首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
In response to iron deficiency, cyanobacteria synthesize the iron stress-induced chlorophyll binding protein IsiA. This protein protects cyanobacterial cells against iron stress. It has been proposed that the protective role of IsiA is related to a blue light-induced nonphotochemical fluorescence quenching (NPQ) mechanism. In iron-replete cyanobacterial cell cultures, strong blue light is known to induce a mechanism that dissipates excess absorbed energy in the phycobilisome, the extramembranal antenna of cyanobacteria. In this photoprotective mechanism, the soluble Orange Carotenoid Protein (OCP) plays an essential role. Here, we demonstrate that in iron-starved cells, blue light is unable to quench fluorescence in the absence of the phycobilisomes or the OCP. By contrast, the absence of IsiA does not affect the induction of fluorescence quenching or its recovery. We conclude that in cyanobacteria grown under iron starvation conditions, the blue light-induced nonphotochemical quenching involves the phycobilisome OCP-related energy dissipation mechanism and not IsiA. IsiA, however, does seem to protect the cells from the stress generated by iron starvation, initially by increasing the size of the photosystem I antenna. Subsequently, the IsiA converts the excess energy absorbed by the phycobilisomes into heat through a mechanism different from the dynamic and reversible light-induced NPQ processes.  相似文献   

2.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE(-) mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with--presumably--allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

3.
Phycobilisomes are the major accessory light-harvesting complexes of cyanobacteria and red algae. Studies using fluorescence recovery after photobleaching on cyanobacteria in vivo have shown that the phycobilisomes are mobile complexes that rapidly diffuse on the thylakoid membrane surface. By contrast, the PSII core complexes are completely immobile. This indicates that the association of phycobilisomes with reaction centers must be transient and unstable. Here, we show that when cells of the cyanobacterium Synechococcus sp. PCC7942 are immersed in buffers of high osmotic strength, the diffusion coefficient for the phycobilisomes is greatly decreased. This suggests that the interaction between phycobilisomes and reaction centers becomes much less transient under these conditions. We discuss the possible reasons for this. State transitions are a rapid physiological adaptation mechanism that regulates the way in which absorbed light energy is distributed between PSI and PSII. Immersing cells in high osmotic strength buffers inhibits state transitions by locking cells into whichever state they were in prior to addition of the buffer. The effect on state transitions is induced at the same buffer concentrations as the effect on phycobilisome diffusion. This implies that phycobilisome diffusion is required for state transitions. The main physiological role for phycobilisome mobility may be to allow such flexibility in light harvesting.  相似文献   

4.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with - presumably - allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

5.
Plants and algae have developed multiple protective mechanisms to survive under high light conditions. Thermal dissipation of excitation energy in the membrane-bound chlorophyll-antenna of photosystem II (PSII) decreases the energy arriving at the reaction center and thus reduces the generation of toxic photo-oxidative species. This process results in a decrease of PSII-related fluorescence emission, known as non-photochemical quenching (NPQ). It has always been assumed that cyanobacteria, the progenitor of the chloroplast, lacked an equivalent photoprotective mechanism. Recently, however, evidence has been presented for the existence of at least three distinct mechanisms for dissipating excess absorbed energy in cyanobacteria. One of these mechanisms, characterized by a blue-light-induced fluorescence quenching, is related to the phycobilisomes, the extramembranal antenna of cyanobacterial PSII. In this photoprotective mechanism the soluble carotenoid-binding protein (OCP) encoded by the slr1963 gene in Synechocystis sp. PCC 6803, of previously unknown function, plays an essential role. The amount of energy transferred from the phycobilisomes to the photosystems is reduced and the OCP acts as the photoreceptor and as the mediator of this antenna-related process. These are novel roles for a soluble carotenoid protein.  相似文献   

6.
Two mechanisms of photoprotective dissipation of the excessively absorbed energy by photosynthetic apparatus of cyanobacteria are described that divert energy from reaction centers. Energy dissipation, monitored as nonphotochemical fluorescence quenching, occurs at different steps of energy transfer within the phycobilisomes or core antenna of photosystem I. Although these mechanisms differ significantly, in both cases, energy dissipates mainly from terminal emitters: allophycocyanin B or core membrane linker protein (LCM) in phycobilisomes, or the longest-wavelength chlorophylls in photosystem I antenna. It is supposed that carotenoid-induced energy dissipation in phycobilisomes is triggered by light-induced transformation of the nonquenched state of antenna into quenched state due to conformation changes caused by orange carotinoid-binding protein (OCP)–phycobilisome interaction. Fluorescence of the longest-wavelength chlorophylls of photosystem I antenna is strongly quenched by P700 cation radical or by P700 triplet state, dependent on redox state of the acceptor side cofactors of photosystem I.  相似文献   

