首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Macoma balthica (L.), an abundant clam, ubiquitous in temperate estuaries across the North Atlantic, is known to practice both alternative basic modes of feeding available to seafloor invertebrates. It either holds its feeding organ, the siphon, at a fixed position just above the sediment surface to filter out food particles suspended in the overlying water or else extends and moves its siphon around to vacuum up deposited food particles on the sediment surface. Previous laboratory experiments have established an understanding of the role of current flow in dictating the choice of whether suspension or deposit feeding will be used by marine invertebrates with the facultative flexibility to choose. Faster flows imply greater fluxes of suspended particles so that the energetic rewards of suspension feeding are enhanced. Slower flows imply reduced renewal rates of suspended foods in the bottom boundary layers and enhanced deposition of food particles on the seafloor so that a switch to deposit feeding is favored. Like early optimal foraging theory, this understanding is based on energetic considerations alone without incorporation of broader implications of how population interactions such as predation and competition influence individual foraging behavior. Feeding behavior of Macoma balthica is influenced in the Neuse River estuary by both hydrodynamics and siphon-cropping by juvenile demersal fishes. Under conditions of identical concentrations of suspended particulates in the water column and organic contents of surface sediments, Macoma exhibited much higher levels of deposit feeding where currents were slower. In addition, exclosure and fish inclosure experiments demonstrated that juvenile demersal fishes influence feeding behavior of Macoma by cropping exposed siphons and inducing reduction in deposit-feeding activity. Effects of croppers were substantial in early to midsummer, when juvenile fish abundances were greatest in trawl samples from this estuarine nursery and before the growing fish exhibited ontogenetic changes in diet away from early concentration on bivalve siphons. Field experiments in which siphon-cropping fish were caged at varying distances off the bottom failed to detect any effective behavioral avoidance by Macoma of cropping in response to proximity of fish. One might have hypothesized that under high risk of cropping, Macoma would switch to suspension feeding and away from deposit feeding, the feeding method entailing more risk of losses to croppers because of greater siphon activity and greater extension of siphons on the sediment surface. Consequently, partial predation by siphon-cropping fishes greatly reduces deposit-feeding activity by Macoma balthica during summer as an apparent direct effect of disfigurement and reduction of siphons, the organ required for efficient deposit feeding. Information on current flows alone would not suffice to predict feeding behavior of this marine invertebrate: the influence of partial predation must also be included.  相似文献   

2.
E. A. Irlandi 《Oecologia》1994,98(2):176-183
Landscape ecology, predominantly a terrestrial discipline, considers the effect of large-scale (tens of meters to kilometers) spatial patterns of habitats on ecological processes such as competition, predation, and flow of energy. In this study, a landscape-ecology approach was applied to a marine soft-sediment environment to examine rates of predation and transfer of secondary production in and around vegetated habitats. Seagrass beds naturally occur in a variety of spatial configurations from patches 1–10s of meters across with interspersed unvegetated sediments (i.e., patchy coverage) to more continuous coverage with little or no bare sediment. I designed experiments to address how percent coverage of seagrass in a 100-m2 area of seafloor, and the spatial arrangement (degree of patchiness or fragmentation) of an equal area (100 m2) of vegetation affected predation (lethal) and siphon nipping (sublethal) intensity on an infaunal bivalve, Mercenaria mercenaria (hard clam). Measures of seagrass density and biomass with different percent coverage of seagrass were also made. When clams were placed in both the vegetated and unvegetated portions of the seafloor nearly twice as many clams were recovered live with 99% seagrass cover than with 23% seagrass cover, while survivorship was intermediate with 70% cover. Cropping of clam siphons from both the vegetated and unvegetated sediments was also affected by the amount of seagrass cover in a 100-m2 area of seafloor: mean adjusted siphon weights were approximately 76% heavier from the 99% seagrass cover treatment than from the 70% or 23% cover treatments. Survivorship of clams placed within an equal area of seagrass in very patchy, patchy, and continuous spatial configurations was 40% higher in the continuous seagrass treatment than in either of the two patchy treatments. This study demonstrates that transfer of secondary production in the form of predation and cropping on an infaunal organism is altered as the percent cover of seagrass changes. While large-scale changes in the amount and spatial patterning of vegetation may affect habitat utilization patterns and foraging HGLoopbehavior, increased seagrass density and biomass with increased percent coverage of seagrass limit any conclusions concerning predator foraging behavior and feeding success in response to patch shapes and sizes. Instead, local changes in seagrass characteristics provide the most compelling explanation for the observed results.  相似文献   

