首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Considering its complex molecular pathophysiology, beta-thalassemia could be a good in vivo model to study some aspects related to erythrocyte functions with potential therapeutic implications not only within the frame of this particular hemoglobinopathy but also with respect to conditions in which the cellular milieu, altered by a deranged anion exchanger, could display a significant pathogenetic role (i.e., erythrocyte senescence, complications of red cell storage, renal tubular acidosis and some abnormal protein thesaurismosis). This work evaluates the anionic influx across band 3 protein in normal and beta-thalassemic red blood cells (RBCs) and ghosts. Since redox-mediated injury is an important pathway in the destruction of beta-thalassemic RBCs, we studied the anion transport and the activity of caspase 3 in the absence and presence of t-butylhydroperoxide in order to evaluate the effect of an increase of cellular oxidative stress. Interestingly, beta-thalassemic erythrocytes show a faster rate of anion exchange than normal RBCs and absence of any modulation mechanism of anion influx. These findings led us to formulate a hypothesis about the metabolic characteristics of beta-thalassemic erythrocytes, outlining that one of the main targets of caspase 3 in RBCs is the cytoplasmic domain of band 3 protein.  相似文献   

2.
Infection-induced RBC dysfunction has been shown to play a role in the modulation of host response to injury and infection. The underlying biochemical mechanisms are not known. This study investigated alterations in RBC band-3 phosphorylation status and its relationship to anion exchange activity in vitro as well as under in vivo septic conditions induced by cecal ligation and puncture (CLP) in mice. Pervanadate treatment in vitro increased band-3 tyrosine phosphorylation that was accompanied by decreased RBC deformability and anion exchange activity. Following sepsis, band-3 tyrosine phosphorylation in whole RBC ghosts as well as in cytoskeleton-bound or soluble RBC protein fractions were elevated as compared to controls. Although anion exchange activity was similar in RBCs from septic and control animals, band-3 interaction with eosin-5-maleimide (EMA), which binds to band-3 lysine moieties, was increased in cells from septic animals as compared to controls, indicating that sepsis altered band 3 organization within the RBC membrane. Since glucose-6-phosphate dehydrogenase is a major antioxidant enzyme in RBC, in order to assess the potential role of oxidative stress in band-3 tyrosine phosphorylation, sepsis-induced RBC responses were also compared between WT and (G6PD) mutant animals (20% of normal G6PD activity). Band-3 membrane content and EMA staining were elevated in G6PD mutant mice compared to WT under control non-septic conditions. Following sepsis, G6PD mutant animals showed lessened responses in band-3 tyrosine phosphorylation and EMA staining compared to WT. RBC anion exchange activity was similar between mutant and WT animals under all tested conditions. In summary, these studies indicate that sepsis results in elevated band-3 tyrosine phosphorylation and alters band-3 membrane organization without grossly affecting RBC anion exchange activity. The observations also suggest that factors other than oxidative stress are responsible for the sepsis-induced increase in RBC band-3 tyrosine phosphorylation.  相似文献   

3.
The erythrocyte is a cell highly exposed to oxygen pressure that, in turn, provokes oxidative stress involving loss of SH-groups, cell shrinkage by activation of K(+)-Cl(-) cotransport (KCC) and membrane destabilization which plays an important role in the premature haemolysis of red blood cells (RBCs). Oxidative stress provoked by chemicals frequently occurs in human erythrocytes. The aim of this study was to test whether the antibiotics alter the redox state and investigate their influences on band 3 protein that is involved in the facilitated electro neutral exchange of Cl(-) for HCO(3)(-) across the membrane of mammalian erythrocytes. Normal erythrocytes were treated with some antibiotics and thiol oxidizing agent N-ethylmaleimide (NEM) and tested for sulphate uptake, K(+) efflux and for glutathione (GSH) concentration as an index of oxidative stress. The rate constant of SO(4)(=) uptake measured in erythrocytes treated with antibiotics as well as NEM was decreased with respect to control cells as a result of band 3 SH-groups oxidation or the stress-induced K(+)-Cl(-) symport-mediated cell shrinkage. In fact, this hypothesis was verified by increased K(+) efflux and decreased GSH values measured in treated erythrocytes compared to controls.  相似文献   

