首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purple acid phosphatases (PAPs) are binuclear metallohydrolases that have been isolated from various mammals, plants, fungi and bacteria. In mammals PAP activity is associated with bone resorption and can lead to bone metabolic disorders such as osteoporosis; thus human PAP is an attractive target to develop anti-osteoporotic drugs. Based on a previous lead compound and rational drug design, acyl derivatives of α-aminonaphthylmethylphosphonic acid were synthesised and tested as PAP inhibitors. Kinetic analysis showed that they are good PAP inhibitors whose potencies improve with increasing acyl chain length. Maximum potency is reached when the number of carbons in the acyl chain is between 12 and 14. The most potent inhibitor of red kidney bean PAP is the dodecyl-derivative with Kic = 5 μM, while the most potent pig PAP inhibitor is the tetradecyl-derivative with Kic = 8 μM, the most potent inhibitor of a mammalian PAP yet reported.  相似文献   

2.
Purple acid phosphatases (PAP) are a group of dimetallic phosphohydrolase first identified in eukaryotes. Bioinformatics analysis revealed 57 prokaryotic PAP-like sequences in the genomes of 43 bacteria and 4 cyanobacteria species. A putative PAP gene (BcPAP) from the bacteria Burkholderia cenocepacia J2315 was chosen for further studies. Synteny analysis showed that this gene is present as an independent gene in most of the members of the genus Burkholderia. The predicted 561 a.a. polypeptide of BcPAP was found to harbour all the conserved motifs of the eukaryotic PAPs and an N-terminal twin-arginine translocation signal. Expression and biochemical characterization of BcPAP in Escherichia coli revealed that this enzyme has a relatively narrow substrate spectrum, preferably towards phosphotyrosine, phosphoserine and phosphoenolpyruvate. Interestingly, this enzyme was found to have a pH optimum at 8.5, rather than an acidic optima exhibited by eukaryotic PAPs. BcPAP contains a dimetallic ion centre composed of Fe and Zn, and site-directed mutagenesis confirmed that BcPAP utilizes the invariant residues for metal-ligation and catalysis. The enzyme is secreted by the wild type bacteria and its expression is regulated by the availability of orthophosphate. Our findings suggest that not all members in the PAP family have acidic pH optimum and broad substrate specificity.  相似文献   

3.
Purple acid phosphatases (PAPs) are dinuclear metallohydrolases of widespread occurrence. In a first step to understand structure-function relationship of PAP from red kidney bean (kbPAP), we cloned its cDNA and functionally expressed the enzyme in insect cells. kbPAP cDNA encodes a protein of 459 amino acids with 99% identity to the published primary structure (T. Klabunde et al., Eur. J. Biochem. 226 (1994) 369-375). N-terminally the cDNA encodes 27 amino acids with characteristics for a signal directing the nascent protein to the endoplasmic reticulum. A baculovirus vector was constructed containing cDNAs of kbPAP and green fluorescent protein, the latter to serve as transfection and infection marker. Heterologous expression in High Five insect cells afforded a dimeric, disulfide-linked phosphatase of 110 kDa, identical to the mass of native kbPAP. Purification in three steps yielded 1.5 mg recombinant protein per liter of culture medium with a specific activity of 266 units/mg, slightly exceeding that of native kbPAP. The recombinant protein was functionally indistinguishable from native kbPAP, despite differences in glycosylation and sensitivity to redox reagents.  相似文献   

4.
5.
Analysis of plant purple acid phosphatases (PAPs) showed high conservation and different distribution of N-glycosylation sites. Oligosaccharide structures of Lupinus luteus acid phosphatase (Lu_AP) produced in insect cells were determined. Mutant Lu_AP and Phaseolus vulgaris (Ph_AP) phosphatases lacking possibility of N-glycosylation at highly conserved sites were generated and expressed in insect cells. A role for N-glycosylation in the stability of PAPs was indicated by unsuccessful attempts to secrete Ph_AP and Lu_AP mutants generated by replacing Asn residues of conserved glycosylation sequons by Ser residues either singly or in combination. We showed that Ph_AP belongs to the group of glycoproteins that require occupancy of all highly conserved glycosylation sites for secretion, whereas replacing of the third position of the glycosylation sequon indicated that Lu_AP may tolerate the absence of some N-glycans. However, the N-glycan located at the polypeptide C-terminus was crucial for secretion of both enzymes. PAP specific activity of glycosylation mutants successfully secreted was similar to the wild-type recombinant proteins.  相似文献   

