首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This study investigates whether it is possible to produce an amylose-free potato starch by displacing the amylose enzyme, granule-bound starch synthase I (GBSSI), from the starch granule by engineered, high-affinity, multiple-repeat family 20 starch-binding domains (SBD2, SBD3, SBD4, and SBD5). The constructs were introduced in the amylose-containing potato cultivar (cv. Kardal), and the starches of the resulting transformants were compared with those of SBD2-expressing amylose-free (amf) potato clones. It is shown that a correctly sized protein accumulated in the starch granules of the various transformants. The amount of SBD accumulated in starch increased progressively from SBD to SBD3; however, it seemed as if less SBD4 and SBD5 was accumulated. A reduction in amylose content was not achieved in any of the transformants. However, it is shown that SBDn expression can affect physical processes underlying granule assembly, in both genetic potato backgrounds, without altering the primary structure of the constituent starch polymers and the granule melting temperature. Granule size distribution of the starches obtained from transgenic Kardal plants were similar to those from untransformed controls, irrespective of the amount of SBDn accumulated. In the amf background, granule size is severely affected. In both the Kardal and amf background, apparently normal oval-shaped starch granules were composed of multiple smaller ones, as evidenced from the many “Maltese crosses” within these granules. The results are discussed in terms of different binding modes of SBD.  相似文献   

2.
It has been shown previously that mutan can be co-synthesized with starch when a truncated mutansucrase (GtfICAT) is directed to potato tuber amyloplasts. The mutan seemed to adhere to the isolated starch granules, but it was not incorporated in the starch granules. In this study, GtfICAT was fused to the N- or C-terminus of a starch-binding domain (SBD). These constructs were introduced into two genetically different potato backgrounds (cv. Kardal and amf), in order to bring GtfICAT in more intimate contact with growing starch granules, and to facilitate the incorporation of mutan polymers in starch. Fusion proteins of the appropriate size were evidenced in starch granules, particularly in the amf background. The starches from the various GtfICAT/SBD transformants seemed to contain less mutan than those from transformants with GtfICAT alone, suggesting that the appended SBD might inhibit the activity of GtfICAT in the engineered fusion proteins. Scanning electron microscopy showed that expression of SBD-GtfICAT resulted in alterations of granule morphology in both genetic backgrounds. Surprisingly, the amf starches containing SBD-GtfICAT had a spongeous appearance, i.e., the granule surface contained many small holes and grooves, suggesting that this fusion protein can interfere with the lateral interactions of amylopectin sidechains. No differences in physico-chemical properties of the transgenic starches were observed. Our results show that expression of granule-bound and “soluble” GtfICAT can affect starch biosynthesis differently.  相似文献   

3.
4.
Modification of starch biosynthesis pathways holds an enormous potential for tailoring granules or polymers with new functionalities. In this study, we explored the possibility of engineering artificial granule-bound proteins, which can be incorporated in the granule during biosynthesis. The starch-binding domain (SBD)-encoding region of cyclodextrin glycosyltransferase from Bacillus circulans was fused to the sequence encoding the transit peptide (amyloplast entry) of potato granule-bound starch synthase I (GBSS I). The synthetic gene was expressed in the tubers of two potato cultivars (cv. Kardal and cv. Karnico) and one amylose-free (amf) potato mutant. SBDs accumulated inside starch granules, not at the granule surface. Amylose-free granules contained 8 times more SBD (estimated at ca. 1.6% of dry weight) than the amylose-containing ones. No consistent differences in physicochemical properties between transgenic SBD starches and their corresponding controls were found, suggesting that SBD can be used as an anchor for effector proteins without having side-effects. To test this, a construct harbouring the GBSS I transit peptide, the luciferase reporter gene, a PT-linker, and the SBD (in frame), and a similar construct without the linker and the SBD, were introduced in cv. Kardal. The fusion protein accumulated in starch granules (with retainment of luciferase activity), whereas the luciferase alone did not. Our results demonstrate that SBD technology can be developed into a true platform technology, in which SBDs can be fused to a large choice of effector proteins to generate potato starches with new or improved functionalities.  相似文献   