4.
Membrane destabilization in erythrocytes plays an important role in the premature hemolysis and development of anemia during visceral leishmaniasis (VL). Marked degradation of the anion channel protein band 3 is likely to allow modulation of anion flux across the red cell membrane in infected animals. The present study describes the effect of structural modification of band 3 on phosphate transport in VL using (31)P NMR. The result showed progressive decrease in the rate and extent of phosphate transport during the post-infection period. Interdependence between the intracellular ionic levels seems to be a determining factor in the regulation of anion transport across the erythrocyte membrane in control and infected conditions. Infection-induced alteration in band 3 made the active sites of transport more susceptible to binding with amino reactive agents. Inhibition of transport by oxidation of band 3 and subsequent reversal by reduction using dithiothreitol suggests the contribution of sulfhydryl group in the regulation of anion exchange across the membrane. Quantitation of sulfhydryl groups in the anion channel protein showed the inhibition to be closely related to the decrease of sulfhydryl groups in the infected hamsters. Downregulation of phosphate transport during leishmanial infection may be ascribed to the sulfhydryl modification of band 3 resulting in the impaired functioning of this protein under the diseased condition.  相似文献   

5.
The normal deformability of erythrocytes plays an important role in ensuring blood mobility, erythrocyte longevity, and microcirculation, which is the ability of erythrocytes to change shapes in response to external forces. However, the effects of curcumin extracts on the deformability of erythrocytes have not yet been evaluated. Accordingly, in this study, we explored the effects of pre-treatment with curcumin extract on erythrocyte deformation and erythrocyte band 3 (SLC4A1; EB3) expression. We also evaluated the associations between EB3 expression and erythrocyte deformability induced by hydrogen peroxide. Blood samples were divided into the control group, pre-treatment group (treated with curcumin extract or vitamin C), and negative control group, and oxidant stress parameters, antioxidant status, erythrocyte deformability and elasticity, and EB3 modifications were evaluated using immunoblotting and immunofluorescence staining. Hydrogen peroxide significantly increased oxidative stress parameters, modulus elasticity values and clustered EB3 levels and induced conjugation of membrane proteins to form high-molecular-weight complexes (p < 0.05). Erythrocyte deformability and elasticity were significantly decreased in the treated groups compared with those in the control group. Overall, our findings suggested that pre-treatment with curcumin extracts increased antioxidant status, reduced EB3 cross-linking, and improved erythrocyte deformability, to an even better extent than vitamin C. These results provide important insights into the effects of treatment with curcumin extracts on erythrocyte damage and suggest that curcumin may have applications in antioxidant therapy.  相似文献   

6.
The oxidized low-density lipoprotein (Ox-LDL) plays an important role in atherosclerosis, yet it remains unclear if it damages circulating erythrocytes. In this study, erythrocyte deformability and its membrane proteins after Ox-LDL incubations are investigated by micropipette aspiration, thiol radical measurement, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Results show that Ox-LDL incubation reduces the erythrocyte deformability, decreases free thiol radical contents in erythrocytes, and induces the cross-linking among membrane proteins. SDS-PAGE analysis reveals a high molecular weight (HMW) complex as well as new bands between spectrins and band 3 and reduced ratios between band 3 and other major membrane skeletal proteins. Analyses indicate that Ox-LDL makes erythrocytes harder to deform through a molecular mechanism by which the oxidation of free thiol radicals forms disulfide bonds among membrane skeletal proteins.  相似文献   

