首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This study examined the thermal and metabolic responses of six men during exercise in water at critical temperature (Tcw, 31.2 +/- 0.5 degrees C), below Tcw (BTcw, 28.8 +/- 0.6 degrees C), at thermoneutrality (Ttn, 34 degrees C), and above Ttn (ATtn, 36 degrees C). At each water temperature (Tw) male volunteers wearing only swimming trunks completed four 1-h experiments while immersed up to the neck. During one experiment, subjects remained at rest (R), and the other three performed leg exercise (LE) at three different intensities (LE-1, 2 MET; LE-2, 3 MET; LE-3, 4 MET). In water warmer than Tcw, there was no difference in metabolic rate (M) during R. The M for each work load was independent of Tw. Esophageal temperature (Tes) remained unchanged during R in water of ATtn (36 degrees C). However, Tes significantly (P less than 0.05) declined over 1 h during R at Ttn (delta Tes = -0.39 degrees C), Tcw (delta Tes = -0.54 degrees C), and BTcw (delta Tes = -0.61 degrees C). All levels of underwater exercise elevated Tes and M compared with R at all Tw. In water colder than Tcw, the ratio of heat loss from limbs compared with the trunk became greater as LE intensity increased, indicating a preferential increase in heat loss from the limbs in cool water. Tissue insulation (Itissue) was lower during LE than at R and was inversely proportional to the increase in LE intensity. A linearly inverse relationship was established between Tw and M in maintaining thermal equilibrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Ten male volunteers were divided into two groups based on body morphology and mass. The large-body mass (LM) group (n = 5) was 16.3 kg heavier and 0.22 cm2 X kg-1 X 10(-2) smaller in surface area-to-mass ratio (AD X wt-1) (P less than 0.05) than the small-body mass (SM) group (n = 5). Both groups were similar in total body fat and skinfold thicknesses (P greater than 0.05). All individuals were immersed for 1 h in stirred water at 26 degrees C during both rest and one intensity of exercise (metabolic rate approximately 550 W). During resting exposures metabolic rate (M) and rectal temperature (Tre) were not different (P greater than 0.05) between the LM and SM groups at min 60. Esophageal temperature (Tes) was higher (P less than 0.05) for the SM group at min 60, although the change in Tes during the 60 min between groups was similar (LM, -0.4 degrees C; SM, -0.2 degrees C). Tissue insulation (I) was lower (P less than 0.05) for SM (0.061 degrees C X m-2 X W-1) compared with the LM group (0.098 degrees C X m-2 X W-1). During exercise M, Tre, Tes, and I were not different (P greater than 0.05) between groups at min 60. These data illustrate that a greater body mass between individuals increases the overall tissue insulation during rest, most likely as a result of a greater volume of muscle tissue to provide insulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
This study investigated the rectal (Tre), esophageal (Tes), and skin (Tsk) temperature changes in a group of trained traumatic paraplegic men pushing their own wheelchairs on a motor-driven treadmill for a prolonged period in a neutral environment. There were two experiments. The first experiment (Tre and Tsk) involved a homogeneous group (T10-T12/L3) of highly trained paraplegic men [maximum O2 uptake (VO2max) 47.5 +/- 1.8 ml.kg-1.min-1] exercising for 80 min at 60-65% VO2max.Tre and Tsk (head, arm, thigh, and calf) and heart rate (HR) were recorded throughout. O2 uptake (VO2), minute ventilation (VE), CO2 production (VCO2), and heart rate (HR) were recorded at four intervals. During experiment 1 significant changes in HR and insignificant changes in VCO2, VE, and VO2 occurred throughout prolonged exercise. Tre increased significantly from 37.1 +/- 0.1 degrees C (rest) to 37.8 +/- 0.1 degrees C after 80 min of exercise. There were only significant changes in arm Tsk. Experiment 2 involved a nonhomogeneous group (T5-T10/T11) of active paraplegics (VO2max 39.9 +/- 4.3 ml.kg-1.min-1) exercising at 60-65% VO2max for up to 45 min on the treadmill while Tre and Tes were simultaneously recorded. Tes rose significantly faster than Tre during exercise (dT/dt 20 min: Tes 0.050 +/- 0.003 degrees C/min and Tre 0.019 +/- 0.005 degrees C/min), and Tes declined significantly faster than Tre at the end of exercise. Tes was significantly higher than Tre at the end of exercise. Our results suggest that during wheelchair propulsion by paraplegics, Tes may be a better estimate of core temperature than Tre.  相似文献   