5.
Mutan produced in potato amyloplasts adheres to starch granules   总被引:3,自引:0,他引:3  
Production of water-insoluble mutan polymers in Kardal potato tubers was investigated after expression of a full-length (GtfI) and a truncated mutansucrase gene referred to as GtfICAT (GtfI without glucan-binding domain) from Streptococcus downei. Subsequent effects on starch biosynthesis at the molecular and biochemical levels were studied. Expression of the GtfICAT gene resulted in the adhesion of mutan material on starch granules, which stained red with erythrosine, and which was hydrolysed by exo-mutanase. In addition, GtfICAT-expressing plants exhibited a severely altered tuber phenotype and starch granule morphology in comparison to those expressing the full-length GtfI gene. In spite of that, no structural changes at the starch level were observed. Expression levels of the sucrose-regulated, AGPase and GBSSI genes were down-regulated in only the GTFICAT transformants, showing that GtfICAT expression interfered with the starch biosynthetic pathway. In accordance with the down-regulated AGPase gene, a lower starch content was observed in the GTFICAT transformants. Finally, the rheological properties of the GTFICAT starches were modified; they showed a higher retrogradation during cooling of the starch paste.  相似文献   

6.
Theamylose-free (amf) potato mutant can easily be complemented through introduction of the wild-type gene coding for granule-bound starch synthase (GBSS). After iodine staining the starch of theamf mutant is red whereas that of the wild type and the complementedamf mutant is blue. The level of complementation of selected transformants and their sexual off-spring after backcrossing withamf was investigated using sporophytic tuber cells and gametophytic microspore cells. Two diploid and two tetraploid transformants with full complementation demonstrated the expected segregation patterns of 1:1 (one active insert) or 3:1 (two independently segregating active inserts) in the microspores and in the F1 offspring based on staining of tubers. All expected genotypes in the F1 generation were found, based on microspore segregation patterns of the individual F1 plants. Two transformants with partial complementation (mixed phenotypes) were investigated. One of them, B1, was tetraploid and duplex for the GBSS insert, which had originated through mitotic doubling of the transformed diploid cells. In the F1 generation three phenotypic classes were found:amf, fully complemented and partially complemented. The latter two classes exist independently of a simplex or duplex gene status. The second transformant with partial complementation, B10, appeared to have a complex molecular composition. One cluster of five transgenes caused the partial complementation. Fully and partially complemented phenotypic classes were found after crossing B10 with theamf mutant. Indications were found that the ploidy level of the tissue in which the genes were introduced and expressed played an important role. Firstly, partial complementation was found after transformation of the diploid and not of the tetraploidamf genotypes. Secondly, the level of complementation was higher in tissue with lower ploidy levels, as illustrated by the colour of the starch inin vitro tubers (2x–4x cells) versus field-grown tubers (16x–64x).  相似文献   

7.
Granule-bound starch synthase I (GBSS I) is responsible for the synthesis of amylose in starch granules. A heterologous cassava GBSS I gene was tested for its ability to restore amylose synthesis in amylose-free (amf) potato mutants. For this purpose, the cassava GBSS I was equipped with different transit peptides. In addition, a hybrid containing the potato transit peptide, the N-terminal 89 amino acids of the mature potato GBSS I, and the C-terminal part of cassava GBSS I was prepared. The transgenic starches were first analysed by iodine staining. Only with the hybrid could full phenotypic complementation of the amf mutation be achieved in 13% of the plants. Most transformants showed partial complementation, but interestingly the size of the blue core was similar in all granules derived from one tuber of a given plant. The amylose content was only partially restored, up to 60% of wild-type values or potato GBSS I-complemented plants; however, the GBSS activity in these granules was similar to that found in wild-type ones. From this, and the observation that the hybrid protein (a partial potato GBSS I look-alike) performs best, it was concluded that potato and cassava GBSS I have different intrinsic properties and that the cassava enzyme is not fully adapted to the potato situation.  相似文献   