3.
Although ecologists have speculated that sublethal predation can impact prey dynamics, consequences of these predator effects have seldom been experimentally tested. In soft‐sediment marine communities, fishes crop extended feeding siphons of buried clams, potentially causing clams to reduce their burial depth, thereby enhancing their susceptibility to excavating lethal predators. We simulated cropping of the confamilial clams, Protothaca staminea and Venerupis philippinarum, by removing the top 40% of siphons, which caused each species to burrow 33–50% shallower than conspecifics with intact siphons. To examine subsequent consequences of reduced burial depth, we exposed cropped and intact clams to natural levels of predation in the field. Because of a naturally longer siphon, Protothaca, even after cropping, remained at relatively safe burial depths. In contrast, siphon cropping nearly doubled the mortality rate of Venerupis. Thus, while sublethal predation facilitates lethal predation, this linkage depends on specific life history characteristics, even among ecologically similar species.  相似文献   

4.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.  相似文献   

5.
Summary Field experiments withMercenaria mercenaria in a relatively high-energy environment demonstrated that clams on unvegetated sand flats failed to grow during autumn while those within seagrass beds grew substantially. Clam growth rates at the seagrass margin that first receives the faster-flowing, flood-tidal currents were about 25% less than at the opposite edge. In a second experiment, pruning, which reduced average blade length by 50–75%, was shown to enhance near-bottom current velocities and to reduce shell growth ofMercenaria during summer by about 50%. As in the first experiment, clams in the unvegetated sand flats exhibited no net growth. Clam mortality, caused mostly by predatory crabs and whelks, was much higher on sand flats than in seagrass beds and intermediate in clipped seagrass. Although consistent with some previous reports, these growth results are still surprising given that they contradict the generalization that suspension feeders grow faster under more rapid current regimes.Three types of indirect interactions might explain the observed effect of seagrass on growth of buried clams: (1) altering food supply; (2) changing the intensity of biological disturbance on feeding clams; and/or (3) affecting the physical stability of the sediments. Previous research on this question has focused almost exclusively on processes that alter food supply rates. In this study, food concentrations, as indicated by suspended chla, were 30% higher inside than outside one seagrass bed, whereas chla concentrations in two other beds were not different from those on adjacent sand flats. This result is sufficient to show that more intense food depletion was not induced by the reduction in flow velocities under the seagrass canopy. Nevertheless, the possible small difference in food concentrations between vegetated and unvegetated bottom seems insufficient to explain the absence of growth of sand-flat clams, especially given the virtual lack of food limitation among suspension feeders in this system. Two data sets demonstrated that the effects of biological disturbance agents cannot be ignored. An outdoor laboratory experiment showed that even in the absence of physical contact between predator and prey the presence of a whelk reduces the amount of time spent feeding byMercenaria. This result suggests that sand flats, where predation rates are higher, may be sites of lower clam growth than seagrass beds because of greater consumer interference with clam feeding. Furthermore, clam siphons are proportionately larger inside seagrass than on sand flats, implying that siphon nipping may not be as intense inside seagrass. This process, too, would reduce net growth of sand-flat clams. Finally, no explicit test was conducted of the hypothesis that enhanced sediment transport in the absence of flow baffling and root binding by seagrass inhibits net growth of clams on high-energy sand flats. Nevertheless, this is a reasonable explanation for the pattern of enhanced growth of seagrass clams, and could serve to explain the otherwise unexplained pattern of lower clam growth at the edge of the seagrass bed that experiences the faster flood-tidal current velocities. Each broad process, changing fluid dynamics, altering consumer access, and varying sediment stability, represents a mechanism whereby habitat structure, provided by the dominant plant, has an important indirect influence on the functional value of the habitat for resident animals.  相似文献   