4.
The rate of warming after hypothermia depends on the method of rewarming. This study compared the effectiveness of radio frequency (RF) energy against hot (41 degrees C) water immersion (HW) and an insulated cocoon (IC) for rewarming hypothermic men. Six men fasted overnight and were rewarmed for 1 h after attaining a 0.5 degree C reduction in rectal temperature (Tre). Tre and esophageal (Tes) temperature were recorded every 5 min with nonmetallic thermal probes. The base-line value for Tre and Tes just before rewarming was subtracted from each 5 min Tre and Tes during rewarming to give delta Tre and delta Tes. The 12 delta Tes values were averaged for each individual and were compared using analysis of variance. The average delta Tes for RF (1.15 +/- 0.22 degrees C/h) was faster (P less than 0.001) than either IC (0.37 +/- 0.16 degrees C/h) or HW (0.18 +/- 0.09 degree C/h). The present study shows the superiority of RF energy for rewarming mildly hypothermic men.  相似文献   

5.
Thermal and metabolic responses were examined during exposures in stirred water at approximately 20, 26, and 33 degrees C while subjects were performing 45 min of either arm (A), leg (L), or combined arm-leg (AL) exercise. Eight males immersed to the neck completed a low exercise intensity for A exercise and both a low and high exercise intensity for L and AL exercise. During low-intensity exercise, final metabolic rate (M) for A, L, and AL exercise was not different (P greater than 0.05) between exercise type for each water temperature (Tw). In contrast final rectal temperatures (Tre) for A and AL exercise were significantly lower than L values for each Tw during low-intensity exercise. These findings were supported by both mean weighted skin temperature (Tsk) and mean weighted heat flow (Hc) values, which were greater during A than L for each Tw. During high-intensity exercise, final Tre values were lower (P less than 0.05) during AL compared with L exercise across all Tw. Final Tsk and Hc values were not different between each type of exercise, although M was significantly lower during L exercise in 20 degrees C water. These data suggest a greater conductive and convective heat loss during exercise utilizing the arms when compared with leg-only exercise.  相似文献   

6.
To evaluate the role of beta-adrenergic receptors in the control of human sweating, we studied six subjects during 40 min of cycle-ergometer exercise (60% maximal O2 consumption) at 22 degrees C 2 h after oral administration of placebo or nonselective beta-blockade (BB, 80 mg propranolol). Internal temperature (esophageal temperature, Tes), mean skin temperature (Tsk), local chest temperature (Tch), and local chest sweat rate (msw) were continuously recorded. The control of sweating was best described by the slope of the linear relationship between msw and Tes and the threshold Tes for the onset of sweating. The slope of the msw-Tes relationship decreased 27% (P less than 0.01), from 1.80 to 1.30 mg X cm-2 X min-1 X degree C-1 during BB. The Tes threshold for sweating (36.8 degrees C) was not altered as the result of BB. These data suggest that BB modified the control of sweating via some peripheral interaction. Since Tsk was significantly (P less than 0.05) reduced during BB exercise, from a control value of 32.8 to 32.2 degrees C, we evaluated the influence of the reduction in local skin temperature (Tsk) in the altered control of sweating. Reductions in Tch accounted for only 45% of the decrease in the slope of the msw-Tes relationship during BB. Since evaporative heat loss requirement during exercise with BB, as estimated from the energy balance equation, was also reduced 18%, compared with control exercise, we concluded that during BB the reduction in sweating at any Tes is the consequence of both a decrease in local Tsk and a direct effect on sweat gland.  相似文献   