6.
In this study, we identified water-soluble C60 and C70 fullerene derivatives as a novel class of protein tyrosine phosphatase inhibitors. The evaluated compounds were found to inhibit CD45, PTP1B, TC-PTP, SHP2, and PTPβ with IC50 values in the low micromolar to high nanomolar range. These results demonstrate a new strategy for designing effective nanoscale protein tyrosine phosphatase inhibitors.  相似文献   

7.
To date, most spectroscopic studies on mammalian purple acid phosphatases (PAPs) have been performed at a single pH, typically pH 5. The catalytic activity of these enzymes is, however, pH dependent, with optimal pH values of 5.5–6.2 (depending on the form). For example, the pH optimum of PAPs isolated as single polypeptides is around pH 5.5, which is substantially lower that of proteolytically cleaved PAPs (ca. pH 6.2). In addition, the catalytic activity of single polypeptide PAPs at their optimal pH values is four to fivefold lower than that of the proteolytically cleaved enzymes. In order to elucidate the chemical basis for the pH dependence of these enzymes, the spectroscopic properties of both the single polypeptide and proteolytically cleaved forms of recombinant human PAP (recHPAP) and their complexes with inhibitory anions have been examined over the pH range 4 to 8. The EPR spectra of both forms of recHPAP are pH dependent and show the presence of three species: an inactive low pH form (pH<pK a,1), an active form (pK a,1<pH<pK a,2), and an inactive high pH form (pH>pK a,2). The pK a,1 values observed by EPR for the single polypeptide and proteolytically cleaved forms are similar to those previously observed in kinetics studies. The spectroscopic properties of the enzyme–phosphate complex (which should mimic the enzyme–substrate complex), the enzyme–fluoride complex, and the enzyme–fluoride–phosphate complex (which should mimic the ternary enzyme–substrate–hydroxide complex) were also examined. EPR spectra show that phosphate binds to the diiron center of the proteolytically cleaved form of the enzyme, but not to that of the single polypeptide form. EPR spectra also show that fluoride binds only to the low pH form of the enzymes, in which it presumably replaces a coordinated water molecule. The binding of fluoride and phosphate to form a ternary complex appears to be cooperative.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

8.
9.
Purple acid phosphatases belong to metallo-phosphatase family. Intracellular phosphatases are crucial for phosphorus (P) distribution in the cell and are highly induced in phosphorus-deprived conditions in the soil. Disparate PAP isoforms exist within discrete subcellular compartments in Setaria italica and their expression in P deprived conditions fosters phosphorus amelioration. We isolated the SiPAP18 gene and developed the homology SiPAP18 protein model based on the crystal structure of the Kidney bean PvPAP (PDB ID: 2QFP) as template (sequence similarity 42.7%) using Modeller 9.12 with adequate validation. Structure model analysis shows the significance of five conserved signatures with seven metal-paired amino acid residues during P-deprivation induced phosphorus amelioration.  相似文献   

10.
Uteroferrin is an iron-binding glycoprotein, which is abundantly synthesized in porcine uterine glandular endometrium and believed to be involved in maternal/fetal iron transport. In the present study, uteroferrin has been cloned and functionally expressed using baculovirus-infected insect host cells Spodoptera frugiperda. The work also addresses the possible role of proteolytic cleavage to facilitate the release of uteroferrin-bound iron. The enzyme secreted in culture medium exhibits a molecular mass and catalytic properties similar to native porcine uteroferrin. The specific activity was estimated at 233 U/mg using p-nitrophenyl phosphate as substrate. Partial cleavage of the enzyme with trypsin resulted in a 1.7-fold enhancement in specific activity and a two-subunit polypeptide as observed in preparations of most mammalian purple acid phosphatases. Digestion with the aspartic protease pepsin resulted in a 2.5-fold enzyme inactivation correlated with the appearance of low molecular weight polypeptide fragments and the release of enzyme-bound iron.  相似文献   

11.
Purple acid phosphatase (PAP), also known as tartrate-resistant acid phosphatase or uteroferrin, contains two potential consensus N-glycosylation sites at Asn(97) and Asn(128). In this study, endogenous rat bone PAP was found to possess similar N-glycan structures as rat recombinant PAP heterologously expressed in baculovirus-infected Sf9 insect cells. PAP from Sf9 cells was shown to contain two N-linked oligosaccharides, whereas PAP expressed by mammalian CHO-K1 cells was less extensively glycosylated. The extent of N-glycosylation affected the catalytic properties of the enzyme, as N97Q and N128Q mutants, containing a single oligosaccharide chain, exhibited a lower substrate affinity and catalytic activity compared to those of the fully glycosylated PAP in the native, monomeric state. The differences in substrate affinity and catalytic activity were abolished and partially restored, respectively, by proteolytic cleavage in the loop domain, indicating that the extent of N-glycosylation influences the interaction of the repressive loop domain with catalytically important residues.  相似文献   

