首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
3.
4.
《The Journal of cell biology》1986,103(6):2787-2796
A monoclonal antibody (anti-alpha sm-1) recognizing exclusively alpha- smooth muscle actin was selected and characterized after immunization of BALB/c mice with the NH2-terminal synthetic decapeptide of alpha- smooth muscle actin coupled to keyhole limpet hemocyanin. Anti-alpha sm- 1 helped in distinguishing smooth muscle cells from fibroblasts in mixed cultures such as rat dermal fibroblasts and chicken embryo fibroblasts. In the aortic media, it recognized a hitherto unknown population of cells negative for alpha-smooth muscle actin and for desmin. In 5-d-old rats, this population is about half of the medial cells and becomes only 8 +/- 5% in 6-wk-old animals. In cultures of rat aortic media SMCs, there is a progressive increase of this cell population together with a progressive decrease in the number of alpha- smooth muscle actin-containing stress fibers per cell. Double immunofluorescent studies carried out with anti-alpha sm-1 and anti- desmin antibodies in several organs revealed a heterogeneity of stromal cells. Desmin-negative, alpha-smooth muscle actin-positive cells were found in the rat intestinal muscularis mucosae and in the dermis around hair follicles. Moreover, desmin-positive, alpha-smooth muscle actin- negative cells were identified in the intestinal submucosa, rat testis interstitium, and uterine stroma. alpha-Smooth muscle actin was also found in myoepithelial cells of mammary and salivary glands, which are known to express cytokeratins. Finally, alpha-smooth muscle actin is present in stromal cells of mammary carcinomas, previously considered fibroblastic in nature. Thus, anti-alpha sm-1 antibody appears to be a powerful probe in the study of smooth muscle differentiation in normal and pathological conditions.  相似文献   

5.
Expression of Schwann cell markers by mammalian neural crest cells in vitro   总被引:3,自引:0,他引:3  
During embryonic development, neural crest cells differentiate into a wide variety of cell types including Schwann cells of the peripheral nervous system. In order to establish when neural crest cells first start to express a Schwann cell phenotype immunocytochemical techniques were used to examine rat premigratory neural crest cell cultures for the presence of Schwann cell markers. Cultures were fixed for immunocytochemistry after culture periods ranging from 1 to 24 days. Neural crest cells were identified by their morphology and any neural tube cells remaining in the cultures were identified by their epithelial morphology and immunocytochemically. As early as 1 to 2 days in culture, approximately one third of the neural crest cells stained with m217c, a monoclonal antibody that appears to recognize the same antigen as rat neural antigen-1 (RAN-1). A similar proportion of cells were immunoreactive in cultures stained with 192-IgG, a monoclonal antibody that recognizes the rat nerve growth factor receptor. The number of immunoreactive cells increased with time in culture. After 16 days in culture, nests of cells, many of which had a bipolar morphology, were present in the area previously occupied by neural crest cells. The cells in the nests were often associated with neurons and were immunoreactive for m217c, 192-IgG and antibody to S-100 protein and laminin, indicating that the cells were Schwann cells. At all culture periods examined, neural crest cells did not express glial fibrillary acidic protein. These results demonstrate that cultured premigratory neural crest cells express early Schwann cell markers and that some of these cells differentiate into Schwann cells. These observations suggest that some neural crest cells in vivo may be committed to forming Schwann cells and will do so provided that they then proceed to encounter the correct environmental cues during embryonic development.  相似文献   

6.
Using antibodies to desmin, the major component of the 100Å-filaments from smooth muscle cells, we studied by indirect immunofluorescence the distribution of this protein in primary cultures of embryonic chick cardiac cells. We show that desmin is a component of cytoplasmic filamentous structures which comprise a network distinct from actin filament bundles and microtubules. Exposure of these cells to colcemid results in a rapid disaggregation of microtubules, and a slow aggregation of the desmin-containing filaments towards the nuclear area with the ultimate formation of a perinuclear ring. In differentiated skeletal or cardiac muscle cells, in addition to its cytoplasmic filamentous distribution, desmin is found intimately associated with the Z lines of sarcomeres. We further show that approx. 50% of the cells in these primary cardiac cultures are unreactive with desmin antibodies. Similarly the majority of the cells in a number of established cell lines from various species grown in tissue culture, are unreactive to desmin antibodies in indirect immunofluorescence, despite the fact that these cells are known to contain cytoplasmic 100Å-filaments. These results indicate that desmin occurs in at least two distinct cytoplasmic distribution in cardiac cells. They also demonstrate the existence of immunological and biochemical differences in the major component of 100Å-filaments between muscle and non-muscle cells as evidenced by the failure of non-muscle cells to react with antibodies to chick smooth muscle desmin.  相似文献   

