolates tested.  相似文献   

17.
18.
A recombinant infectious hematopoietic necrosis virus (IHNV) glycoprotein (G protein), produced in Spodoptera frugiperda (Sf9) cells following infection with a baculovirus vector containing the full-length (1.6 kb) glycoprotein gene, provided very limited protection in rainbow trout Oncorhynchus mykiss challenged with IHNV. Fish were injected intraperitoneally (i.p.) with Sf9 cells grown at 20 degrees C (RecGlow) or 27 degrees C (RecGhigh) expressing the glycoprotein gene. Various antigen (Ag) preparations were administered to adult rainbow trout or rainbow trout fry. Sera collected from adult fish were evaluated for IHNV neutralization activity by a complement-dependent neutralization assay. Anti-IHNV neutralizing activity was observed in sera, but the percent of fish responding was significantly lower (p < 0.05) in comparison to fish immunized with a low virulence strain of IHNV (LV-IHNV). A small number of fish immunized with RecGlow or RecGhigh possessed IHNV G protein specific antibodies (Abs) in their serum. Cumulative mortality (CM) of rainbow trout fry (mean weight, 1 g) vaccinated by i.p. injection of freeze/thawed Sf9 cells producing RecGlow was 18% in initial trials following IHNV challenge. This level of protection was significant (p < 0.05) but was not long lasting, and neutralizing Abs were not detected in pooled serum samples. When trout fry (mean weight, 0.6 g) were vaccinated with supernatant collected from sonicated Sf9 cells, Sf9 cells producing RecGlow, or Sf9 cells producing RecGhigh, CM averaged 46%. Protection was enhanced over negative controls, but not the positive controls (2% CM), suggesting that in the first trial soluble cellular proteins may have provided some level of non-specific protection, regardless of recombinant protein expression. Although some immunity was elicited in fish, and RecGlow provided short-term protection from IHNV, Ab-mediated protection could not be demonstrated. The results suggest that recombinant G proteins produced in insect cells lack the immunogenicity associated with vaccination of fish with an attenuated strain of IHNV.  相似文献   

19.
Using an electrical measurement known as electric cell-substrate impedance sensing (ECIS), we have recorded the dynamics of viral infections in cell culture. With this technique, cells are cultured on small gold electrodes where the measured impedance mirrors changes in attachment and morphology of cultured cells. As the cells attach and spread on the electrode, the measured impedance increases until the electrode is completely covered. Viral infection inducing cytopathic effect results in dramatic impedance changes, which are mainly due to cell death. In the current study, two different fish cell lines have been used: chinook salmonid embryonic (CHSE-214) cells infected with infectious pancreatic necrosis virus (IPNV) and epithelioma papulosum cyprini (EPC) carp cells infected with infectious hematopoeitic necrosis virus (IHNV). The impedance changes caused by cell response to virus are easily measured and converted to resistance and capacitance. An approximate linear correlation between log of viral titer and time of cell death was determined.  相似文献   

20.
The recently reported SAF-1 cell line from fins of gilt-head seabream was evaluated for susceptibility to lymphocystis disease virus (LDV) and to several salmonid fish viruses, such as infectious haematopoietic necrosis virus (IHNV), viral haemorrhagic septicemia virus (VHSV) and several strains of infectious pancreatic necrosis virus (IPNV). LDV, VHSV and IHNV replicated well in the cultured fin cells as demonstrated by cell lysis and increases in viral titer. The potential use of this cell line to detect viruses from fish marine species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号