7.
High light poses a threat to oxygenic photosynthetic organisms. Similar to eukaryotes, cyanobacteria evolved a photoprotective mechanism, non-photochemical quenching (NPQ), which dissipates excess absorbed energy as heat. An orange carotenoid protein (OCP) has been implicated as a blue-green light sensor that induces NPQ in cyanobacteria. Discovered in vitro, this process involves a light-induced transformation of the OCP from its dark, orange form (OCP(o)) to a red, active form, however, the mechanisms of NPQ in vivo remain largely unknown. Here we show that the formation of the quenching state in vivo is a multistep process that involves both photoinduced and dark reactions. Our kinetic analysis of the NPQ process reveals that the light induced conversion of OCP(o) to a quenching state (OCP(q)) proceeds via an intermediate, non-quenching state (OCP(i)), and this reaction sequence can be described by a three-state kinetic model. The conversion of OCP(o) to OCP(i) is a photoinduced process with the effective absorption cross section of 4.5 × 10(-3)?2 at 470 nm. The transition from OCP(i) to OCP(q) is a dark reaction, with the first order rate constant of approximately 0.1s(-1) at 25°C and the activation energy of 21 kcal/mol. These characteristics suggest that the reaction rate may be limited by cis-trans proline isomerization of Gln224-Pro225 or Pro225-Pro226, located at a loop near the carotenoid. NPQ decreases the functional absorption cross-section of Photosystem II, suggesting that formation of the quenched centers reduces the flux of absorbed energy from phycobilisomes to the reaction centers by approximately 50%.  相似文献   

8.
Fluorometric determination of the chlorophyll (Chl) content of cyanobacteria is impeded by the unique structure of their photosynthetic apparatus, i.e., the phycobilisomes (PBSs) in the light-harvesting antennae. The problems are caused by the variations in the ratio of the pigment PC to Chl a resulting from adaptation to varying environmental conditions. In order to include cyanobacteria in fluorometric analysis of algae, a simplified energy distribution model describing energy pathways in the cyanobacterial photosynthetic apparatus was conceptualized. Two sets of mathematical equations were derived from this model and tested. Fluorescence of cyanobacteria was measured with a new fluorometer at seven excitation wavelength ranges and at three detection channels (650, 685 and 720 nm) in vivo. By employing a new fit procedure, we were able to correct for variations in the cyanobacterial fluorescence excitation spectra and to account for other phytoplankton signals. The effect of energy-state transitions on the PC fluorescence emission of PBSs was documented. The additional use of the PC fluorescence signal in combination with our recently developed mathematical approach for phytoplankton analysis based on Chl fluorescence spectroscopy allows a more detailed study of cyanobacteria and other phytoplankton in vivo and in situ.  相似文献   

9.
Fluorometric determination of the chlorophyll (Chl) content of cyanobacteria is impeded by the unique structure of their photosynthetic apparatus, i.e., the phycobilisomes (PBSs) in the light-harvesting antennae. The problems are caused by the variations in the ratio of the pigment PC to Chl a resulting from adaptation to varying environmental conditions. In order to include cyanobacteria in fluorometric analysis of algae, a simplified energy distribution model describing energy pathways in the cyanobacterial photosynthetic apparatus was conceptualized. Two sets of mathematical equations were derived from this model and tested. Fluorescence of cyanobacteria was measured with a new fluorometer at seven excitation wavelength ranges and at three detection channels (650, 685 and 720 nm) in vivo. By employing a new fit procedure, we were able to correct for variations in the cyanobacterial fluorescence excitation spectra and to account for other phytoplankton signals. The effect of energy-state transitions on the PC fluorescence emission of PBSs was documented. The additional use of the PC fluorescence signal in combination with our recently developed mathematical approach for phytoplankton analysis based on Chl fluorescence spectroscopy allows a more detailed study of cyanobacteria and other phytoplankton in vivo and in situ.  相似文献   

10.