7.
Using antibodies to desmin, the major component of the 100Å-filaments from smooth muscle cells, we studied by indirect immunofluorescence the distribution of this protein in primary cultures of embryonic chick cardiac cells. We show that desmin is a component of cytoplasmic filamentous structures which comprise a network distinct from actin filament bundles and microtubules. Exposure of these cells to colcemid results in a rapid disaggregation of microtubules, and a slow aggregation of the desmin-containing filaments towards the nuclear area with the ultimate formation of a perinuclear ring. In differentiated skeletal or cardiac muscle cells, in addition to its cytoplasmic filamentous distribution, desmin is found intimately associated with the Z lines of sarcomeres. We further show that approx. 50% of the cells in these primary cardiac cultures are unreactive with desmin antibodies. Similarly the majority of the cells in a number of established cell lines from various species grown in tissue culture, are unreactive to desmin antibodies in indirect immunofluorescence, despite the fact that these cells are known to contain cytoplasmic 100Å-filaments. These results indicate that desmin occurs in at least two distinct cytoplasmic distribution in cardiac cells. They also demonstrate the existence of immunological and biochemical differences in the major component of 100Å-filaments between muscle and non-muscle cells as evidenced by the failure of non-muscle cells to react with antibodies to chick smooth muscle desmin.  相似文献   

8.
Neuroblastoma (NB), primitive neuroectodermal tumor (PNET), Ewing's sarcoma and rhabdomyosarcoma (RMS) are solid malignant tumors in childhood. Microscopically these tumors are grouped as small-round-cell tumors, and a different diagnosis is sometimes difficult. Cell surface membrane antigen, cytoskeletal protein and N-myc amplification and over-expression were analyzed in these cell lines and tumor tissues for the accurate diagnosis. NB and PNET could be distinguished from Ewing's sarcoma and RMS by the panel of monoclonal antibodies against cell surface membrane antigens. The cytoskeletal protein analysis is useful for the diagnosis of RMS and leiomyosarcoma. Alpha-smooth muscle actin and/or desmin were demonstrated in the S-type (epithelial-like) cells in 3 NB cell lines, suggesting the differentiation pathway of NB into smooth muscle cells. N-myc amplification and over-expression were observed in NB cell lines as well as one RMS cell line. The occurrence of N-myc amplification and over-expression in the RMS cell line cautions us against using N-myc as a distinguishable marker for NB.  相似文献   

9.
E Debus  K Weber  M Osborn 《The EMBO journal》1983,2(12):2305-2312
A set of monoclonal antibodies to desmin has been isolated from a fusion of mouse myeloma cells with spleen cells from mice immunized with purified porcine desmin. Eleven group I antibodies recognized desmin in the immune blot, and using defined desmin fragments the epitope has been tentatively assigned as lying between residues 325 and 372. When cell lines were tested in immunofluorescence only the human line RD and hamster BHK-21 were positive. When tissue sections were used, skeletal, cardiac, visceral and some vascular smooth muscle cells were positive. Thus, the group I antibodies appear specific for desmin and do not recognize other intermediate filament proteins. Group II monoclonals recognized not only desmin in the immune blot but also other polypeptides. The epitope of this class is located between residues 70 and 280. In immunofluorescence on cell lines and tissues, the staining patterns of group II antibodies were more complicated and demonstrate that not only other intermediate filament proteins but also additional antigenic determinants are being recognized. The group I antibodies stain, as expected from their desmin specificity, rat and human rhabdomyosarcomas and thus appear to be useful reagents in pathology.  相似文献   

