首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The adductor muscles of the pectoral fins of the hatchetfish Gasteropelecus are innervated by bilateral pools of about 40 motoneurons which lie primarily in the first spinal segment. A pair of giant fibers on each side of the medulla send processes ventroposteriorly to the motoneuron pools. Electrophysiological evidence indicates that giant fibers are presynaptic to ipsilateral motoneurons, but not to contralateral ones. Transmission across the giant fiber, motoneuron synapse is electrically mediated as is indicated by direct measurement of electrotonic spread in either direction across the synapse, and by the extremely short latency of the giant fiber postsynaptic potentials (PSP's) in the motoneuron. The coupling resistance across the synapse was calculated from measurements of input and transfer resistance. The coupling resistance rectifies in such a way as to facilitate spread of depolarization from giant fiber to motoneuron, and to oppose transmission in the opposite direction. As a consequence of rectification, the giant fiber PSP in a motoneuron is augmented by hyperpolarization of the motoneuron. The coupling resistance calculated on the basis of this effect is in good agreement with calculations from input and transfer resistance data. Rectification at the electrotonic synapses may permit the motoneurons to act in small swimming movements as well as to fire synchronously in an extremely fast escape reflex mediated by Mauthner and giant fibers.  相似文献   

2.
The electrical properties and neuromuscular transmission of white and red fibers of pectoral fin muscles of the goldfish Carassius auratus were studied using an intracellular recording technique. The pectoral fin muscles consist mainly of white and red fibers. Almost all of white fibers elicited action potentials with overshoot by direct stimulation, but graded responses appeared in the red fibers. However, overshooting action potentials were often recorded from the red fibers in saline containing 20 microM tetraethylammonium (TEA) chloride. In response to single nerve stimulations, excitatory (EJPs) and inhibitory junction potentials (IJPs) were obtained from both white and red fibers in common. Both EJPs and IJPs were blocked completely or partially by d-tubocurarine, a nicotinic acetylcholine (ACh) receptor antagonist. Nicotine, a nicotinic ACh receptor agonist, and oxotremorine, a muscarinic ACh receptor agonist, depolarized both fiber types. The results suggest that white and red fibers receive double innervation from excitatory and inhibitory nerves, and have nicotinic and muscarinic ACh receptors. In the resting muscle, miniature excitatory junction potentials were generated spontaneously in both white and red fibers. Occasionally, miniature inhibitory junction potentials were recorded from the red fibers. The results indicate that the release of both excitatory and inhibitory transmitters is quantal in nature.  相似文献   

3.
Presynaptic and postsynaptic potentials were examined by intracellular recording at a crayfish neuromuscular junction. During normal synaptic transmission, the action potentials were recorded in the terminal region of the excitatory axon and postsynaptic responses were obtained in the muscle fibers. We found that it was possible to modify the synaptic transmission by applying depolarizing or hyperpolarizing currents through the presynaptic intracellular electrode. Typically, a 7-15 mV depolarization lasting longer than 50 msec leads to a large (500%) enhancement of transmitter release, even though the preterminal action potential is reduced in amplitude. Hyperpolarization increases the amplitude of the action potential, but slightly reduces the transmitter release. These results are different from those reported for other neuromuscular synapses and the squid giant synapse, but are similar in many respects to the results reported for several invertebrate central synapses. We conclude, first, that different synapses may have markedly different responses to conditioning by membrane polarization and, secondly, that maintained low-level depolarization may induce a potentiated state in the nerve terminal, perhaps brought about by slow entry of calcium.  相似文献   

4.
Effects of guanidine on pre- and postsynaptic activities in the untreated or tetrodotoxin-treated squid giant synapses were examined by externally perfusing with various concentrations (423 mM, 42 mM, 21 mM, and 4.2 mM), or by iontophoretic injection of guanidine into the presynaptic terminal. In 423 mM guanidine (Na-free), the pre- and postsynaptic spikes together with PSP were completely abolished. In concentrations of 42 mM or lower of guanidine media the following changes related to the concentration used were observed: reduction of delayed rectification of both axon membranes without significant alteration of resting membrane resistances; a few millivolts decrease in the resting membrane potentials; small decrease in amplitude of pre- and post-synaptic spikes without marked increase of spike duration; enhancement of synaptic activity as manifested by increases in the amplitude and duration of the PSP. Iontophoretically injected guanidine also reduced delayed rectification of the presynaptic membrane. Input-output relation was modified in a way similar to externally applied guanidine and an “Off-PSP” was demonstrated shortly after application of an inside positive presynaptic polarization. Thus, a comparison of the augmentation of synaptic transmission by the extracellular and intracellularly applied guanidine demonstrates that the primary effect is at the presynaptic terminal.  相似文献   