7.
Nine young (20-25 years) and ten older (60-71 years) men, matched for body fatness and surface area:mass ratio, underwent cold tests in summer and winter. The cold tests consisted of a 60-min exposure, wearing only swimming trunks, to an air temperature of 17 degrees C (both seasons) and 12 degrees C (winter only). Rectal (Tre) and mean skin (Tsk) temperatures, metabolic heat production (M), systolic (BPs) and diastolic (BPd) blood pressures and heart rate (fc) were measured. During the equilibrium period (28 degrees C air temperature) there were no age-related differences in Tre, Tsk, BPs, BPd, or fc regardless of season, although M of the older men was significantly lower (P < 0.003). The decrease in Tre and Tsk (due to the marked decrease in six of the older men) and the increase in BPs and BPd were significantly greater (P < 0.004) for the older men during all the cold exposures. The rate of increase in M was significantly greater (P < 0.01) for the older group when exposed to 12 degrees C in winter and 17 degrees C in summer (due to the marked increase in four of the older men). This trend was not apparent during the 17 degrees C exposure in winter. There was no age-related difference in fc during the exposures. Significant decreases in Tre and Tsk and increases in M, BPs and BPd during the 12 degrees C exposure were observed for the older group (P < 0.003) compared to their responses during the 17 degrees C exposure in winter. In contrast, Tre, M, BPs in the young group were not affected as much by the colder environment. It was concluded that older men have more variable responses and some appear more or less responsive to mild and moderate cold air than young men.  相似文献   

8.
To detect shifts in the threshold core temperature (Tc) for sweating caused by particular nonthermal stresses, it is necessary to stabilize or standardize all other environmental and physiological variables which cause such shifts. It is, however, difficult to cause progressive changes in Tc without also causing changes in skin temperature (Tsk). This study compares the technique of body warming by immersion in water at 40 degrees C, and subsequent body cooling in water at 28 degrees C, to determine the core threshold for sweating, with one by which Tc was raised by cycling exercise in air at 20 degrees C, and then lowered by immersion in water at 28 degrees C. The first of these procedures involved considerable shifts in Tsk upon immersion in water at 40 degrees C, and again upon transfer to water at 28 degrees C; the second procedure caused only small changes in Tsk. The onset of sweating at a lower esophageal temperature (Tes) during immersion in water at 40 degrees C (36.9 +/- 0.1 degrees C) than during exercise (37.4 +/- 0.3 degree C) is attributed to the high Tsk since Tes was then unchanged. Likewise, the rapid decline in the sweat rate during immersion at 28 degrees C had the same time course to extinction after the pretreatments. This related more to the Tsk, which was common, than to the levels or rates of change of Tes, which both differed between techniques. Tes fell most rapidly, and thus sweating was extinguished at a lower Tes, following 40 degrees C immersion than following exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of repeated cold water immersion on thermoregulatory responses to cold air were studied in seven males. A cold air stress test (CAST) was performed before and after completion of an acclimation program consisting of daily 90-min cold (18 degrees C) water immersion, repeated 5 times/wk for 5 consecutive wk. The CAST consisted of resting 30 min in a comfortable [24 degrees C, 30% relative humidity (rh)] environment followed by 90 min in cold (5 degrees C, 30% rh) air. Pre- and postacclimation, metabolism (M) increased (P less than 0.01) by 85% during the first 10 min of CAST and thereafter rose slowly. After acclimation, M was lower (P less than 0.02) at 10 min of CAST compared with before, but by 30 min M was the same. Therefore, shivering onset may have been delayed following acclimation. After acclimation, rectal temperature (Tre) was lower (P less than 0.01) before and during CAST, and the drop in Tre during CAST was greater (P less than 0.01) than before. Mean weighted skin temperature (Tsk) was lower (P less than 0.01) following acclimation than before, and acclimation resulted in a larger (P less than 0.02) Tre-to-Tsk gradient. Plasma norepinephrine increased during both CAST (P less than 0.002), but the increase was larger (P less than 0.004) following acclimation. These findings suggest that repeated cold water immersion stimulates development of true cold acclimation in humans as opposed to habituation. The cold acclimation produced appears to be of the insulative type.  相似文献   