Non-photochemical quenching (NPQ) is a mechanism responsible for high light tolerance in photosynthetic organisms. In cyanobacteria, NPQ is realized by the interplay between light-harvesting complexes, phycobilisomes (PBs), a light sensor and effector of NPQ, the photoactive orange carotenoid protein (OCP), and the fluorescence recovery protein (FRP). Here, we introduced a biophysical model, which takes into account the whole spectrum of interactions between PBs, OCP, and FRP and describes the experimental PBs fluorescence kinetics, unraveling interaction rate constants between the components involved and their relative concentrations in the cell. We took benefit from the possibility to reconstruct the photoprotection mechanism and its parts in vitro, where most of the parameters could be varied, to develop the model and then applied it to describe the NPQ kinetics in the Synechocystis sp. PCC 6803 mutant lacking photosystems. Our analyses revealed  that while an excess of the OCP over PBs is required to obtain substantial PBs fluorescence quenching in vitro, in vivo the OCP/PBs ratio is less than unity, due to higher local concentration of PBs, which was estimated as ~10?5 M, compared to in vitro experiments. The analysis of PBs fluorescence recovery on the basis of the generalized model of enzymatic catalysis resulted in determination of the FRP concentration in vivo close to 10% of the OCP concentration. Finally, the possible role of the FRP oligomeric state alteration in the kinetics of PBs fluorescence was shown. This paper provides the most comprehensive model of the OCP-induced PBs fluorescence quenching to date and the results are important for better understanding of the regulatory molecular mechanisms underlying NPQ in cyanobacteria.

  相似文献   

11.
The pathways of energy dissipation of excessive absorbed energy in cyanobacteria in comparison with that in higher plants are discussed. Two mechanisms of non-photochemical quenching in cyanobacteria are described. In one case this quenching occurs as light-induced decrease of the fluorescence yield of long-wavelength chlorophylls of the photosystem I trimers induced by inactive reaction centers: P700 cation-radical or P700 in triplet state. In the other case, non-photochemical quenching in cyanobacteria takes place with contribution of water-soluble protein OCP (containing 3′-hydroxyechinenone) that induces reversible quenching of allophycocyanin fluorescence in phycobilisomes. The possible evolutionary pathways of the involvement of carotenoid-binding proteins in non-photochemical quenching are discussed comparing the cyanobacterial OCP and plant PsbS protein. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 10, pp. 1385–1395.  相似文献   

12.
A significant part of global primary productivity is provided by cyanobacteria, which are abundant in most marine and freshwater habitats. In many oceanographic regions, however, the concentration of iron can be so low that it limits growth. Cyanobacteria respond to this condition by expressing a number of iron stress inducible genes, of which the isiA gene encodes a chlorophyll-binding protein known as IsiA or CP43'. It was recently shown that 18 IsiA proteins encircle trimeric photosystem I (PSI) under iron-deficient growth conditions. We report here that after prolonged growth of Synechocystis PCC 6803 in an iron-deficient medium, the number of bound IsiA proteins can be much higher than previously known. The largest complexes bind 12-14 units in an inner ring and 19-21 units in an outer ring around a PSI monomer. Fluorescence excitation spectra indicate an efficient light harvesting function for all PSI-bound chlorophylls. We also find that IsiA accumulates in cyanobacteria in excess of what is needed for functional light harvesting by PSI, and that a significant part of IsiA builds supercomplexes without PSI. Because the further decline of PSI makes photosystem II (PSII) increasingly vulnerable to photooxidation, we postulate that the surplus synthesis of IsiA shields PSII from excess light. We suggest that IsiA plays a surprisingly versatile role in cyanobacteria, by significantly enhancing the light harvesting ability of PSI and providing photoprotection for PSII.  相似文献   

13.
We are using fluorescence recovery after photobleaching (FRAP) to probe the dynamics of thylakoid membranes in vivo in cells of the cyanobacterium Synechococcus sp. PCC7942. We have shown previously that the light-harvesting phycobilisomes diffuse quite rapidly on the thylakoid membrane surface. However, the photosystem II core complexes appear completely immobile. This raises the possibility that all of the membrane integral protein complexes in the thylakoid membrane are locked into a rather rigid array. Alternatively, it is possible that photosystem II is specifically anchored in the membrane, with other membrane proteins able to diffuse around it. We have now resolved this question by studying the diffusion of a second integral membrane protein, the IsiA chlorophyll-binding protein. IsiA is induced under iron starvation and some other stress conditions. In iron-stressed cyanobacterial cells, a high proportion of chlorophyll fluorescence comes from IsiA. This makes it straightforward to examine the diffusion of IsiA by FRAP. We find that the complex is mobile with a mean diffusion coefficient of approximately 3 x 10(-11) cm(2) s(-1). Thus it is clear that some thylakoid membrane proteins are mobile and that there must be a specific anchor that prevents photosystem II diffusion. We discuss the implications for the structure and function of the cyanobacterial thylakoid membrane.  相似文献   