5.
Depolarization of the presynaptic terminal by current produced a postsynaptic potential (PSP) which increased with increasing presynaptic polarization and then reached a plateau. Iontophoretic injection of tetraethylammonium ions (TEA) into the presynaptic axon near the terminal produced a prolonged presynaptic spike. The resulting PSP is increased in size and its time course closely followed that of the presynaptic spike. The presynaptic fiber no longer exhibited rectification and strong depolarizations revealed that the PSP reached a maximum with about 110 mv depolarization. Further depolarization produced a decrease in PSP amplitude and finally transmission was blocked. However, a PSP then always appeared on withdrawal of the depolarizing current. Under the conditions of these experiments, the PSP could be considered a direct measure of transmitter release. Bathing the TEA-injected synapse with concentrations of tetrodotoxin (TTX) sufficient to block spike activity in both pre- and postsynaptic axons did not greatly modify postsynaptic electrogenesis. However, doubling TTX concentration reversibly blocked PSP. Thus the permeability changes to Na and K accompanying the spike do not appear necessary for transmitter release. Some other processes related to the level of presynaptic polarization must be involved to explain the data. The inhibition of transmitter release by strong depolarizations appears to be related to Ca action. A membrane Ca current may also be necessary for normal transmitter release.  相似文献   

6.
Schmitz D  Frerking M  Nicoll RA 《Neuron》2000,27(2):327-338
Kainate receptors (KARs) are a poorly understood family of ionotropic glutamate receptors. A role for these receptors in the presynaptic control of transmitter release has been proposed but remains controversial. Here, KAR agonists are shown to enhance fiber excitability, and a number of experiments show that this is a direct effect of KARs on the presynaptic fibers. In addition, KAR activation inhibits evoked transmitter release from mossy fiber synapses. Synaptic release of glutamate from either neighboring mossy fiber synapses or associational/commisural (A/C) synapses results in the activation of these presynaptic ionotropic KARs. These results, along with previous studies, indicate that KARs, through the endogenous release of glutamate, mediate excitatory postsynaptic potentials (EPSPs), alter presynaptic excitability, and modulate transmitter release.  相似文献   

7.
In the oxygenated excised squid (Loligo pealii) stellate ganglion preparation one can produce excitation of the stellar giant axons by stimulating the second largest (accessory fiber, Young, 1939) or other smaller preganglionic giant axons. Impulse transmission is believed to occur at the proximal synapses of the stellar giant axons rather than the distal (giant) synapses which are excited by the largest giant preaxon. Proximal synaptic transmission is more readily depressed by hypoxia and can be fatigued independently of, and with fewer impulses than, the giant synapses. Intracellular recording from the last stellar axon at its inflection in the ganglion reveals both proximal and distal excitatory postsynaptic potentials EPSP's). The synaptic delay, temporal form of the EPSP, and depolarization for spike initiation were similar for both synapses. If the proximal EPSP occurs shortly after excitation by the giant synapse it reduces the undershoot and adds to the falling phase of the spike. If it occurs later it can produce a second spike. Parallel results were obtained when the proximal EPSP's arrived earlier than the EPSP of the giant synapse. In fatigued preparations it was possible to sum distal and proximal or two proximal EPSP's and achieve spike excitation.  相似文献   