10.
We investigated whether menstrual cycle phase would affect temperature regulation during an endurance exercise bout performed at room temperature (Ta) of 22 degrees C and 60% relative humidity. Nine eumenorrheic women [age 27.2 +/- 3.7 yr, peak O2 uptake (VO2) 2.52 +/- 0.35 l/min] performed 60 min of cycle exercise at 65% of peak VO2. Subjects were tested in both midfollicular (F) and midluteal (L) phases, although one woman did not show a rise in serum progesterone (P4) that is typically evident 1 wk after ovulation. VO2, rectal (Tre) and skin (Tsk) temperatures, heart rates (HR), and ratings of perceived exertion (RPE) were measured throughout exercise. Sweat loss (SL) was estimated from pre- and postexercise body weight differences. VO2, SL, and Tsk were not affected by menstrual cycle phase. Preexercise Tre was 0.3 degrees C higher during L than during F conditions, and this difference increased to 0.6 degrees C by the end of exercise (P less than 0.01). Compared with F, HRs during L were approximately 10 beats/min greater (P less than 0.001) at all times, whereas RPE responses were significantly greater (P less than 0.01) by 50 min of cycling. No differences in any measured values were found in the subject whose P4 was low in both test conditions. Results indicate that thermoregulation (specifically, regulation of Tre), as well as cardiovascular strain and perception of exercise, was adversely affected during the L phase.  相似文献   

11.
Previous work has suggested that men (M) are more sensitive to cold stress than women. There have also been observations that suggest that amenorrheic women (AW) are less thermally responsive than eumenorrheic women (EW). We investigated the hypothesis that M, EW, and AW would have different responses to cold stress. The subjects (6/group) were tested four times: twice at rest for 60 min (5 and 22 degrees C) and twice in a progressive exercise test (5 and 22 degrees C). At rest at 22 degrees C AW had a lower O2 uptake (VO2) than M and lower rectal (Tre) and finger temperatures than EW. At rest at 5 degrees C both AW and EW had lower skin temperature (Tsk) than M, but there were no group differences in peripheral Tsk sites. M increased VO2 after 10 min and EW after 20 min of cold stress; however, AW did not increase metabolism until 60 min. In the two exercise tests Tre increased in proportion to relative work load; in the 5 degrees C test there was little evidence that exercise increased Tsk sites above rest levels. Few of the metabolic or thermal differences could be accounted for by body fatness, body surface area (BSA), or BSA/kg. The data support the hypothesis that M, EW, and AW have different responses to cold stress.  相似文献   

12.
The dynamics of sweating was investigated at rest in 8 men and 8 women. Electrical skin resistance (ESR), rectal temperature (Tre) and mean skin temperature (Tsk) were measured in subjects exposed to 40 degrees C environmental temperature, 30% relative air humidity, and 1 m X s-1 air flow. Sweat rate was computed from continuous measurement of the whole body weight loss. It was found that increases in Tre, Tsk and mean body temperature (Tb) were higher in women than in men by 0.16, 0.38 and 0.21 degrees C, but only the difference in delta Tb was significant (p less than 0.05). The dynamics of sweating in men and women respectively, was as follows: delay (td) 7.8 and 18.1 min (p less than 0.01), time constant (tau) 7.5 and 8.8 min (N.S.), inertia time (ti) 15.3 and 26.9 min (p less than 0.002), and total body weight loss 153 and 111 g X m-2 X h-1 (p less than 0.001). Dynamic parameters of ESR did not differ significantly between men and women. Inertia times of ESR and sweat rate correlated in men (r = 0.93, p less than 0.001), and in women (r = 0.76, p less than 0.02). In men, delta Tre correlated with inertia time of sweat rate (r = 0.81, p less than 0.01) as well as with the inertia time of ESR (r = 0.83, p less than 0.001). No relation was found between delta Tre and the dynamics of sweating in women. It is concluded that the dynamics of sweating plays a decisive role in limiting delta Tre in men under dry heat exposure. The later onset of sweating in women does not influence the rectal temperature increase significantly. In women, delta Tre is probably limited by a complex interaction of sweating, skin blood flow increase, and metabolic rate decrease.  相似文献   