6.
The relative influence of consumers (top down) and resources (bottom up) on the distribution and abundance of organisms remains a key question in ecology. We examined the relationships between consumer and resource variables along a productivity gradient for a dominant predator–prey interaction in a marine soft‐sediment system. We 1) quantified density and size of the clam Macoma balthica (prey species) in six replicate sites at each of four habitat types (shallow mud, deep mud, muddy sand and detrital mud) in the Rhode River, Chesapeake Bay. We selected one habitat type of high food availability and clam density (shallow mud) and another of low food availability and clam density (muddy sand) for manipulative experiments. Then, we 2) measured M. balthica survival and growth through transplants, 3) measured food availability as sedimentary organic carbon content, 4) quantified predator density, and 5) calculated predator foraging efficiency in the two habitat types. Clam density in the four habitat types differed and was related to sedimentary carbon availability and predator density. One of the habitats, detrital mud, appeared to be a population sink because it only held juvenile Macoma that never survived to reproductive age. Macoma size and growth, and predator (mainly blue crab Callinectes sapidus) densities were positively correlated with productivity and were higher in shallow mud than muddy sand. In contrast, Macoma mortality, local ‘interaction strength’, and predator foraging efficiency were lower in the productive habitat (shallow mud). Thus, predation intensity was inversely correlated with productivity (food availability); consumer and resource effects differed by habitat type; and, at a relatively small spatial scale, consumer and resource forces jointly determined population dynamics in this soft‐sediment marine system.  相似文献   

7.
高霄龙  李莉  邱兆星  郑永允  李琪 《生态学报》2015,35(11):3562-3568
敌害生物的捕食在控制海洋底栖生物群落的丰度和组成中起着关键性的作用。以红螯相手蟹(Sesarma haematocheir)和毛蚶(Scapharca subcrenata)为试验对象,研究了红螯相手蟹的密度、规格、性别,以及毛蚶的密度、规格、海水温度和底质条件对毛蚶苗种存活的影响。结果表明,蟹表现出了第二种类型的功能反应,高密度底播毛蚶苗种可以显著提高成活率;当毛蚶苗种壳长达到20mm以上时,蟹的摄食速率显著下降;随着蟹个体的增大,其摄食速率显著增加,毛蚶的存活率下降;当蟹的密度逐渐增加的时候,同种个体之间的干扰竞争显著提高了毛蚶存活率;雄蟹凭借强有力的螯导致了更多毛蚶苗种的死亡;海水温度较低的春季和秋季底播毛蚶苗种可以显著提高成活率;底质条件的复杂性和异质性为毛蚶的存活提供了"庇护空间",从而减少了敌害生物捕食所带来的损失。  相似文献   

8.
The goatfishes (Mullidae) include about 50 bottom-foraging fish species. The foraging activity of the yellow goatfish, Mulloidichthys martinicus, and the spotted goatfish, Pseudupeneus maculatus, was studied comparatively at Fernando de Noronha Archipelago, off coast of Northeast Brazil tropical West Atlantic. Pseudupeneus maculatus fed over a larger variety of substrate types, had lower feeding rate, roamed more per given time, spent less time in a feeding event, and displayed a more diverse repertoire of feeding modes than M. martinicus. The differences in the foraging activity and behaviour between the two species possibly minimize a potential resource overlap, as already recorded for other sympatric mullids. Pseudupeneus maculatus had lower feeding rate most likely because it feeds on larger items, and roamed over greater distance per time. Possibly this is because it foraged over a greater variety of substrate distributed over a larger area than that used by M. martinicus. Notwithstanding the overall morphological and behavioural similarity of goatfishes in general, they do differ in their substrate preferences and foraging activity, which indicates that these fishes should not be simply considered generalized bottom foragers.  相似文献   