8.
 In this paper a phenomenological model of spike-timing dependent synaptic plasticity (STDP) is developed that is based on a Volterra series-like expansion. Synaptic weight changes as a function of the relative timing of pre- and postsynaptic spikes are described by integral kernels that can easily be inferred from experimental data. The resulting weight dynamics can be stated in terms of statistical properties of pre- and postsynaptic spike trains. Generalizations to neurons that fire two different types of action potentials, such as cerebellar Purkinje cells where synaptic plasticity depends on correlations in two distinct presynaptic fibers, are discussed. We show that synaptic plasticity, together with strictly local bounds for the weights, can result in synaptic competition that is required for any form of pattern formation. This is illustrated by a concrete example where a single neuron equipped with STDP can selectively strengthen those synapses with presynaptic neurons that reliably deliver precisely timed spikes at the expense of other synapses which transmit spikes with a broad temporal distribution. Such a mechanism may be of vital importance for any neuronal system where information is coded in the timing of individual action potentials. Received: 23 January 2002 / Accepted: 28 March 2002 Correspondence to: W.M. Kistler (e-mail: kistler@anat.fgg.eur.nl Fax: +31 10 408 5459)  相似文献   

9.
In the cockroach, a population of thoracic interneurons (TIs) receives direct inputs from a population of ventral giant interneurons (vGIs). Synaptic potentials in type-A TIs (TIAs) follow vGI action potentials with constant, short latencies at frequencies up to 200 Hz. These connections are important in the integration of directional wind information involved in determining an oriented escape response. The physiological and biochemical properties of these connections that underlie this decision-making process were examined. Injection of hyperpolarizing or depolarizing current into the postsynaptic TIAs resulted in alterations in the amplitude of the post-synaptic potential (PSP) appropriate for a chemical connection. In addition, bathing cells in zero-calcium, high-magnesium saline resulted in a gradual decrement of the PSP, and ultimately blocked synaptic transmission, reversibly. Single-cell choline acetyltransferase (ChAT) assays of vGI somata were performed. These assays indicated that the vGIs can synthesize acetylcholine. Furthermore, the pharmacological specificity of transmission at the vGI to TIA connections was similar to that previously reported for nicotinic, cholinergic synapses in insects, suggesting that the transmitter released by vGIs at these synapses is acetylcholine.  相似文献   

10.
During posthatching development the fins of fishes undergo striking changes in both structure and function. In this article we examine the development of the pectoral fins from larval through adult life history stages in the zebrafish (Danio rerio), describing in detail their pectoral muscle morphology. We explore the development of muscle structure as a way to interpret the fins' role in locomotion. Genetic approaches in the zebrafish model are providing new tools for examining fin development and we take advantage of transgenic lines in which fluorescent protein is expressed in specific tissues to perform detailed three-dimensional, in vivo fin imaging. The fin musculature of larval zebrafish is organized into two thin sheets of fibers, an abductor and adductor, one on each side of an endoskeletal disk. Through the juvenile stage the number of muscle fibers increases and muscle sheets cleave into distinct muscle subdivisions as fibers orient to the developing fin skeleton. By the end of the juvenile period the pectoral girdle and fin muscles have reoriented to take on the adult organization. We find that this change in morphology is associated with a switch of fin function from activity during axial locomotion in larvae to use in swim initiation and maneuvering in adults. The examination of pectoral fins of the zebrafish highlights the yet to be explored diversity of fin structure and function in subadult developmental stages. J. Morphol. (c) 2005 Wiley-Liss, Inc.  相似文献   

11.
Multivesicular release at climbing fiber-Purkinje cell synapses.   总被引:10,自引:0,他引:10  
J I Wadiche  C E Jahr 《Neuron》2001,32(2):301-313
Synapses driven by action potentials are thought to release transmitter in an all-or-none fashion; either one synaptic vesicle undergoes exocytosis, or there is no release. We have estimated the glutamate concentration transient at climbing fiber synapses on Purkinje cells by measuring the inhibition of excitatory postsynaptic currents (EPSCs) produced by a low-affinity competitive antagonist of AMPA receptors, gamma-DGG. The results, together with simulations using a kinetic model of the AMPA receptor, suggest that the peak glutamate concentration at this synapse is dependent on release probability but is not affected by pooling of transmitter released from neighboring synapses. We propose that the mechanism responsible for the elevated glutamate concentration at this synapse is the simultaneous release of multiple vesicles per site.  相似文献   