8.
Granule-bound starch synthase (GBSS) catalyses the synthesis of amylose in starch granules. Transformation of a diploid amylose-free (amf) potato mutant with the gene encoding GBSS leads to the restoration of amylose synthesis. Transformants were obtained which had wild-type levels of both GBSS activity and amylose content. It proved to be difficult to increase the amylose content above that of the wild-type potato by the introduction of additional copies of the wild-type GBSS gene. Staining of starch with iodine was suitable for investigating the degree of expression of the inserted GBSS gene in transgenic amf plants. Of the 19 investigated transformants, four had only red-staining starch in tubers indicating that no complementation of the amf mutation had occured. Fifteen complemented transformants had only blue-staining starch in tubers or tubers of different staining categories (blue, mixed and red), caused either by full or partial expression of the inserted gene. Complementation was also found in the microspores. The segregation of blue- and red-staining microspores was used to analyse the inheritance of the introduced GBSS genes. A comparison of the results from microspore staining and Southern hybridisation indicated that, in three tetraploid transgenics, the gene was probably inserted before (duplex), and in all others after, chromosome doubling (simplex). The partial complementation was not due to methylation of the HPAII/MSPI site in the promoter region. Partially complemented plants had low levels of mRNA as was found when the GBSS expression levels were inhibited by anti-sense technology.  相似文献   

9.
The wild-type gene encoding granule-bound starch synthase (GBSS) is capable of both complementing the amylosefree (amf) potato mutant and inhibiting the endogenous GBSS gene expression in wild-type potato. Co-suppression of the endogenous GBSS gene, easily visualised by staining the starch with iodine, occurred when the full-size GBSS sequence (genomic), GBSS cDNA or even the mutant amf allele were introduced into the wild-type potato. Conversely, introduction of the GBSS promoter sequence alone, did not result in co-suppression in the 80 analysed transformants. Neither the orientation of the GBSS gene with respect to kanamycin resistance nor the presence of an enhancer influenced the frequency of plants showing a co-suppression phenotype. After crossing a partially complemented amf mutant with a homozygous wild-type plant, the F1 offspring segregated into plant phenotypes with normal and decreased expression of the GBSS gene. This decreased expression correlated with the presence of a linked block of five T-DNA inserts which was previously shown to be correlated with partial complementation of the amf mutant. This crossing experiment indicates that co-suppression can cause inhibition of gene expression of both inserted and endogenous wild-type GBSS genes. The frequency of partially complemented amf plants was equal to the frequency of co-suppressed wild types when a construct, with an enhancer in front of the GBSS promoter, was used (pWAM 101E). This might suggest that partial complementation of the amf genotype caused by unstable expression of the transgene can be overcome by inserting an enhancer in front of the GBSS promoter.  相似文献   

10.
One isoform of the branching enzyme (BE; EC 2.4.1.18) of potato (Solarium tuberosum L.) is known and catalyses the formation of α-1,6 bonds in a glucan chain, resulting in the branched starch component amylopectin. Constructs containing the antisense or sense-orientated distal 1.5-kb part of a cDNA for potato BE were used to transform the amylose-free (amf) mutant of potato, the starch of which stains red with iodine. The expression of the endogenous BE gene was inhibited either largely or fully as judged by the decrease or absence of the BE mRNA and protein. This resulted in a low percentage of starch granules with a small blue core and large red outer layer. There was no effect on the amylose content, degree of branching or λmax of the iodine-stained starch. However, when the physico-chemical properties of the different starch suspensions were assessed, differences were observed, which although small indicated that starch in the transformants was different from that of theamf mutant.  相似文献   