9.
Bourque  Daniel  Miron  Gilles  Landry  Thomas 《Hydrobiologia》2001,456(1-3):33-44
The nemertean, Cerebratulus lacteus Verrill (Nemertinea: Heteronemertini), has been identified as an important threat to soft-shell clam (Mya arenariaL.) populations in Atlantic Canada. The biology of this species, however, is still largely unknown. Field and laboratory studies were undertaken in 1998 and 1999 in Prince Edward Island, Canada, to test certain control measures to reduce predation on soft-shell clam populations and to better describe the relationship between C. lacteus and M. arenaria. Field abundance of C. lacteus, M. arenaria and Nereis virens Sars were evaluated in relation to particular habitat modifications that were used as control measures. Sediment manipulations tested were: (1) addition of shells and (2) use of a hydraulic rake. No difference was observed on the abundance of C. lacteus, M. arenaria and N. virens after treatments were applied. In the laboratory, C. lacteus was shown to be an efficient predator of M. arenaria. Clam mortalities reached 100% in the presence of C. lacteus while 0% mortality was observed in its absence. A complementary set of experiments was carried out to see if the sympatric polychaetes N. virens and Glycera dibranchiata Ehlers had any impact on the relationship between C. lacteus and M. arenaria. N. virens showed no impact on C. lacteus predation on clams. The presence of G. dibranchiata significantly reduced the nemertean predation rate. Analysis of clam size selection revealed no significant preference by C. lacteus. Other experimental studies revealed that high predator densities did not impede predation on clams and that C. lacteus preferred soft-shell clams among other commercial bivalve species presented (Mercenaria mercenariaL., Crassostrea virginica Gmelin and Mytilus edulisL.). This study should provide a better understanding of the relationship between C. lacteus and M. arenaria and lead to the development of improved nemertean control measures.  相似文献   

10.
Jenkins GP  King D 《Oecologia》2006,147(4):641-649
Intraguild predation (IGP) is common in most communities, but many aspects of density-dependent interactions of IG predators with IG prey are poorly resolved. Here, we examine how the density of an IG predator can affect feeding group size, IG egg predation, and the growth responses of IG prey. We used laboratory feeding trials and outdoor mesocosm experiments to study interactions between a social intraguild predator (larvae of the wood frog; Rana sylvatica) and its prey (spotted salamander; Ambystoma maculatum). Larvae of R. sylvatica could potentially affect A. maculatum by consuming shared larval food resources or by consuming eggs and hatchlings. However, successful egg predation requires group feeding by schooling tadpoles. We established from five to 1,190 hatchlings of R. sylvatica in mesocosms, then added either 20 A. maculatum hatchlings to study interspecific competition, or a single egg mass to examine IGP. Crowding strongly suppressed the growth of R. sylvatica, and IGP was restricted to the egg stage. In the larval competition experiment, growth of A. maculatum was inversely proportional to R. sylvatica density. In the predation experiment, embryonic mortality of A. maculatum was directly proportional to the initial density of R. sylvatica and the mean number of tadpoles foraging on egg masses. IGP on eggs reduced A. maculatum hatchling density, which accelerated larval growth. Surprisingly, the density of R. sylvatica had no overall effect on A. maculatum growth because release from intraspecific competition via egg predation was balanced by increased interspecific competition. Our results demonstrate that the density of a social IG predator can strongly influence the nature and intensity of interactions with a second guild member by simultaneously altering the intensity of IGP and intra- and interspecific competition.L . A. Burley and A. T. Moyer contributed equally to this work.  相似文献   

11.
Summary Fish predation is shown to have a twenty nine fold effect on the abundance of the invasive freshwater clam, Corbicula fluminea, in a Texas reservoir. This predation has prevented the clam from establishing the high densities commonly reported for it elsewhere. The high magnitude of the fish effect is attributed to Corbicula being an invader to this reservoir and not being able to cope well with the mix of resident fish species. In the absence of fish, colonization of the reservoir by Corbicula is spatially patchy. When fish interact with these clams, they remove sufficient numbers of individuals from dense patches to create the appearance of a spatially uniform distribution.  相似文献   