13.
The present work was undertaken to examine the effect of wet suits on the pattern of heat exchange during immersion in cold water. Four Korean women divers wearing wet suits were immersed to the neck in water of critical temperature (Tcw) while resting for 3 h or exercising (2-3 met on a bicycle ergometer) for 2 h. During immersion both rectal (Tre) and skin temperatures and O2 consumption (VO2) were measured, from which heat production (M = 4.83 VO2), skin heat loss (Hsk = 0.92 M +/- heat store change based on delta Tre), and thermal insulation were calculated. The average Tcw of the subjects with wet suits was 16.5 +/- 1.2 degrees C (SE), which was 12.3 degrees C lower than that of the same subjects with swim suits (28.8 +/- 0.4 degrees C). During the 3rd h of immersion, Tre and mean skin temperatures (Tsk) averaged 37.3 +/- 0.1 and 28.0 +/- 0.5 degrees C, and skin heat loss per unit surface area 42.3 +/- 2.66 kcal X m-2 X h. The calculated body insulation [Ibody = Tre - Tsk/Hsk] and the total shell insulation [Itotal = (Tre - TW)/Hsk] were 0.23 +/- 0.02 and 0.5 +/- 0.04 degrees C X kcal-1 X m2 X h, respectively. During immersion exercise, both Itotal and Ibody declined exponentially as the exercise intensity increased. Surprisingly, the insulation due to wet suit (Isuit = Itotal - Ibody) also decreased with exercise intensity, from 0.28 degrees C X kcal-1 X m2 X h at rest to 0.12 degrees C X kcal-1 X m2 X h at exercise levels of 2-3 met.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Thermoregulatory, cardiovascular, and body fluid responses during exercise in the heat were tested in five middle-aged (48 +/- 2 yr) women before and after 14-23 days of estrogen replacement therapy (ERT). The heat and exercise challenge consisted of a 40-min rest period followed by semirecumbent cycle exercise (approximately 40% maximal O2 uptake) for 60 min. At rest, the ambient temperature was elevated from a thermoneutral (dry bulb temperature 25 degrees C; wet bulb temperature 17.5 degrees C) to a warm humid (dry bulb temperature 36 degrees C; wet bulb temperature 27.5 degrees C) environment. Esophageal (Tes) and rectal (Tre) temperatures were measured to estimate body core temperature while arm blood flow and sweating rate were measured to assess the heat loss response. Mean arterial pressure and heart rate were measured to evaluate the cardiovascular response. Blood samples were analyzed for hematocrit (Hct), hemoglobin ([Hb]), plasma 17 beta-estradiol (E2), progesterone (P4), protein, and electrolyte concentrations. Plasma [E2] was significantly (P < 0.05) elevated by ERT without affecting the plasma [P4] levels. After ERT, Tes and Tre were significantly (P < 0.05) depressed by approximately 0.5 degrees C, and the Tes threshold for the onset of arm blood flow and sweating rate was significantly (P < 0.05) lower during exercise. After ERT, heart rate during exercise was significantly lower (P < 0.05) without notable variation in mean arterial pressure. Isotonic hemodilution occurred with ERT evident by significant (P < 0.05) reductions in Hct and [Hb], whereas plasma tonicity remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of low-intensity exercise in the heat on thermoregulation and certain biochemical changes in temperate and tropical subjects under poorly and well-hydrated states was examined. Two VO2max matched groups of subjects consisting of 8 Japanese (JS) and 8 Malaysians (MS) participated in this study under two conditions: poorly-hydrated (no water was given) and well-hydrated (3 mL x Kg(-1) body weight of water was provided at onset of exercise, and the 15th, 35th and 55th min of exercise). The experimental room in both countries was adjusted to a constant level (Ta: 31.6+/-0.03 degrees C, rh: 72.3+/-0.13%). Subjects spent an initial 10 min rest, 60 min of cycling at 40% VO2max and then 40 min recovery in the experimental room. Rectal temperatures (Tre) skin temperatures (Tsk), heart rate (HR), heat-activated sweat glands density (HASG), local sweat rate (M sw-back) and percent dehydration were recorded during the test. Blood samples were analysed for plasma glucose and lactate levels.The extent of dehydration was significantly higher in the combined groups of JS (1.43+/-0.08%) compared to MS (1.15+/-0.05%). During exercise M sw-back was significantly higher in JS compared to MS in the well-hydrated condition. The HASG was significantly more in JS compared to MS at rest and recovery. Tre was higher in MS during the test. Tsk was significantly higher starting at the 5th min of exercise until the end of the recovery period in MS compared to JS.In conclusion, tropical natives have lower M sw-back associated with higher Tsk and Tre during the rest, exercise and recovery periods. However, temperate natives have higher M sw-back and lower Tsk and Tre during experiments in a hot environment. This phenomenon occurs in both poorly-hydrated and well-hydrated states with low intensity exercise. The differences in M sw-back, Tsk and Tre are probably due to a setting of the core temperature at a higher level and enhancement of dry heat loss, which occurred during passive heat exposure.  相似文献   