7.
β‐Thalassaemia is characterized by a decrease in globin β‐chain synthesis and an excess in free α‐globin chains. This induces alterations in membrane lipids and proteins resulting from a reduction in spectrin/band 3 ratio, partial oxidation of band 4.1 and clustering of band 3. The membrane injury provokes hyperhaemolysis and bone marrow hyperplasia. The pathophysiology of thalassaemia is associated with iron overload that generates oxygen free radicals and oxidative tissue injury with ocular vessel alterations. The aim of this research is to investigate the influence of oxidative stress on band 3 efficiency, which is an integral membrane protein of RBCs (red blood cells). Band 3 protein, of which there are more than 1 million copies per cell, is the most abundant membrane protein in human RBCs. It mediates the anion exchange and acid–base equilibrium through the RBC membrane. Some experiments were performed on thalassaemic cells and β‐thalassaemia‐like cells and tested for sulfate uptake. To test the antioxidant effect of Mg2+, other experiments were performed using normal and pathological cells in the presence of Mg2+. The oxidant status in thalassaemic cells was verified by increased K+ efflux, by lower GSH levels and by increased G6PDH (glucose‐6‐phosphate dehydrogenase) activity. The rate constant of SO4 2? uptake decreases in thalassaemic cells as well as in β‐thalassaemia‐like cells when compared with normal cells. It increases when both cells are incubated with Mg2+. Our data show that oxidative stress plays a relevant role in band 3 function of thalassaemic cells and that antioxidant treatment with Mg2+ could reduce oxidative damage to the RBC membrane and improve the anion transport efficiency regulated by band 3 protein.  相似文献   

8.
Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT; EC 2. 1.1.77) catalyses the methyl esterification of the free alpha-carboxyl group of abnormal L-isoaspartyl residues, which occur spontaneously in protein and peptide substrates as a consequence of molecular ageing. The biological function of this transmethylation reaction is related to the repair or degradation of age-damaged proteins. Methyl ester formation in erythrocyte membrane proteins has also been used as a marker reaction to tag these abnormal residues and to monitor their increase associated with erythrocyte ageing diseases, such as hereditary spherocytosis, or cell stress (thermal or osmotic) conditions. The study shows that levels of L-isoaspartyl residues rise in membrane proteins of human erythrocytes exposed to oxidative stress, induced by t-butyl hydroperoxide or H2O2. The increase in malondialdehyde content confirmed that the cell membrane is a primary target of oxidative alterations. A parallel rise in the methaemoglobin content indicates that proteins are heavily affected by the molecular alterations induced by oxidative treatments in erythrocytes. Antioxidants largely prevented the increase in membrane protein methylation, underscoring the specificity of the effect. Conversely, we found that PCMT activity, consistent with its repair function, remained remarkably stable under oxidative conditions, while damaged membrane protein substrates increased significantly. The latter include ankyrin, band 4.1 and 4.2, and the integral membrane protein band 3 (the anion exchanger). The main target was found to be particularly protein 4.1, a crucial element in the maintenance of membrane-cytoskeleton network stability. We conclude that the increased formation/exposure of L-isoaspartyl residues is one of the major structural alterations occurring in erythrocyte membrane proteins as a result of an oxidative stress event. In the light of these and previous findings, the occurrence of isoaspartyl sites in membrane proteins as a key event in erythrocyte spleen conditioning and hemocatheresis is proposed.  相似文献   

9.
Altered membrane proteins have been previously described in beta thalassemia and are thought to play an important role in the shortened erythrocyte survival. To investigate the mechanism by which these changes occur, purified heme-containing alpha-hemoglobin chains were entrapped within normal erythrocytes by reversible osmotic lysis. These resealed cells exhibited normal hemoglobin concentration, cell volume, deformability, and no substantial modifications of membrane proteins. Incubation (37 degrees C; up to 20 h) of the alpha-chain-loaded cells resulted in increasing amounts of membrane-associated alpha-chains. This was associated with concurrent decreases in the protein concentrations and reactive thiol groups of spectrin, ankyrin, and actin as determined by gel electrophoresis. The decreases in membrane protein concentration and reactive thiol groups after 20 h of incubation were closely correlated (R2 = 0.947) in the alpha-chain-loaded cells. Indicative of increased oxidant stress within the alpha-chain-loaded erythrocytes, methemoglobin generation was also significantly increased in the alpha-chain-loaded erythrocytes. In addition, entrapment of alpha-chains led to a progressive and significant decrease in erythrocyte deformability. Thus, the entrapment of purified alpha-chains in normal erythrocytes resulted in structural and functional abnormalities very similar to that observed in beta-thalassemic erythrocytes in vivo. The model described provides a means by which the fate of excess alpha-chains, their pathophysiological effects, as well as possible therapeutic approaches to thalassemias can be examined.  相似文献   