12.
In the present work, the derivatives of calix[4]arene, thiacalix[4]arene, and sulfonylcalix[4]arene bearing four methylene(phenyl)phosphinic acid groups on the upper rim of the macrocycle were synthesized and studied as inhibitors of human protein tyrosine phosphatases. The inhibitory capacities of the three compounds towards PTP1B were higher than those for protein tyrosine phosphatases TC–PTP, MEG1, MEG2, and SHP2. The most potent sulfonylcalix[4]arene phosphinic acid displayed Ki value of 32?nM. The thiacalix[4]arene phosphinic acid was found to be a low micromolar inhibitor of PTP1B with selectivity over the other PTPs. The kinetic experiments showed that the inhibitors compete with the substrate for the active site of the enzyme. Molecular docking was performed to explain possible binding modes of the calixarene-based phosphinic inhibitors of PTP1B.  相似文献   

13.
Protein expression and secretion in insect cells have been widely studied in the baculovirus-infected insect cell system. In directly transfected insect cells only intracellular expression and purification of recombinant proteins have been studied in detail. To examine multiple recombinant protein variants, easy and fast expression and a purification screening system are required. The aim of this study was to establish an effective and rapid secretion system for human azurocidin using directly transfected insect cells. We also constructed and tested expression vectors possessing heterologous signal peptides derived from human azurocidin, yellow lupin diphosphonucleotide phosphatase/phosphodiesterase (PPD1), and papaya papain IV to secrete yellow lupin and red kidney bean purple acid phosphatases, PPD1, and papain IV. Our results demonstrate that the secretion vectors used here can direct recombinant proteins to the culture medium very effectively, allowing their simple purification on a small/medium scale. Based on secretion and activity analyses it seems that the azurocidin signal peptide is one of the most potent secretion signals.  相似文献   

14.
Summary By differentiation of substrate specificity, pH optimum range, and sensitivity to various inhibitors, 2 isoenzymes of acid phosphatase in bone cells have been studied at the electron-microscopic level. When p-nitrophenyl phosphate was used for the substrate, the demonstrable enzyme activity was affected by neither tartrate nor sodium fluoride. The reaction product, when incubated at pH 5–6, was detected in all sites along the pathway for the biosynthesis of acid phosphatase in the osteoclast, including the perinuclear space, cisternae of the endoplasmic reticulum, Golgi complex, various vesicles, and vacuoles. In the osteoclasts attached to bone, the enzymatic activity was demonstrated at the extracellular ruffled border and on the eroded bone surface. Reaction products became confined to lysosomes and extracellular ruffled border when incubated at pH 6–7. Unattached osteoclasts showed a similar intracytoplasmic localization of enzyme as the attached ones, except for the absence of the extracellular enzyme activity. The mononuclear, immature type of osteoclast also resembled the mature osteoclast in terms of enzymatic localization. Except for the osteoclasts, the acid p-nitrophenyl phosphatase activity was restricted to lysosomal vesicles in various bone cells, monocytes, and macrophages. Such activity was inhibited by adding 50 mM tartrate to the p-nitrophenyl phosphate medium. When -glycerophosphate or p-nitrocatechol sulfate was the substrate, most of the reaction product was localized intracellularly. Unlike the acid p-nitrophenyl phosphatase, the acid -glycerophosphatase or arylsulfatase activity in osteoclasts and other bone cells was inhibited completely by 10 mM tartrate or 10 mM sodium fluoride. Even preincubation of 100 mM tartrate in the buffer inhibited -glycerophosphatase activity completely, but p-nitrophenyl phosphatase activity was inhibited incompletely. Consequently, our results suggest that acid p-nitrophenyl phosphatase is a useful cytochemical marker for identification of the osteoclast family at electron-microscopic levels of resolution.  相似文献   