12.
The objectives of this study were to (1) determine the bioavailability of polycyclic aromatic hydrocarbons (PAHs) and other non-polar organics in resident brackish water clams (Rangia cuneata) at selected sites near an oil refinery; (2) determine if the tissue burdens were causing adverse effects to the clams, and (3) evaluate potential seasonal variations from reproduction in clams taken from the same beds in the spring and fall. Clams were evaluated from three beds located in the refinery discharge plume (near-field stations), three beds located up river outside of the Refinery effluent plume (north far-field), and three beds down river (south far-field) of the Refinery plume. Total PAH concentrations in the tissues of the near-field clams were significantly higher than in the clams located at the far-field stations in both the spring and fall. Total PAH concentrations of the near-field clams were significantly higher in the spring than the fall. No difference was found in total PAHs in the spring or fall in the far-field clams. Total pesticide and total PCB concentrations were significantly higher in the spring than the fall at all stations. The highest concentrations of both pesticides and PCBs were found at the north far-field stations. A tissue residue concentration analysis and three theoretical approaches for estimating detrimental effects to clams in both the near- and far-field suggested that no adverse effects should occur from total PAHs, total pesticides, or total PCBs. Some uncertainty, however, was associated with the theoretical approaches. An estimate of clam density in each clam bed showed that Rangia were growing and reproducing at all stations.  相似文献   

13.
Predators often affect prey production not only by lethal predation but also by unintentional inhibition of feeding and growth. The present study examined the lethal and non-lethal effects of the invasive naticid Laguncula pulchella on the survival and growth of the prey clam Ruditapes philippinarum in a sandy tidal flat. Cages accommodating 30 clams (10 individuals × 3 size classes of ≤ 20 mm, 20–30 mm, and > 30 mm shell length) and one L. pulchella (approximately 37 mm shell height) per cage were buried in the tidal flat for 10 weeks. Medium sized clams were consumed by predators much more (80.5%) than small (12.2%) and large clams (7.3%). Clams were consumed by L. pulchella at a frequency of 0–2.5 individuals per predator per week. The growth of clams caged with L. pulchella was lower (23, 27, 33, 41, and 57% for clam of 10, 20, 30, 40, and 50 mm, respectively) than that in control cages (clams without L. pulchella). The clam burial depths did not increase by the presence of predators in a laboratory experiment, indicating that growth suppression was caused by the reduced feeding activity following physical disturbance and/or chemical signals. The results of this study demonstrate that the introduction of L. pulchella reduced the productivity of the commercially important clams not only by lethal predation but also by mere presence.  相似文献   

14.
Orrock JL  Danielson BJ 《Oecologia》2004,140(4):662-667
We used foraging trays to compare how oldfield mice, Peromyscus polionotus, altered foraging in response to the presence of fire ants, Solenopsis invicta, and in the presence of direct (predator urine) and indirect (sheltered or exposed microhabitat, moonlight, and precipitation) indicators of predation risk. Foraging reductions elicited by S. invicta were greater than reductions in response to well-documented indicators of risk (i.e., moonlit nights) and the presence of predator urine. The presence of S. invicta always led to reduced foraging, but the overall impact of S. invicta was dependent upon microhabitat and precipitation. When S. invicta was not present, foraging was greater in sheltered microhabitats compared to exposed microhabitats. S. invicta made sheltered microhabitats equivalent to more risky exposed microhabitats, and this effect was especially pronounced on nights without precipitation. The effect of S. invicta suggests that interactions with S. invicta may entail a potentially heavy cost or that presence of S. invicta may represent a more reliable indicator of imminent competition or predation compared to indirect cues of risk and predator urine. The presence of S. invicta led to reduced foraging under situations when foraging activity would otherwise be greatest (i.e., under vegetative cover), potentially reducing habitat quality for P. polionotus and the distribution of seeds consumed by rodents.  相似文献   