10.
Three major hypotheses have been proposed to explain the role of membrane-spanning proteins in establishing/maintaining membrane stability. These hypotheses ascribe the essential contribution of integral membrane proteins to (i) their ability to anchor the membrane skeleton to the lipid bilayer, (ii) their capacity to bind and stabilize membrane lipids, and (iii) their ability to influence and regulate local membrane curvature. In an effort to test these hypotheses in greater detail, we have modified both the membrane skeletal and lipid binding interactions of band 3 (the major membrane-spanning and skeletal binding protein of the human erythrocyte membrane) and have examined the impact of these modifications on erythrocyte membrane morphology, deformability, and stability. The desired changes in membrane skeletal and protein-lipid interactions were induced by 1) reaction of the cells with 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), an inhibitor of band 3-mediated anion transport that dissociates band 3 into dimers (increasing its surface area in contact with lipid) and severs band 3 linkages to the membrane skeleton; 2) a fragment of ankyrin that ruptures the same ankyrin-band 3 bridge to the membrane skeleton, but drives the band 3 subunit equilibrium toward the tetramer (i.e. decreasing the band 3 surface area in contact with lipid); and 3) an antibody to the ankyrin-binding site on band 3 that promotes the same changes in band 3 skeletal and lipid interactions as the ankyrin fragment. We observed that although DIDS induced echinocytic morphological changes in the treated erythrocytes, it had little impact on either membrane deformability or stability. In contrast, resealing of either the ankyrin fragment or anti-band 3 IgG into erythrocytes caused spontaneous membrane fragmentation and loss of deformability/stability. Because these and other new observations cannot all be reconciled with any single hypothesis on membrane stability, we suggest that more than one hypothesis may be operative and provide an explanation of how each might individually contribute to net membrane stability.  相似文献   

11.
T Yamaguchi  E Kimoto 《Biochemistry》1992,31(7):1968-1973
Effects of sulfhydryl-reactive reagents on phosphate transport across human erythrocyte membranes were examined using 31P NMR. Phosphate transport was significantly inhibited in erythrocytes treated with sulfhydryl modifiers such as N-ethylmaleimide, diamide, and Cu2+/o-phenanthroline. Quantitation of sulfhydryl groups in band 3 showed that the inhibition is closely associated with the decrease of sulfhydryl groups. Data from erythrocytes treated with diamide or Cu2+/o-phenanthroline demonstrated that intermolecular cross-linking of band 3 by oxidation of a sulfhydryl group, perhaps Cys-201 or Cys-317, decreases the phosphate influx by about 10%. The inhibition was reversed by reduction using dithiothreitol. These results suggest that sulfhydryl groups in the cytoplasmic domain of band 3 may play an important role in the regulation of anion exchange across the membrane.  相似文献   

12.
The diffusional freedom of human erythrocyte band 3 (anion exchanger 1) has been measured in membranes from normacytic and ovalocytic erythrocytes. A dramatic reorganisation of band 3 in the ovalocyte membranes is indicated by a markedly restricted rotational mobility. Extraction of spectrin from erythrocyte membranes had no effect on normocyte band 3 mobility, but partially relieved the restrictions on ovalocyte band 3 mobility. Further removal of ankyrin and band 4.2 resulted in an increase in the rotational mobility of both ovalocyte and normocyte band 3 to similar levels. The results suggest that the molecular basis of the unusual shape and decreased deformability of ovalocytes resides in an altered interaction of band 3 with one or more of the peripheral proteins. We present a model which illustrates a possible role for band 3 aggregation in controlling erythrocyte deformability.  相似文献   