15.
The transmembrane PTPase HPTP beta differs from its related family members in having a single rather than a tandemly duplicated cytosolic catalytic domain. We have expressed the 354-amino acid, 41-kDa human PTP beta catalytic fragment in Escherichia coli, purified it, and assessed catalytic specificity with a series of pY peptides. HPTP beta shows distinctions from the related LAR PTPase and T cell CD45 PTPase domains: it recognizes phosphotyrosyl peptides of 9-11 residues from lck, src, and PLC gamma with Km values of 2, 4, and 1 microM, some 40-200-fold lower than the other two PTPases. With kcat values of 30-205 s-1, the catalytic efficiency, kcat/Km, of the HPTP beta 41-kDa catalytic domain is very high, up to 5.7 x 10(7) M-1 s-1. The peptides corresponding to PLC gamma (766-776) and EGFR (1,167-1,177) phosphorylation sites were used for structural variation to assess pY sequence context recognition by HPTP beta catalytic domain. While exchange of the alanine residue at the +2 position of the PLC gamma (Km of 1 microM) peptide to lysine or aspartic acid showed little or no effect on substrate affinity, replacement by arginine increased the Km 35-fold. Similarly, the high Km value of the EGFR pY peptide (Km of 104 microM) derives largely from the arginine residue at the +2 position of the peptide, since arginine to alanine single mutation at the -2 position of the EGFR peptide decreased the Km value 34-fold to 3 microM. Three thiophosphotyrosyl peptides have been prepared and act as substrates and competitive inhibitors of these PTPase catalytic domains.  相似文献   

16.
The relative antigenicity (capacity to bind antibodies raised against the intact prostatic acid phosphatase) of the selected peptides from human prostatic and lysosomal acid phosphatases was evaluated in a competitive assay. Both prostatic and lysosomal acid phosphatases were shown to possess similar antigenic determinants on both terminal regions, along with more similarity on NH2-terminal peptide than COOH-terminal site. At least one additional antigenic site is present at the internal region of prostatic acid phosphatase, since the mixture of both amino- and carboxyl-terminal peptides exhibited only 70% inhibition.  相似文献   

17.
Abstract

A series of umbelliferone analogues were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. Especially, 2-oxo-2-[(2-oxo-2H-chromen-7-yl)oxy]ethyl-2,4-dihydroxybenzoate (4e) bearing 2,4-dihydroxy substituted phenyl ring exhibited the most potent tyrosinase inhibitory activity with IC50 value 8.96?µM and IC50 value of kojic acid is 16.69. The inhibition mechanism analyzed by Lineweaver–Burk plots revealed that the type of inhibition of compound 4e on tyrosinase was non-competitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compounds 4c and 4e showed the highest binding affinity with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compounds 4c and 4e may serve as a structural template for the design and development of novel tyrosinase inhibitors.  相似文献   

18.
Сalix[4]arenes bearing methylenebisphosphonic or hydroxymethylenebisphosphonic acid fragments at the wide rim of the macrocycle were studied as inhibitors of PTP1B. Some of the inhibitors showed IC50 values in the micromolar range and good selectivity in comparison with other protein tyrosine phosphatases such as TC-PTP, PTPβ, LAR, and CD45. Kinetic studies indicated that the calix[4]arene derivatives influence PTP1B activity as slow-binding inhibitors. Based on molecular docking results, the binding modes of the macrocyclic bisphosphonates in the active centre of PTP1B are discussed.  相似文献   

19.
Monoamine oxidase (MAO) plays an essential role in the catabolism of neurotransmitter amines. The two isoforms of this enzyme, MAO-A and -B, are considered to be drug targets for the therapy of depression and neurodegenerative diseases, respectively. Based on a recent report that the phthalimide moiety may be a useful scaffold for the design of potent MAO-B inhibitors, the present study examines a series of 5-sulfanylphthalimide analogues as potential inhibitors of both human MAO isoforms. The results document that 5-sulfanylphthalimides are highly potent and selective MAO-B inhibitors with all of the examined compounds possessing IC50 values in the nanomolar range. The most potent inhibitor, 5-(benzylsulfanyl)phthalimide, exhibits an IC50 value of 0.0045 μM for the inhibition of MAO-B with a 427-fold selectivity for MAO-B compared to MAO-A. We conclude that 5-sulfanylphthalimides represent an interesting class of MAO-B inhibitors and may serve as lead compounds for the design of antiparkinsonian therapy.  相似文献   

20.
The presence of different acid phosphatase classes was examined in organs and tissues of the fish Esox lucius . The enzymes were separated by Sephadex G-200 column chromatography, and characterized as regards tissue distribution, molecular weight, metal ion activation, inhibition, pH optima, temperature sensitivity, rate of hydrolysis and substrate specificity. High and low molecular weight acid phosphatases as well as high and low molecular weight Zn2+-dependent acid phosphatases were present in pike organs and tissues. In addition, their biochemical properties and tissue distribution are very similar to that of respective bird and mammalian enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号