10.
Some neural crest cells give rise to pigment cells in early ontogenesis. We tested here whether tyrosinase-a key enzyme in melanogenesis—was present in some nonpigment neural crest derivatives in adult hamsters. Interestingly enough, inactive tyrosinase protein was detected, using indirect immunofluorescence, in the satellite cells of spinal ganglia and Schwann cells of sciatic and facial nerves in normal adult animals. The results of cell blotting from spinal ganglia were similar to the fluorescence findings. Thus, our results seem to support the hypothesis that Schwann cells, satellite cells of spinal ganglia, and melanocytes may be more intimately related developmentally than other neural-crest-derived cells. Moreover, since we detected tyrosinase protein in cells which normally do not produce melanosomes, it could be deduced that, during the melanocyte's differentiation from its cell precursor, the expression of tyrosinase protein might precede the point when melanosomes begin to differentiate from known cytoplasmic structures.  相似文献   

11.
Summary Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavoir, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concommitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression. This work was supported by grants from from National Institutes of Health, Bethesda, MD, to DMW (HL35684), JW (HL36412), and JM and RL (SCOR HL 14212).  相似文献   

12.
The neural crest gives rise to glial cells in the peripheral nervous system. Among the peripheral glia, Schwann cells form the myelin often wrapping the peripheral axons. Compared to other crest-derived cell lineages such as neurons, the analysis of fate determination and subsequent differentiation of Schwann cells is not well advanced, partly due to the lack of early markers of this phenotype. In this study, we have identified a gene, uniquely expressed in avian embryo Schwann cell precursors, which encodes a novel secreted factor, designated Seraf (Schwann cell-specific EGF-like repeat autocrine factor). Expression of Seraf and P0 delineates the earliest phase of Schwann cell differentiation. Seraf binds to neural crest cells and Schwann cells, and affects the distribution of Schwann cells, when introduced to chicken embryos during neural crest migration. Our results suggest an autocrine function of Seraf and provide a significant step to understand the developmental processes of Schwann cell lineage.  相似文献   

13.
Morphological and immunohistochemical features of the abdominal mesotheliomas that were developed by inoculation of 3 cell lines (MeET-4, -5 and -6) established from spontaneous abdominal mesotheliomas in male F344 rats. Although the original tumors of three cell lines showed signs of epithelioid growth with a predominantly simple papillary pattern, transplanted tumors revealed a variety of morphologic features including epithelioid with glandular structures, sarcomatous, and a mixture of these components. All tumor cells of transplanted tumors were positive for alpha-smooth muscle actin (ASMA) but almost negative for desmin as were epithelioid cells of the original tumors, and the cell lines were positive for desmin but not for ASMA. These results suggested that mesothelioma in the F344 rat had the potential for wide spectrum differentiation under in vitro conditions. The microenvironmental factors obtained in vivo can modify their potential ability and their morphological aspects. These factors may be related to tumor cell reexpression of ASMA of tumor cells that were masked under in vitro culture conditions.  相似文献   

14.
Because of the known property of spontaneous regression in stage IVS of neuroblastoma all attempts are made to elucidate whether differentiation inducers possibly could be applied for neuroblastoma therapy. Here we examined the influence of retinoic acid (RA) in vitro on differentiation, proliferation and adhesion of 10 permanent and 4 primary cell lines as well as of several SCID-mouse tumour transplants. In general, after RA treatment morphologically different cell types which are characteristic for neuroblastoma cells have changed. N (neuronal)-type cells prolonged their neuronal processes, whereas S (epithelial, substrate-adherent, Schwann cell-like)-type cells lost their adherence to substratum and became apoptotic. Additionally, the reactions of all neuroblastoma cell lines with monoclonal antibodies against beta-tubulin (for neuronal cells) and glial fibrillary acidic protein (for epithelial cells) were determined. The anti-proliferative effect of all-trans-RA as well as 13-cis-RA was more profound in S-type cells (up to 40% in primary cell lines). To elucidate the role of adhesion molecules during neuronal cell differentiation, we have analysed the adhesion of neuroblastoma cells on poly-D-lysin-precoated plates under RA influence. While N-type cells displayed an increased adhesion, all S-type cell lines as well as all primary cell lines exhibited a reduced adhesion (IMR-5 and IMR-32: p < 0.001; JW, SR and PM: p < 0.05). RA treatment increased predominantly the tested antigens (HCAM, ICAM-1, NCAM, PECAM-1, VCAM-1, cadherin, FGF-R, IGF-R, NGF-R, TGF-beta/1, NF200, NF160, NF68, NSE, HLA-ABC) in all cell lines independently of their phenotypes (TGF-beta/1: p < 0.001; NF68: p < 0.01; PECAM-1 and NGF-R: p < 0.05). In recultured SCID-mouse-passaged tumour cells antigens were down-regulated (FGF-R: p < 0.01), but increased again after RA influence (TGF-beta/1: p < 0.05). In summary, the RA differentiation model demonstrates the possibility to interfere in cell adhesion and to diminish growth potential both in N-type as well as S-type neuroblastoma cells.  相似文献   