13.
Pregnancy is associated with changes in circulating red blood cells, mainly involving band 3 protein and membrane lipid peroxidation. Membrane band 3 is a multifunctional protein containing four Tyr-phosphorylatable residues which modulate the physiological status of erythrocytes by regulating glycolysis, cell shape and membrane transport. Erythrocytes from nine pregnant and 12 age-matched non-pregnant healthy women were subjected to oxidative and hyperosmotic stress conditions and the extent of band 3 Tyr-phosphorylation and membrane Syk recruitment as a membrane marker were evaluated. Results indicated that, in pregnancy, red blood cells show a decrease in band 3 Tyr-phosphorylation and a clear-cut rearrangement of band 3 protein within the membrane. In fact, band 3 shows a decrease in high molecular weight aggregates (HMWA), with different subdivision between Triton-soluble and -insoluble compartments, and an increase in proteolytic fragments. In conclusion, it is demonstrated that pregnancy is associated with membrane adjustments which reduce the sensitivity of erythrocytes to both oxidative and osmotic stress. Band 3 Tyr-phosphorylation is proposed as a new parameter in the evaluation of erythrocyte membrane arrangement.  相似文献   

14.
Pregnancy is associated with changes in circulating red blood cells, mainly involving band 3 protein and membrane lipid peroxidation. Membrane band 3 is a multifunctional protein containing four Tyr-phosphorylatable residues which modulate the physiological status of erythrocytes by regulating glycolysis, cell shape and membrane transport. Erythrocytes from nine pregnant and 12 age-matched non-pregnant healthy women were subjected to oxidative and hyperosmotic stress conditions and the extent of band 3 Tyr-phosphorylation and membrane Syk recruitment as a membrane marker were evaluated. Results indicated that, in pregnancy, red blood cells show a decrease in band 3 Tyr-phosphorylation and a clear-cut rearrangement of band 3 protein within the membrane. In fact, band 3 shows a decrease in high molecular weight aggregates (HMWA), with different subdivision between Triton-soluble and -insoluble compartments, and an increase in proteolytic fragments. In conclusion, it is demonstrated that pregnancy is associated with membrane adjustments which reduce the sensitivity of erythrocytes to both oxidative and osmotic stress. Band 3 Tyr-phosphorylation is proposed as a new parameter in the evaluation of erythrocyte membrane arrangement.  相似文献   

15.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100-300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( - )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity.  相似文献   

16.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100–300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( ? )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity.  相似文献   

17.
The roles of lipid ordering and protein dynamics on the function of the anion exchange protein (band 3) in intact human erythrocytes have been investigated. The effects of diethyl ether on the ordering of membrane lipids and on the rotational dynamics of band 3 were measured by EPR and saturation-transfer EPR spectroscopies, respectively, and correlated with the anion exchange function of band 3. With increasing concentration, diethyl ether monotonically decreased the ordering of membrane lipids near the polar head-group region, as reported by the lipid-soluble spin probe 5-doxylstearic acid, but produced comparatively little change in the ordering of lipids in the hydrophobic midzone, as reported by 16-doxylstearic acid. The rotational mobility of band 3, as reported by the affinity spin-label bis(sulfo-N-succinimidyl) doxyl-2-spiro-5'-azelate [Anjaneyulu et al. (1989) Biochemistry 28, 6583-6590], also increased monotonically with increasing ether concentration. This increase in rotational mobility was not due to a demonstrable change in its state of oligomerization, since band 3 was readily cross-linked by bis(sulfo-N-succinimidyl) suberate to covalent dimers in the presence or absence of ether. At concentrations up to 2 vol % ether, hemolysis of erythrocytes was negligible, and the spectroscopic changes observed were completely reversed following its removal. Km, Vmax, and Eact. for sulfate uptake into chloride-loaded erythrocytes were not significantly affected by addition of ether.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The aim of our investigation was to study the red blood cell (RBC) membrane effects of NaNO(2)-induced oxidative stress. Hyperpolarization of erythrocyte membranes and an increase in membrane rigidity have been shown as a result of RBC oxidation by sodium nitrite. These membrane changes preceded reduced glutathione depletion and were observed simultaneously with methemoglobin (metHb) formation. Changes of the glutathione pool (total and reduced glutathione, and mixed protein-glutathione disulfides) during nitrite-induced erythrocyte oxidation have been demonstrated. The rates of intracellular oxyhemoglobin and GSH oxidation highly increased as pH decreased in the range of 7.5-6.5. The activation energy of intracellular metHb formation obtained from the temperature dependence of the rate of HbO(2) oxidation in RBC was equal to 16.7+/-1.6 kJ/mol in comparison with 12.8+/-1.5 kJ/mol calculated for metHb formation in hemolysates. It was found that anion exchange protein (band 3 protein) of the erythrocyte membrane does not participate significantly in the transport of nitrite ions into the erythrocytes as band 3 inhibitors (DIDS, SITS) did not decrease the intracellular HbO(2) oxidation by extracellular nitrite.  相似文献   