14.
The PsbU subunit of photosystem II (PSII) is one of three extrinsic polypeptides associated with stabilizing the oxygen evolving machinery of photosynthesis in cyanobacteria. We investigated the influence of PsbU on excitation energy transfer and primary photochemistry by spectroscopic analysis of a PsbU-less (or deltaPsbU) mutant. The absence of PsbU was found to have multiple effects on the excited state dynamics of the phycobilisome and PSII. DeltaPsbU cells exhibited decreased variable fluorescence when excited with light absorbed primarily by allophycocyanin but not when excited with light absorbed primarily by chlorophyll a. Fluorescence emission spectra at 77 K showed evidence for impaired energy transfer from the allophycocyanin terminal phycobilisome emitters to PSII. Picosecond fluorescence decay kinetics revealed changes in both allophycocyanin and PSII associated decay components. These changes were consistent with a decrease in the coupling of phycobilisomes to PSII and an increase in the number of closed PSII reaction centers in the dark-adapted deltaPsbU mutant. Our results are consistent with the assumption that PsbU stabilizes both energy transfer and electron transport in the PBS/PSII assembly.  相似文献   

15.
Photosynthetic organisms have developed multiple protective mechanisms to survive under high-light conditions. In plants, one of these mechanisms is the thermal dissipation of excitation energy in the membrane-bound chlorophyll antenna of photosystem II. The question of whether or not cyanobacteria, the progenitor of the chloroplast, have an equivalent photoprotective mechanism has long been unanswered. Recently, however, evidence was presented for the possible existence of a mechanism dissipating excess absorbed energy in the phycobilisome, the extramembrane antenna of cyanobacteria. Here, we demonstrate that this photoprotective mechanism, characterized by blue light-induced fluorescence quenching, is indeed phycobilisome-related and that a soluble carotenoid binding protein, ORANGE CAROTENOID PROTEIN (OCP), encoded by the slr1963 gene in Synechocystis PCC 6803, plays an essential role in this process. Blue light is unable to quench fluorescence in the absence of phycobilisomes or OCP. The fluorescence quenching is not DeltapH-dependent, and it can be induced in the absence of the reaction center II or the chlorophyll antenna, CP43 and CP47. Our data suggest that OCP, which strongly interacts with the thylakoids, acts as both the photoreceptor and the mediator of the reduction of the amount of energy transferred from the phycobilisomes to the photosystems. These are novel roles for a soluble carotenoid protein.  相似文献   

16.
《BBA》2022,1863(7):148580
Photosystem (PS) II is prone to photodamage both as a direct consequence of light, and indirectly by producing reactive oxygen species. Engineering high-light tolerance in cyanobacteria with minimal impact on PSII function is desirable in synthetic biology. IsiA, a CP43 homolog found exclusively in cyanobacteria, can dissipate excess light energy. We have recently determined that the sole cysteine residue of IsiA in Synechocystis sp. PCC 6803 has a critical role in non-photochemical quenching. Similar cysteine-mediated energy quenching has also been observed in green?sulfur bacteria. Sequence analysis of IsiA and CP43 aligns cysteine 260 of IsiA with valine 277 of CP43 in Synechocystis sp. PCC 6803. In the current study, we explore the impact of replacing valine 277 of CP43 to a cysteine on growth, PSII activity and high-light tolerance. Our results imply a decline in the PSII output for the mutant (CP43V277C) presumably due to the dissipation of absorbed light energy by cysteine. Spectroscopic analysis of isolated PSII from this mutant strain also suggests a delayed transfer of excitation energy from CP43-associated chlorophyll a to PSII reaction center. The mutation makes the PSII high-light tolerant and provides a small advantage in growth under high-light conditions. This previously unexplored strategy to engineer high-light tolerance could be a step further towards developing cyanobacterial cells as biofactories.  相似文献   

17.
A variant of fluorescence recovery after photobleaching allows us to observe the diffusion of photosynthetic complexes in cyanobacterial thylakoid membranes in vivo. The unicellular cyanobacterium Synechococcus sp. PCC7942 is a wonderful model organism for fluorescence recovery after photobleaching, because it has a favorable membrane geometry and is well characterized and transformable. In Synechococcus 7942 (as in other cyanobacteria) we find that photosystem II is immobile, but phycobilisomes diffuse rapidly on the membrane surface. The diffusion coefficient is 3 x 10(-10) cm(2) s(-1) at 30 degrees C. This shows that the association of phycobilisomes with reaction centers is dynamic; there are no stable phycobilisome-reaction center complexes in vivo. We report the effects of mutations that change the phycobilisome size and membrane lipid composition. 1) In a mutant with no phycobilisome rods, the phycobilisomes remain mobile with a slightly faster diffusion coefficient. This confirms that the diffusion we observe is of intact phycobilisomes rather than detached rod elements. The faster diffusion coefficient in the mutant indicates that the rate of diffusion is partly determined by the phycobilisome size. 2) The temperature dependence of the phycobilisome diffusion coefficient indicates that the phycobilisomes have no integral membrane domain. It is likely that association with the membrane is mediated by multiple weak interactions with lipid head groups. 3) Changing the lipid composition of the thylakoid membrane has a dramatic effect on phycobilisome mobility. The results cannot be explained in terms of changes in the fluidity of the membrane; they suggest that lipids play a role in controlling phycobilisome-reaction center interaction.  相似文献   