15.
The effects of particle concentration and season on the filtration rates of the freshwater clamSphaerium striatinum Lamarck were assessed by measuring clearance rates of small (2.02 μm) latex beads from dilute suspensions. Filtration rates decreased as particle concentration increased over a range of 2–64 mg 1−1, with rates decreasing in similar proportion for clams of all sizes. For a 1-mg clam, rates decreased from approximately 8.4 to 0.57 ml clam−1 h−1. Seasonal filtration rates for adult clams peaked during periods of greatest reproduction. The patterns for smaller clams are similar, though proportional changes in filtration rates differ for various sizes of clams. It is estimated that clams occupying 1 m2 of stream substrate removed about 3.67 gCa−1. This is equivalent to 0.0004% of the carbon that flows past them annually. Filter-feeding provided only 24% of the calculated energy needs of the population, suggesting that another mode of feeding (e.g. deposit-feeding) may provide an important energy source for these forms. Funded in part by a grant-in-aid to D. J. Hornbach from Sigma-Xi, The Research Society. Funded in part by a grant-in-aid to D. J. Hornbach from Sigma-Xi, The Research Society.  相似文献   

16.
Soft-shell clams, Mya arenaria, are sessile, suspension-feeding bivalves that are preyed upon by the exotic green crab, Carcinus maenas. Clams evade crab consumers by burrowing deeper into the sediment after perceiving a threat from a nearby predator. The purpose of this study was to determine the types of signals that M. arenaria use to detect predators and the types of behaviors clams use to avoid being eaten. In a field study, clams increased their burial depth in the presence of green crab predators consuming conspecifics that were caged nearby, and also increased burial depth after artificial tactile stimulation in the laboratory assay. These results indicate that clams can use chemical and mechanical cues to detect potential predatory threats. We performed a field study to examine the difference in survivability of clams that had burrowed deeper into the sediment in response to predators vs. control clams that were burrowed less deeply. Significantly higher survival rates were observed in clams that had initially burrowed more deeply, suggesting that increasing burial depth is a valid predator avoidance strategy. Some bivalves also alter their pumping rates in the presence of predators, making them less apparent and providing more structural defense by covering soft tissue, and we measured pumping time of soft-shell clams in the presence and absence of predators, when burrowing was not an option for escape. Soft-shell clams did not alter their pumping time in the presence of green crab predators, possibly because they employ a burrowing method called “hydraulic” or “jet-propelled” burrowing, where it is necessary for the clam to pump in order to burrow. Chemical signals and tactile cues instigated behavioral changes in M. arenaria, and this change in behavior (increasing burial depth) increased clam survival in the field.  相似文献   

17.
Experiments were conducted to determine whether locally abundant crab species prefer co-occurring littleneck clams, Protothaca staminea (Conrad, 1837) and Tapes philippinarum (A. Adams and Reeve, 1850), relative to a recently introduced species, the varnish clam, Nuttallia obscurata, (Reeve, 1857). Prey preference, handling time, pick-up success, profitability and consumption rates were investigated for two crab species, Dungeness crab, Cancer magister (Dana, 1852) and red rock crab, Cancer productus (Randall, 1839) crabs. Both crab species preferred varnish clams over the native species. This may be attributable to the lower handling time, higher pick-up success and increased profitability of consuming varnish clams. Handling time appeared to be a factor not only in species preference, but also in the degree of preference, with shorter handling times corresponding to stronger preference values. Both native and introduced bivalves burrow into the substratum, with the varnish clam burrowing deepest. When feeding on clams in limited substratum both crab species preferred the varnish clam. In the unlimited substratum trials Dungeness crabs preferred varnish clams (although to a lesser degree) while red rock crabs preferred littleneck clams. This was likely due to the significantly deeper burial of the varnish clam, making it less accessible. Although the morphology (i.e. thin shell, compressed shape) of the invader increases its vulnerability to predation, burial depth provides a predation refuge. These results demonstrate how interactions between native predators and the physical characteristics and behaviour of the invader can be instrumental in influencing the success of an invasive species.  相似文献   