11.
12.
Summary Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granulebound starch synthase (GBSS) into the amylose-free starch mutantamf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates thatAmf is the structural gene for GBSS. Amylose was found in columella cells of root tips, in stomatal guard cells, tubers, and pollen, while in the control experiments using only vector DNA, these tissues remained amylose free. This confirms the fact that, in potato, GBSS is the only enzyme responsible for the presence of amylose, accumulating in all starch-containing tissues. Amylose-containing transformants showed no positive correlation between GBSS activity and amylose content, which confirms that the former is not the sole regulating factor in amylose metabolism.  相似文献   

13.
Summary Variations in the ploidy level of 69 transgenic potato (Solanum tuberosum L.) plants regenerated from the tuber discs of 17 diploid lines were studied: 24 plants (35%) were diploid, the other 45 plants (65%) were tetraploid. Seventy-eight control regenerants obtained without Agrobacterium inoculation showed a relatively low tendency to tetraploidization (35%). The results obtained suggested that chromosome doubling occurred frequently in diploid potato lines during the tissue culture process for regeneration. Putative somaclonal changes in in vitro-formed tuber proteins were detected in three out of six transformants by electrophoretic analysis.  相似文献   

14.
Transgenic plants of a tetraploid potato cultivar were obtained in which the amylose content of tuber starch was reduced via antisense RNA-mediated inhibition of the expression of the gene encoding granule-bound starch synthase (GBSS). GBSS is one of the key enzymes in the biosynthesis of starch and catalyses the formation of amylose. The antisense GBSS genes, based on the full-length GBSS cDNA driven by the 35S CaMV promoter or the potato GBSS promoter, were introduced into the potato genome by Agrobacterium tumefaciens-mediated transformation. Expression of each of these genes resulted in the complete inhibition of GBSS gene expression, and thus in the production of amylose-free tuber starch, in mature field-grown plants originating from rooted in vitro plantlets of 4 out of 66 transgenic clones. Clones in which the GBSS gene expression was incompletely inhibited showed an increase of the extent of inhibition during tuber growth. This is likely to be due to the increase of starch granule size during tuber growth and the specific distribution pattern of starch components in granules of clones with reduced GBSS activity. Expression of the antisense GBSS gene from the GBSS promoter resulted in a higher stability of inhibition in tubers of field-grown plants as compared to expression from the 35S CaMV promoter. Field analysis of the transgenic clones indicated that inhibition of GBSS gene expression could be achieved without significantly affecting the starch and sugar content of transgenic tubers, the expression level of other genes involved in starch and tuber metabolism and agronomic characteristics such as yield and dry matter content.  相似文献   

15.
16.
Starch is used in many industrial applications, but often requires chemical derivatization to enhance its properties before use. In particular, the stability of starch polymers in solution is improved by acetylation. A drawback of this treatment is the use of pollutant chemicals. A biological alternative to chemical derivatization was investigated by the expression of an amyloplast-targeted Escherichia coli maltose acetyltransferase ( MAT ) gene in tubers of wild-type (Kardal) and mutant amylose-free ( amf ) potato plants. MAT was expressed as such, or fused to the N- or C-terminus of a non-catalytic starch-binding domain (SBD) to target the starch granule. Starch granules derived from transgenic plants were found to contain acetyl groups, although their content was low, opening up an avenue to move away from the post-harvest chemical derivatization of starch. MAT inside starch granules was found to be active post-harvest when supplied with acetyl-coenzyme A and glucose or maltose, but it did not acetylate starch polymers in vitro . Starch granules from transformants in which MAT alone was expressed also showed MAT activity, indicating that MAT is accumulated in starch granules, and has affinity for starch by itself. Furthermore, starch granule morphology was altered, and fusion proteins containing MAT and SBD seemed to have a higher affinity for starch granules than two appended SBDs. These results are discussed against the background of the quaternary structure of MAT.  相似文献   