15.
Spontaneous myogenic differentiation was observed in 2 out of 15 cases when cells from schwannomas induced in the offspring of BDIX rats by transplacental exposure to N-ethyl-N-nitrosourea (EtNU) were grown in monolayer culture following fluorescence-activated cell sorting with monoclonal antibody (Mab) 217c. Myotubes and numerous mononucleated cells no longer expressed the Schwann cell antigens 217c and S-100 protein, but rather revealed the presence of desmin, the alpha-sarcomeric form (alpha-sr) of actin, and the cell surface antigen specified by Mab RB21-7, a 250 kD glycoprotein sharing an epitope with the neural cell adhesion molecule (N-CAM). Subcutaneous reimplantation of such cells into syngeneic animals led to the appearance of tumors composed of both S-100 positive Schwann cells and desmin and alpha-sr-actin positive rhabdomyoblasts, thus closely resembling the human "Triton" tumor. With the use of the polymerase chain reaction and allele-specific oligonucleotide hybridization, DNA isolated from individual myotubes was analyzed for the presence of a T----A transversion mutation at nucleotide 2012 of the neu gene, which is diagnostic of EtNU-induced rat schwannomas. All of the amplified DNA isolates contained the mutant neu allele, thus providing direct genetic proof for the capacity of mammalian neuroectodermal cells for myogenic differentiation.  相似文献   

16.
A series of 14 primary and two metastatic rat rhabdomyosarcomas (RMS) induced with nickel sulfide was studied by light microscopy, transmission electron microscopy, indirect immunofluorescence, avidin-biotin-peroxidase immunohistochemistry and two-dimensional gel electrophoresis. Monoclonal or affinity-purified polyclonal antibodies were used for the immunohistochemical demonstration of vimentin, desmin, alpha-smooth muscle (alpha-sm) actin and alpha-sarcomeric (alpha-sr) actin. By histological and ultrastructural studies, four categories of RMS were diagnosed on the basis of the neoplastic cell types. These were: (1) well-differentiated RMS (n = 2), (2) pleomorphic RMS (n = 8), (3) embryonal RMS (n = 4), and (4) embryonal myosarcomas (n = 2). Immunohistochemically, all these neoplasms expressed desmin and alpha-sr actin, reflecting their rhabdomyoblastic origin. Two dimensional gel electrophoresis performed on five neoplasms demonstrated alpha, beta and gamma actins spots in all cases. This study demonstrates that the alpha-sr actin antibody represents a good marker for rhabdomyoblastic differentiation is useful in the diagnosis of RMS since it was present in all morphologically confirmed RMS and in two ultrastructurally undifferentiated sarcomas positive for desmin. Neoplastic cells positive for alpha-sm actin were noted in 11 confirmed RMS. Double indirect immunofluorescence showed that all alpha-sm and alpha-sr positive cells also contained desmin. Co-expression of alpha-sr and alpha-sm actins was studied in serial sections of formalin-fixed, paraffin-embedded tumor tissue. Both alpha-sm and alpha-sr actins were localized in some rhabdomyoblasts. This study confirms our previous observations in human tumors and shows, for the first time, that alpha-sr and alpha-sm actins can be present in the same neoplastic cell in vivo.  相似文献   