18.
Exposure to blue light has previously been shown to induce the reversible quenching of fluorescence in cyanobacteria, indicative of a photoprotective mechanism responsible for the down regulation of photosynthesis. We have investigated the molecular mechanism behind fluorescence quenching by characterizing changes in excitation energy transfer through the phycobilin pigments of the phycobilisome to chlorophyll with steady-state and time-resolved fluorescence excitation and emission spectroscopy. Quenching was investigated in both a photosystem II-less mutant, and DCMU-poisoned wild-type Synechocystis sp. PCC 6803. The action spectra for blue-light-induced quenching was identical in both cell types and was dominated by a band in the blue region, peaking at 480 nm. Fluorescence quenching and its dark recovery was inhibited by the protein cross-linking agent glutaraldehyde, which could maintain cells in either the quenched or the unquenched state. We found that high phosphate concentrations that inhibit phycobilisome mobility and the regulation of energy transfer by the light-state transition did not affect blue-light-induced fluorescence quenching. Both room temperature and 77 K fluorescence emission spectra revealed that fluorescence quenching was associated with phycobilin emission. Quenching was characterized by a decrease in the emission of allophycocyanin and long wavelength phycobilisome terminal emitters relative to that of phycocyanin. A global analysis of the room-temperature fluorescence decay kinetics revealed that phycocyanin and photosystem I decay components were unaffected by quenching, whereas the decay components originating from allophycocyanin and phycobilisome terminal emitters were altered. Our data support a regulatory mechanism involving a protein conformational change and/or change in protein-protein interaction which quenches excitation energy at the core of the phycobilisome.  相似文献   

19.
The diatom algae, responsible for at least a quarter of the global photosynthetic carbon assimilation in the oceans, are capable of switching on rapid and efficient photoprotection, which helps them cope with the large fluctuations of light intensity in the moving waters. The enhanced dissipation of excess excitation energy becomes visible as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Intact cells of the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum, which show different NPQ induction kinetics under high light illumination, were investigated by picosecond time-resolved fluorescence under dark and NPQ-inducing high light conditions. The fluorescence kinetics revealed that there are two independent sites responsible for NPQ. The first quenching site is located in an FCP antenna system that is functionally detached from both photosystems, while the second quenching site is located in the PSII-attached antenna. Notwithstanding their different npq induction and reversal kinetics, both diatoms showed identical NPQ via both mechanisms in the steady-state. Their fluorescence decays in the dark-adapted states were different, however. A detailed quenching model is proposed for NPQ in diatoms.  相似文献   

20.
Cyanobacteria are capable of using dissipation of phycobilisome-absorbed energy into heat as part of their photoprotective strategy. Non-photochemical quenching in cyanobacteria cells is triggered by absorption of blue-green light by the carotenoid-binding protein, and involves quenching of phycobilisome fluorescence. In this study, we find direct evidence that the quenching is accompanied by a considerable reduction of energy flow to the photosystems. We present light saturation curves of photosystems’ activity in quenched and non-quenched states in the cyanobacterium Synechocystis sp. PCC 6803. In the quenched state, the quantum efficiency of light absorbed by phycobilisomes drops by about 30-40% for both photoreactions—P700 photooxidation in the photosystem II-less strain and photosystem II fluorescence induction in the photosystem I-less strain of Synechocystis. A similar decrease of the excitation pressure on both photosystems leads us to believe that the core-membrane linker allophycocyanin APC-LCM is at or beyond the point of non-photochemical quenching. We analyze 77 K fluorescence spectra and suggest that the quenching center is formed at the level of the short-wavelength allophycocyanin trimers. It seems that both chlorophyll and APC-LCM may dissipate excess energy via uphill energy transfer at physiological temperatures, but neither of the two is at the heart of the carotenoid-binding protein-dependent non-photochemical quenching mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号