首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
After synthesis and transit through the nucleus, messenger RNAs (mRNAs) are exported to the cytoplasm through the nuclear pore complex (NPC). At the NPC, messenger ribonucleoproteins (mRNPs) first encounter the nuclear basket where mRNP rearrangements are thought to allow access to the transport channel. Here, we use single mRNA resolution live cell microscopy and subdiffraction particle tracking to follow individual mRNAs on their path toward the cytoplasm. We show that when reaching the nuclear periphery, RNAs are not immediately exported but scan along the nuclear periphery, likely to find a nuclear pore allowing export. Deletion or mutation of the nuclear basket proteins MLP1/2 or the mRNA binding protein Nab2 changes the scanning behavior of mRNPs at the nuclear periphery, shortens residency time at nuclear pores, and results in frequent release of mRNAs back into the nucleoplasm. These observations suggest a role for the nuclear basket in providing an interaction platform that keeps RNAs at the periphery, possibly to allow mRNP rearrangements before export.  相似文献   

4.
Lund MK  Guthrie C 《Molecular cell》2005,20(4):645-651
Eukaryotic mRNAs are exported from the nucleus to the cytoplasm as complex mRNA-protein particles (mRNPs), and translocation through the nuclear pore complex (NPC) is accompanied by extensive structural changes of the mRNP. We have tested the hypothesis that the DEAD-box ATPase Dbp5p is required for such an mRNP rearrangement. In dbp5 mutant cells, the mRNA export receptor Mex67p accumulates on mRNA. This aberrant accumulation of Mex67p with RNA and the cold-sensitive growth phenotype of a dbp5 allele are suppressed by a mex67 mutation. Moreover, Mex67 bound mRNA accumulates at the nuclear rim in a temperature-sensitive dbp5 mutant when the nuclear exosome is impaired. Importantly, although accumulation of Mex67p-containing mRNPs is also observed when a nuclear basket component is mutated, these mRNPs still contain the nuclear export factor Yra1p. In contrast, the dbp5-trapped mRNPs lack Yra1p. We propose that Dbp5p's function is specifically required to displace Mex67p from exported mRNPs, thus terminating export.  相似文献   

5.
6.
7.
Stewart M 《Molecular cell》2007,25(3):327-330
Export of mature mRNA to the cytoplasm is the culmination of the nuclear portion of eukaryotic gene expression. After transport-competent mature mRNP export complexes are formed in the nucleus, their passage through nuclear pore complexes (NPCs) is facilitated by the Mex67:Mtr2 heterodimer. At the NPC cytoplasmic face, mRNP remodeling prevents its return to the nucleus and so functions as a molecular ratchet imposing directionality on transport. In budding yeast, recent work suggests that the DEAD-box helicase Dbp5 remodels mRNPs at the NPC cytoplasmic face by removing Mex67 and that the Dbp5 ATPase is activated by Gle1 and inositol hexaphosphate (IP(6)).  相似文献   

8.
Many messenger RNA export proteins have been identified; yet the spatial and temporal activities of these proteins and how they determine directionality of messenger ribonucleoprotein (mRNP) complex export from the nucleus remain largely undefined. Here, the bacteriophage PP7 RNA-labeling system was used in Saccharomyces cerevisiae to follow single-particle mRNP export events with high spatial precision and temporal resolution. These data reveal that mRNP export, consisting of nuclear docking, transport, and cytoplasmic release from a nuclear pore complex (NPC), is fast (∼200 ms) and that upon arrival in the cytoplasm, mRNPs are frequently confined near the nuclear envelope. Mex67p functions as the principal mRNP export receptor in budding yeast. In a mex67-5 mutant, delayed cytoplasmic release from NPCs and retrograde transport of mRNPs was observed. This proves an essential role for Mex67p in cytoplasmic mRNP release and directionality of transport.  相似文献   

9.
Export of mRNA from the nucleus to the cytoplasm is a critical process for all eukaryotic gene expression. As mRNA is synthesized, it is packaged with a myriad of RNA‐binding proteins to form ribonucleoprotein particles (mRNPs). For each step in the processes of maturation and export, mRNPs must have the correct complement of proteins. Much of the mRNA export pathway revolves around the heterodimeric export receptor yeast Mex67?Mtr2/human NXF1?NXT1, which is recruited to signal the completion of nuclear mRNP assembly, mediates mRNP targeting/translocation through the nuclear pore complex (NPC), and is displaced at the cytoplasmic side of the NPC to release the mRNP into the cytoplasm. Directionality of the transport is governed by at least two DEAD‐box ATPases, yeast Sub2/human UAP56 in the nucleus and yeast Dbp5/human DDX19 at the cytoplasmic side of the NPC, which respectively mediate the association and dissociation of Mex67?Mtr2/NXF1?NXT1 onto the mRNP. Here we review recent progress from structural studies of key constituents in different steps of nuclear mRNA export. These findings have laid the foundation for further studies to obtain a comprehensive mechanistic view of the mRNA export pathway.  相似文献   

10.
11.
Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153.  相似文献   

12.
13.
14.
15.
Assembly of messenger ribonucleoparticles (mRNPs) is a pivotal step in gene expression, but only a few molecular mechanisms contributing to its regulation have been described. Here, through a comprehensive proteomic survey of mRNP assembly, we demonstrate that the SUMO pathway specifically controls the association of the THO complex with mRNPs. We further show that the THO complex, a key player in the interplay between gene expression, mRNA export and genetic stability, is sumoylated on its Hpr1 subunit and that this modification regulates its association with mRNPs. Altered recruitment of the THO complex onto mRNPs in sumoylation-defective mutants does not affect bulk mRNA export or genetic stability, but impairs the expression of acidic stress-induced genes and, consistently, compromises viability in acidic stress conditions. Importantly, inactivation of the nuclear exosome suppresses the phenotypes of the hpr1 non-sumoylatable mutant, showing that SUMO-dependent mRNP assembly is critical to allow a specific subset of mRNPs to escape degradation. This article thus provides the first example of a SUMO-dependent mRNP-assembly event allowing a refined tuning of gene expression, in particular under specific stress conditions.  相似文献   

16.
17.
18.
It is not known how Mex67p and Mtr2p, which form a heterodimer essential for mRNA export, transport mRNPs through the nuclear pore. Here, we show that the Mex67p/Mtr2p complex binds to all of the repeat types (GLFG, FXFG, and FG) found in nucleoporins. For this interaction, complex formation between Mex67p and Mtr2p has to occur. MEX67 and MTR2 also genetically interact with different types of repeat nucleoporins, such as Nup116p, Nup159p, Nsp1p, and Rip1p/Nup40p. These data suggest a model in which nuclear mRNA export requires the Mex67p/Mtr2p heterodimeric complex to directly contact several repeat nucleoporins, organized in different nuclear pore complex subcomplexes, as it carries the mRNP cargo through the nuclear pore.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号