12.
The mechanism of action of chlordimeform on the mealworm nerve-muscle preparation was studied with microelectrodes. Chlordimeform affected neither the mean amplitude nor the frequency of spontaneous miniature excitatory postsynaptic potentials. Extracellular focal recordings show that in the presence of 0.8 mM chlordimeform the presynaptic spike is almost unchanged, but the quantal content for evoked transmitter release is reduced. It is suggested that chlordimeform decreases the influx of calcium at the presynaptic terminal during the active phase of the nerve terminal action potential, thereby inhibiting evoked transmitter release.  相似文献   

13.
Differential Responses of Crab Neuromuscular Synapses to Cesium Ion   总被引:1,自引:0,他引:1       下载免费PDF全文
Excitatory postsynaptic potentials (EPSP's) generated in crab muscle fibers by a single motor axon, differ in amplitude and facilitation. Some EPSP's are large at low frequencies of stimulation and show little facilitation; others are smaller and show pronounced facilitation. When K+ is replaced by Cs+ in the physiological solution, all EPSP's increase in amplitude, but small EPSP's increase proportionately more than large ones. Quantal content of transmission, determined by external recording at single synaptic regions, undergoes a much larger increase at facilitating synapses. The increase in quantal content of transmission is attributable to prolongation of the nerve terminal action potential in Cs+. After 1–2 h of Cs+ treatment, defacilitation of synaptic potentials occurs at synapses which initially showed facilitation. This indicates that Cs+ treatment drastically increases the fraction of the "immediately available" transmitter store released by each nerve impulse, especially at terminals with facilitating synapses. It is proposed that facilitating synapses normally release less of the "immediately available" store of transmitter than poorly facilitating synapses. Possible reasons for this difference in performance are discussed.  相似文献   

14.
Summary The muscle fibers of brown and red chromatophores in the skin of the squid, Loligo opalescens, respond to motor nerve stimulation with non-propagating excitatory postsynaptic potentials (e.p.s.p.'s) of fluctuating amplitude. Depending on the strength of stimulation several size classes of e.p.s.p.'s are found, indicating polyneuronal innervation. Facilitation and summation are minimal even though the reversal potential of the e.p.s.p.'s is close to zero.Acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) have no effect on membrane characteristics of the muscle fiber, but ACh greatly augments the spontaneous quantal release of transmitter [increase in the frequency of miniature postsynaptic potentials (m.p.s.p.'s)] and thereby causes tonic contraction (miniature tetanus). 5-HT reduces the frequency of miniature potentials and abolishes tonic contraction. Inhibition of cholinesterase by eserine does not affect the amplitude or time course of e.p.s.p.'s and of m.p.s.p.'s. High concentrations of cholinergic blocking agents (atropine, banthine) reduce the postsynaptic effects of nerve stimulation in some cases. The natural transmitter substance of the motoneurones may not be ACh. The action of 5-HT appears to be intracellular.Neighboring muscle fibers are electrically coupled through low resistance pathways. These are most likely provided by the close junctions that form part of the myo-muscular junctions. The specific membrane resistance of the regular muscle fiber membrane was found to range from 1,056 to 1,320 Ohm×cm2, that of the close junctions ranges from 12.8 to 22.6 Ohm×cm2. The area occupied by close junctions is small, however, and only 10% of the current injected into one cell passes into the next. Some of the e.p.s.p.'s observed in a given muscle fiber most likely represent the electrotonic spread of the e.p.s.p.'s of the neighbor fibers. Of the six classes of e.p.s.p.'s observed in some muscle fibers, only two may originate in these fibers themselves.Chromatophores in aged preparations often exhibit pulsations. These are caused by spike potentials arising within muscle fibers whose membranes have become electrically excitable. Each spike is preceded by a generator depolarization. The electrical coupling of neighboring muscle cells permits conduction of the spike potentials throughout the set of muscle fibers of a pulsating chromatophore. Altered conditions within such preparations also lead to tonic contractions and contractures that are not necessarily accompanied by electrical activity. Several arguments are presented in support of the hypothesis that the tonic condition of nerve terminals (characterized by enhanced spontaneous transmitter release) and of muscle fibers (characterized by inability to relax) is due to an abnormal condition of intracellular calcium (lack of Ca-binding by sarcoplasmic reticulum or other storage sites).No evidence could be found for an inhibitory innervation of the chromatophore muscles. The nerve-induced relaxation of tonically contracted muscle fibers is caused by the action of motoneurones.Preliminary experiments on muscle fibers of the anterior byssus retractor muscle of Mytilus support the hypothesis that the tonic behavior (catch) of other molluscan muscles is due to mechanisms similar to those found in the chromatophore muscles.This investigation was supported by Public Health Service Grant No. NB 04145 from the National Institute of Neurological Diseases and Blindness. We are grateful to the director of the Friday Harbor Laboratories, Prof. R. L. Fernald for providing space and facilities for this investigation.Supported by a Training Grant GM 1194 from the National Institute of General Medical Sciences.  相似文献   