19.
Regulation of mitochondria physiology, indispensable for proper cell activity, requires an efficient exchange of molecules between mitochondria and cytoplasm at the level of the mitochondrial outer membrane. The common pathway for the metabolite exchange between mitochondria and cytoplasm is the VDAC channel (voltage dependent anion channel), known also as mitochondrial porin. The channel was identified for the first time in 1976 and since that time has been extensively studied. It has been recognized that the VDAC channel plays a crucial role in the regulation of metabolic and energetic functions of mitochondria. In this article we review the VDAC channel relevance to ATP rationing, Ca2+ homeostasis, protection against oxidative stress and apoptosis execution.  相似文献   

20.
Band 3 proteins, members of the anion exchange family of proteins (AE 0-3), are involved in a number of physiological activities such as cell volume and osmotic homeostasis, HCO3-/Cl- exchange, red cell aging, IgG binding and cellular removal, and the maintenance of the structural integrity of cells. They are present in the membranes of all cells and cellular organelles examined including Golgi, mitochondria and nuclei. The first polymorphisms of band 3 discovered were the asymptomatic band 3 Memphis variants carrying the Lys --> Gly substitution at position 56 in the cytoplasmic tail, and band 3 Texas (high transport band 3 Texas) with a mutation in the critical transmembrane, anion transport domain (Pro --> Leu substitution at position 868). The rate at which band 3 mutations were discovered accelerated in the mid 1990s and there are now over 50 known. The most common polymorphisms of band 3 are the Diego blood group antigens which reside on extracellular loops of the protein. Southeast Asia ovalocytosis (SAO; a nine amino acid deletion of residues 400-408) is a band 3 mutation known only in the heterozygous state in which it does not cause disease. It is thought to confer resistance to malaria by altering red cell deformability. Band 3 mutations are responsible for a subset of the heterogeneous group of disorders known as hereditary spherocytosis (HS). HS is a relatively common congenital or inherited group of anemias characterized by chronic hemolysis and abnormal red cell morphology. Red cells in the subset of HS with band 3 mutations behave like they are band 3 deficient either because the mutant protein is not incorporated into the membrane or because it is not functional. HS can be caused by mutations in any of at least 5 proteins involved in membrane stability. Band 3 mutations are associated with diseases in cells besides erythrocytes. For example, 2 types of distal renal tubular acidosis are the result of band 3 mutations either alone or combined with SAO. Band 3 alterations are implicated in neurological diseases such as familial paroxysmal dyskinesia, idiopathic generalized epilepsies, and neuro- or choreoacanthocytosis although they have not been demonstrated to be causative. Mutations in other genes can cause changes in band 3. An example is sickle cell anemia where the increased oxidation causes accelerated aging of band 3 and increased IgG binding and cellular removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号