18.
Summary Responses of the predaceous mites Phytoseiulus persimilis, Typhlodromus (=Metaseiulus) occidentalis, and Amblyseius andersoni to spatial variation in egg density of the phytophagous mite, Tetranychus urticae, were studied in the laboratory.The oligophagous predator P. persimilis showed initially a direct density dependent foraging time allocation and variation in foraging time increased with prey density. With changes in prey density due to predation, predator foraging rates (per hour) decreased with time and density dependent foraging gradually became density independence, because P. persimilis continued to respond to initial prey density, instead of the changing prey density and distribution. The consequent spatial pattern of predation by P. persimilis was density independent, although slopes of predation rate-prey density regressions increased with time.Compared with P. persimilis, the narrowly polyphagous predator T. occidentalis responded relatively slowly to the the presence or absence of prey eggs but not to prey density: the mean and variation of foraging time spent in patches with prey did not differ with prey density, but was significantly greater in patches with prey eggs than in patches without eggs. Prey density and distribution changed only slightly due to predation and overall foraging rates remained more or less constant. The consequent spatial pattern of predation by T. occidentalis was inversely density dependent. As with P. persimilis, slopes of predation rate-prey density regressions increased with time (i.e. the inverse density dependence in T. occidentalis became weaker through time).The broadly polyphagous predator A. andersoni showed density independent foraging time allocation with variation independent of prey density. With changes in prey density over time due to prey depletion, overall foraging rates decreased. The consequent spatial pattern of predation by A. andersoni also changed through time; it initially was inversely density dependent, but soon became density independent.Overall, P. persimilis and T. occidentalis spent more time in prey patches than A. andersoni, suggesting that A. andersoni tended to spend more time moving outside patches. The overall predation rates and searching efficiency were higher in P. persimilis than in A. andersoni and T. occidentalis. Predator reproduction was highest in P. persimilis, lower in T. occidentalis and the lowest A. andersoni.The differences in response to prey distribution among the three predaceous species probably reflect the evolution of these species in environments with different patterns of prey distribution. The degree of polyphagy is a major determinant of the aggregative response, but other attributes such as handling time are also important in other aspects of phytoseiid foraging behavior (e.g. searching efficiency or predation rate).  相似文献   

19.
We report on the effects of previous foraging experience on prey-selection by the bivalve feeding polychaete Halla okudai, including whether there was evidence of frequency-dependent predation. Three separate batches of H. okudai were maintained for 30 days on clams, mussels, or oysters, before being offered a choice among these three prey. Initially individuals from all three treatments consumed more clams than mussels, and no oysters. As the number of clams was depleted the polychaetes shifted their diet to include a greater proportion of mussels, but even after 20 days oysters were only eaten by polychaetes that had been previously acclimated to them. Nevertheless, polychaetes from each treatment inspected significantly more of the prey species to which they had initially been acclimated, suggesting that previous experience may increase the likelihood of certain prey being detected. When individuals of H. okudai were repeatedly offered the same prey species, handling time did not decrease (and therefore prey profitability did not increase) with experience, which may be because H. okudai paralyses its prey with toxic mucus. Since repeated experience of the same prey species gives no advantage in terms of reduced handling time, we suggest this may be why this species does not show frequency-dependent prey-selection.  相似文献   

20.
Summary Prey risk was examined in the laboratory to compare the ability of 6 Notonecta species to coexist with insectivorous fishes (Lepomis cyanellus, L. gibbosus). Because of their smaller size, lighter color, greater tendency to remain motionless in the presence of the predator, greater ability to avoid capture when attacked, and predicted lower profitability as prey, N. lunata and N. petrunkevitchi were estimated to have the lowest prey risk and greatest chance of coexisting with insectivorous fishes in nature. The 2 largest notonectids, N. irrorata and N. insulata, both highly melanistic and rapidly discovered by foraging sunfishes, were judged to be the most susceptible to predation by large fishes. The presence of vegetation as a potential refuge tended to decrease prey risk but did not significantly alter the relative risk among the prey species. Finally, the relative prey risk measured in the laboratory was consistent with the general distribution of these species in relation to fishes in local habitats. We suggest that fish predation is an important determinant of Notonecta habitat utilization patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号