17.
Summary The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; waxy protein) has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type sequence with a cDNA sequence from the literature and a newly isolated cDNA revealed the presence of 13 introns, the first of which is located in the untranslated leader. The promoter contains a G-box-like sequence. The deduced amino acid sequence of the precursor of GBSS shows a high degree of identity with monocot waxy protein sequences in the region corresponding to the mature form of the enzyme. The transit peptide of 77 amino acids, required for routing of the precursor to the plastids, shows much less identity with the transit peptides of the other waxy preproteins, but resembles the hydropathic distributions of these peptides. Alignment of the amino acid sequences of the four mature starch synthases with the Escherichia coli glgA gene product revealed the presence of at least three conserved boxes; there is no homology with previously proposed starch binding domains of other enzymes involved in starch metabolism. We report the use of chimeric constructs with wild-type and amf sequences to localize, via complementation experiments, the region of the amf allele in which the mutation resides. Direct sequencing of polymerase chain reaction products confirmed that the amf mutation is a deletion of a single AT basepair in the region coding for the transit peptide. Premature termination of translation as a result of this frameshift mutation results in a small peptide. However, a protein reacting with anti-GBSS serum, slightly larger than the wild-type mature GBSS, can be detected in a membrane fraction from amylose-free tubers. A possible explanation for this phenomenon will be discussed.  相似文献   

18.
19.
We investigated whether Cas9‐mediated mutagenesis of starch‐branching enzymes (SBEs) in tetraploid potatoes could generate tuber starches with a range of distinct properties. Constructs containing the Cas9 gene and sgRNAs targeting SBE1, SBE2 or both genes were introduced by Agrobacterium‐mediated transformation or by PEG‐mediated delivery into protoplasts. Outcomes included lines with mutations in all or only some of the homoeoalleles of SBE genes and lines in which homoeoalleles carried several different mutations. DNA delivery into protoplasts resulted in mutants with no detectable Cas9 gene, suggesting the absence of foreign DNA. Selected mutants with starch granule abnormalities had reductions in tuber SBE1 and/or SBE2 protein that were broadly in line with expectations from genotype analysis. Strong reduction in both SBE isoforms created an extreme starch phenotype, as reported previously for low‐SBE potato tubers. HPLC‐SEC and 1H NMR revealed a decrease in short amylopectin chains, an increase in long chains and a large reduction in branching frequency relative to wild‐type starch. Mutants with strong reductions in SBE2 protein alone had near‐normal amylopectin chain‐length distributions and only small reductions in branching frequency. However, starch granule initiation was enormously increased: cells contained many granules of <4 μm and granules with multiple hila. Thus, large reductions in both SBEs reduce amylopectin branching during granule growth, whereas reduction in SBE2 alone primarily affects numbers of starch granule initiations. Our results demonstrate that Cas9‐mediated mutagenesis of SBE genes has the potential to generate new, potentially valuable starch properties without integration of foreign DNA into the genome.  相似文献   

20.
Summary Using different genotypes of tomato and diploid potato, possessing alien selectable markers as well as endogenous markers, very high frequencies of protoplast fusion hybrids were obtained. One endogenous genetic marker, the amylose-free (amf) mutant of potato, was helpful not only for the confirmation of fusion products but also for the study of genetic complementation and the segregation of amylose-free starch in microspores. Cytological analysis of the fusion hybrids indicated that except for one which was hexaploid, all of them had a perfectly balanced chromosome number of allotetraploid constitution (2n = 4x = 48). Despite normal chromosome pairing and a diploid behaviour, the microspores in some of the fusion hybrids segregated for the recessive amf-locus. This anomalous segregation of a recessive character in these hybrids was shown not to be due to chromosome elimination or to the absence of the wild-type tomato Amf gene. Although all fusion hybrids were totally sterile, the hexaploid produced stainable pollen and berries with badly developed seeds. Embryo rescue has so far failed to produce backcross progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号