16.
Recent studies using inanimate and animal models suggest that the afterdrop observed upon rewarming from hypothermia is based entirely on physical laws of heat flow without involvement of the returning cooled blood from the limbs. During the investigation of thermoregulatory responses to cold water immersion (15 degrees C), blood flow to the limbs (minimized by the effects of hydrostatic pressure and vasoconstriction) was occluded in 17 male subjects (age, 29.0 +/- 3.3 yr). Comparisons of rectal (Tre) and esophageal temperature (Tes) responses were made during the 5 min before occlusion, during the 10-min occlusion period, and for 5 min immediately after the release of the cuffs (postocclusion). In the preocclusion phase, Tre and Tes showed similar cooling rates. The occlusion of blood flow to the extremities significantly arrested the cooling of Tes (P less than 0.05) with little effect on Tre. Upon release of the pressure cuffs, the returning extremity blood flow resulted in an increased rate of cooling, that was three times greater at the esophageal site (-0:149 +/- 0.052 vs. -0.050 +/- 0.026 degrees C.min-1). These results suggest that the cooled peripheral circulation, minimized during cold water immersion, may dramatically affect esophageal temperature and the complete neglect of the circulatory component to the afterdrop phenomenon is not warranted.  相似文献   

17.
Thermoregulatory responses were studied in 10 men and 8 women at rest in air and during 1-h immersion in water at 20, 24, and 28 degrees C. For men of high body fat (27.6%), rectal temperature (Tre) and oxygen consumption (VO2) were maintained at air values at all water temperatures (Tw). For men of average (16.8%) and low (9.2%) fat the change in Tre (delta Tre) was inversely related to body fat at all Tw with VO2 increasing to 1.07 l X min-1 for a -1.6 degrees C delta Tre for lean men. For women of average (25.2%) and low (18.5%) fat Tre decreased steadily during immersion at all Tw. The greatest changes occurred at 20 degrees C with little differences in delta Tre and VO2 noted between these groups of women. In comparison with males of similar percent fat, Tre dropped to a greater extent (P less than 0.05) in females at 20 and 24 degrees C. Stated somewhat differently, lean women with twice the percentage of fat have similar delta Tre as lean men at all Tw. For delta Tre greater than -1.0 degree C men showed significantly greater (P less than 0.05) thermogenesis compared with women. The differences in thermoregulation between men and women during cold stress at rest may be due partly to the sensitivity of the thermogenic response as well as the significant differences in lean body weight and surface area-to-mass ratio between the sexes.  相似文献   