15.
The effects were studied of ethimizol, a substance activating memory processes, on features of synaptic transmission during experiments on frog cutaneous pectoris muscle. It was found that the presynaptic action of ethimizol consists of raising the frequency of miniature potentials, when used at a concentration of 0.5–10 mM, and modulating quantal content of synaptic transmission due to changes in binomial quantal release parameters p and n when 0.5–2 mM ethimizol was used. This substance facilitated transmission at synapses with a low initial level of transmitter release. This substance facilitated transmission at synapses with a low initial level of transmitter release. Ethimizol was also found to have a postsynaptic action, consisting of reducing amplitude at a concentration of 5–10 mM and prolonging synaptic currents and potentials when concentrations of 0.5–10 mM were used. The latter effect produced a considerable increase in the time integral of endplate potentials. The postsynaptic action of ethimizol is perhaps seen in its effects on features of postsynaptic ionic channels. The effects of ethimizol are discussed with a view to how it may act within the central nervous system as a nonspecific modulator.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 757–763, November–December, 1985.  相似文献   

16.
The configuration of the pectoral girdle bones and muscles of numerous catfishes was studied in detail and compared with that of other siluriforms, as well as of other teleosts, described in the literature. The pectoral girdle of catfishes is composed of only three bones, which probably correspond to the posttemporo-supracleithrum (posttemporal + supracleithrum), scapulo-coracoid (scapula + coracoid), and cleithrum of other teleosts. These latter two bones constitute the place of origin of the pectoral girdle muscles. Two of these muscles are related to the movements of the pectoral fin. These two muscles correspond, very likely, to the abductor superficialis and to the adductor superficialis of other teleostean fishes. In relation to the pectoral spine (thickened first pectoral fin ray), it is usually moved by three well-developed muscles, which are probably homologous with the arrector ventralis, arrector dorsalis, and abductor profundus of nonsiluriform teleosts. The morphological diversity and the plesiomorphic configuration of these muscles, as well as of the other catfish pectoral girdle structures, are discussed.  相似文献   

17.
Intracellular recording was used to investigate the modulatory effects of serotonin and octopamine on the identified synapses between filiform hair sensory afferents and giant interneurons in the first instar cockroach, Periplaneta americana. Serotonin at 10(-4) mol l(-1) to 10(-3) mol l(-1) reduced the amplitude of the lateral axon-to-ipsilateral giant interneuron 3 excitatory postsynaptic potentials. and octopamine at 10(-4) mol l(-1) increased their amplitude. Similar effects were seen on excitatory postsynaptic potentials in dorsal giant interneuron 6. Several lines of evidence suggest that both substances modulate the amplitude of excitatory postsynaptic potentials by acting presynaptically, rather than on the postsynaptic neuron. The fitting of simple binomial distributions to the postsynaptic potential amplitude histograms suggested that, for both serotonin and octopamine, the number of synaptic release sites was being modulated. Secondly, the amplitudes of miniature excitatory postsynaptic potentials recorded in the presence of tetrodotoxin were unaffected by either modulator. Finally, recordings from contralateral giant interneuron 3, which has two identifiable populations of synaptic inputs, showed that each modulator had a more pronounced effect on excitatory postsynaptic potentials evoked by the lateral axon than on those evoked by the medial axon. Immunocytochemistry confirmed that neuropilar processes containing serotonin are present in close proximity to these synapses.  相似文献   