17.
Cadherins in neural crest cell development and transformation   总被引:6,自引:0,他引:6  
Cadherins constitute a superfamily of cell adhesion molecules involved in cell-cell interaction, histogenesis and cellular transformation. They have been implicated in the development of various lineages, including derivatives of the neural crest. Neural crest cells (NCC) emerge from the dorsal part of the neural tube after an epithelio-mesenchymal transition (EMT) and migrate through the embryo. After homing and differentiation, NCC give rise to many cell types, such as neurons, Schwann cells and melanocytes. During these steps, the pattern of expression of the various cadherins studied is very dynamic. Cadherins also display plasticity of expression during the transformation of neural crest cell derivatives. Here, we review the pattern of expression and the role of the main cadherins involved in the development and transformation of neural crest cell derivatives.  相似文献   

18.
OBJECTIVE: To quantitate different antigens by flow cytometric immunophenotyping (FCI) in small round cell tumors (SRCTs) and to compare the FCI technique with immunocytochemistry (IC). STUDY DESIGN: IC and FCI were performed on 24 consecutive cases of SRCT on fine needle aspiration biopsy material using a panel of antibodies--e.g., cytokeratin (CK), leukocyte common antigen (LCA), desmin, epithelial membrane antigen, neuron-specific enolase, chromogranin, retinoblastoma gene product, neuroblastoma clone (NB84a (NB), vimentin and Mic-2 gene product. IC was done by indirect immunoperoxidase and FCI by indirect immunofluorescence onflow cytometry. RESULTS: In Ewing's sarcoma, with the help of FCI, positive results were obtained in an additional 4 samples in CK, 2 samples in actin and 3 samples in desmin. Similarly, one each sample was additional positive regarding Mic-2 and vimentin by IC. In cases of neuroblastoma with the help of FCI, additional positive results were obtained in one each sample of CK, LCA and NB and two in actin. Combined use of FCI and IC helped to show chromogranin positivity in an additional two cases. Divergent differentiation was noted in four cases of Ewing's sarcoma, one neuroblastoma and two peripheral neuroectodermal tumors. CONCLUSION: FCI technique is sensitive, more objective and quantitative in comparison with manual absorbance-based microscopic detection of enzyme immunohistochemistry products. FCI may determine divergent differentiation in SRCTs.  相似文献   

19.
Rat glomerular mesangial cells were cultured and their antigens were compared with those of aortic vascular smooth muscle cells and dermal fibroblasts. Glomeruli, aortic, and dermal explants were cultured for 3 weeks and subcultured in the same conditions. These cultured cells were evaluated by indirect immunofluorescence studies using antibodies against Thy-1 antigen, desmin, and chicken gizzard actin. Most of mesangial cells were positive for Thy-1, desmin, and actin. On the other hand, fibroblasts were negative for desmin, and smooth muscle cells stained Thy-1 scarcely, and were negative for desmin. In the latter two cells, actin-positive fibrils were thinner and fainter than mesangial cells. These results indicated that mesangial cells could be distinguished in vitro from vascular smooth cells and fibroblasts by immunofluorescence microscopy.  相似文献   

20.
Amongst the many cell types that differentiate from migratory neural crest cells are the Schwann cells of the peripheral nervous system. While it has been demonstrated that Schwann cells will not fully differentiate unless in contact with neurons, the factors that cause neural crest cells to enter the differentiative pathway that leads to Schwann cells are unknown. In a previous paper (Development 105: 251, 1989), we have demonstrated that a proportion of morphologically undifferentiated neural crest cells express the Schwann cell markers 217c and NGF receptor, and later, as they acquire the bipolar morphology typical of Schwann cells in culture, express S-100 and laminin. In the present study, we have grown axons from embryonic retina on neural crest cultures to see whether this has an effect on the differentiation of neural crest cells into Schwann cells. After 4 to 6 days of co-culture, many more cells had acquired bipolar morphology and S-100 staining than in controls with no retinal explant, and most of these cells were within 200 microns of an axon, though not necessarily in contact with axons. However, the number of cells expressing the earliest Schwann cell markers 217c and NGF receptor was not affected by the presence of axons. We conclude that axons produce a factor, which is probably diffusible, and which makes immature Schwann cells differentiate. The factor does not, however, influence the entry of neural crest cells into the earliest stages of the Schwann cell differentiative pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号