18.
Comparisons of physiological responses to 0, 0.5, 1, and 2 mg atropine (IM) were made in seven males (X +/- SD: age, 24 +/- 3 years; ht, 174 +/- 12 cm; wt, 76 +/- 3 kg) while they exercised (approximately 390 W) in a hot-dry (40 degrees C, 20% rh) environment. Responses to 4 mg, as well as repeatability of responses to 2 mg, were studied in two and six of these subjects, respectively. On 8 test days an intramuscular injection of atropine or saline control was administered 20 min before subjects walked on a treadmill for two 50-min bouts. Heart rate (HR) during exercise did not change in the control trial but by min 50 increased during all atropine trials (P less than 0.01). Rectal temperature (Tre) increased (P less than 0.01) in all trials by min 50 and continued increasing (P less than 0.01) in the 2-mg trial during the second exercise bout. For the two subjects tested with all dosages (0.5 - 4 mg atropine), the change in HR and Tre between the atropine and control trials at 50 min of exercise was regressed against the various atropine dosages. The relationship (r = 0.92) for HR was curvilinear while the relationship (r = 0.99) for Tre was linear. Mean weighted skin temperature (Tsk) was relatively constant during exercise and was warmer (P less than 0.05) with increasing atropine dosage. In a repeat 2 mg trial, HR was 6 bt . min-1 lower (P less than 0.05) on the second exposure but Tre was the same (P greater than 0.05) on both days. For subjects walking in the heat, three new observations were: 1) 0.5 mg of atropine resulted in increased HR and Tsk compared to control values; 2) HR was elevated but the magnitude of change decreased with increasing dosage, while the elevation in Tre was consistent with increasing dosage; and 3) rectal temperatures (in trials with and without atropine) were unaffected by previous days of atropine administration.  相似文献   

19.
A three-part experiment was designed to examine interactions between local and reflex influences on forearm skin blood flow (SkBF). In part I locally increasing arm skin temperature (Tsk) to 42.5 degrees C was not associated with increases in underlying forearm muscle blood flow, esophageal temperature (Tes), or forearm blood flow in the contralateral cool arm. In part II whole-body Tsk was held at 38 or 40 degrees C and the surface temperature of one arm held at 38 or 42 degrees C for prolonged periods. SkBF in the heated arm rose rapidly with the elevation in body Tsk and arm Tsk continued to rise as Tes rose. SkBF in the arm kept at 32 degrees C paralleled rising Tes. In six studies, SkBF in the cool arm ultimately converged with SkBF in the heated arm. In eight other studies, heated arm SkBF maintained an offset above cool arm SkBF throughout the period of whole-body heating. In part III, local arm Tsk of 42.5 degrees C did not abolish skin vasoconstrictor response to lower body negative pressure. We conclude that local and reflex influences to skin interact so as to modify the degree but not the pattern of skin vasomotor response.  相似文献   

20.
Six resting men were exposed to three temperatures (15.5, 21, 26.5 degrees C) for 120 min at three altitudes (sea level, 2,500 m, 5,000 m). A 60-min sea-level control at the scheduled temperature preceded the nine altitude episodes. Comparison of the base-line results at any one temperature showed no differences between rectal temperatures (Tre) or mean weighted skin temperatures (Tsk). After 120 min, Tre and Tsk not only depended on ambient temperature but also altitude. The initial rate of fall in Tre increased with altitude and equilibrium occurred earlier. At 15.5 degrees C, Tre was 0.3 degrees C lower at 5,000 m and 0.2 degrees C lower at 2,500 m than at sea level. Tsk was almost 2 degrees C higher at 15.5 degrees C at 5,000 m and 1 degrees C higher at 2,500 m than at sea level. Similar, smaller differences were observed at 21 degrees C. Mean weighted body temperature showed no change with altitude, but, since the gradient between core and shell was reduced, a shift of blood toward the periphery is implied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号