18.
Mode of Operation of Ampullae of Lorenzini of the Skate, Raja   总被引:5,自引:4,他引:1       下载免费PDF全文
Ampullae of Lorenzini are sensitive electroreceptors. Applied potentials affect receptor cells which transmit synaptically to afferent fibers. Cathodal stimuli in the ampullary lumen sometimes evoke all-or-none "receptor spikes," which are negative-going recorded in the lumen, but more frequently they evoke graded damped oscillations. Cathodal stimuli evoke nerve discharge, usually at stimulus strengths subthreshold for obvious receptor oscillations or spikes. Anodal stimuli decrease any ongoing spontaneous nerve activity. Cathodal stimuli evoke long-lasting depolarizations (generator or postsynaptic potentials) in afferent fibers. Superimposed antidromic spikes are reduced in amplitude, suggesting that the postsynaptic potentials are generated similarly to other excitatory postsynaptic potentials. Anodal stimuli evoke hyperpolarizations of nerves in preparations with tonic activity and in occasional silent preparations; presumably tonic release of excitatory transmitter is decreased. These data are explicable as follows: lumenal faces of receptor cells are tonically (but asynchronously) active generating depolarizing responses. Cathodal stimuli increase this activity, thereby leading to increased depolarization of and increased release of transmitter from serosal faces, which are inexcitable. Anodal stimuli act oppositely. Receptor spikes result from synchronized receptor cell activity. Since cathodal stimuli act directly to hyperpolarize serosal faces, strong cathodal stimuli overcome depolarizing effects of lumenal face activity and are inhibitory. Conversely, strong anodal stimuli depolarize serosal faces, thereby causing release of transmitter, and are excitatory. These properties explain several anomalous features of responses of ampullae of Lorenzini.  相似文献   

19.

Background

Action potentials are the essential unit of neuronal encoding. Somatic sequential spikes in the central nervous system appear various in amplitudes. To be effective neuronal codes, these spikes should be propagated to axonal terminals where they activate the synapses and drive postsynaptic neurons. It remains unclear whether these effective neuronal codes are based on spike timing orders and/or amplitudes.

Methodology/Principal Findings

We investigated this fundamental issue by simultaneously recording the axon versus soma of identical neurons and presynaptic vs. postsynaptic neurons in the cortical slices. The axons enable somatic spikes in low amplitude be enlarged, which activate synaptic transmission in consistent patterns. This facilitation in the propagation of sequential spikes through the axons is mechanistically founded by the short refractory periods, large currents and high opening probability of axonal voltage-gated sodium channels.

Conclusion/Significance

An amplification of somatic incomplete spikes into axonal complete ones makes sequential spikes to activate consistent synaptic transmission. Therefore, neuronal encoding is likely based on spike timing order, instead of graded analogues.  相似文献   

20.
Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.g., sharks), the main locomotory muscle is located in the axial myotome; in contrast, the main locomotory muscle in batoids is found in the enlarged pectoral fins. The pectoral fin muscles of sharks have a simple structure, confined to the base of the fin; however, little to no data are available on the more complex musculature within the pectoral fins of batoids. Understanding the types of fibers and their arrangement within the pectoral fins may elucidate how batoid fishes are able to utilize such unique swimming modes. In the present study, histochemical methods including succinate dehydrogenase (SDH) and immunofluoresence were used to determine the different fiber types comprising these muscles in three batoid species: Atlantic stingray (Dasyatis sabina), ocellate river stingray (Potamotrygon motoro) and cownose ray (Rhinoptera bonasus). All three species had muscles comprised of two muscle fiber types (slow-red and fast-white). The undulatory species, D. sabina and P. motoro, had a larger proportion of fast-white muscle fibers compared to the oscillatory species, R. bonasus. The muscle fiber sizes were similar between each species, though generally smaller compared to the axial musculature in other elasmobranch fishes. These results suggest that batoid locomotion can be distinguished using muscle fiber type proportions. Undulatory species are more benthic with fast-white fibers allowing them to contract their muscles quickly, as a possible means of escape from potential predators. Oscillatory species are pelagic and are known to migrate long distances with muscles using slow-red fibers to aid in sustained swimming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号