首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most streptococci, glucose is transported by the phosphoenolpyruvate (PEP):glucose/mannose phosphotransferase system (PTS) via HPr and IIAB(Man), two proteins involved in regulatory mechanisms. While most strains of Streptococcus thermophilus do not or poorly metabolize glucose, compelling evidence suggests that S. thermophilus possesses the genes that encode the glucose/mannose general and specific PTS proteins. The purposes of this study were to determine (i) whether these PTS genes are expressed, (ii) whether the PTS proteins encoded by these genes are able to transfer a phosphate group from PEP to glucose/mannose PTS substrates, and (iii) whether these proteins catalyze sugar transport. The pts operon is made up of the genes encoding HPr (ptsH) and enzyme I (EI) (ptsI), which are transcribed into a 0.6-kb ptsH mRNA and a 2.3-kb ptsHI mRNA. The specific glucose/mannose PTS proteins, IIAB(Man), IIC(Man), IID(Man), and the ManO protein, are encoded by manL, manM, manN, and manO, respectively, which make up the man operon. The man operon is transcribed into a single 3.5-kb mRNA. To assess the phosphotransfer competence of these PTS proteins, in vitro PEP-dependent phosphorylation experiments were conducted with purified HPr, EI, and IIAB(Man) as well as membrane fragments containing IIC(Man) and IID(Man). These PTS components efficiently transferred a phosphate group from PEP to glucose, mannose, 2-deoxyglucose, and (to a lesser extent) fructose, which are common streptococcal glucose/mannose PTS substrates. Whole cells were unable to catalyze the uptake of mannose and 2-deoxyglucose, demonstrating the inability of the S. thermophilus PTS proteins to operate as a proficient transport system. This inability to transport mannose and 2-deoxyglucose may be due to a defective IIC domain. We propose that in S. thermophilus, the general and specific glucose/mannose PTS proteins are not involved in glucose transport but might have regulatory functions associated with the phosphotransfer properties of HPr and IIAB(Man).  相似文献   

2.
3.
4.
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major sugar uptake system in oral streptococci. The role of EIIAB(Man) (encoded by manL) in gene regulation and sugar transport was investigated in Streptococcus mutans UA159. The manL knockout strain, JAM1, grew more slowly than the wild-type strain in glucose but grew faster in mannose and did not display diauxic growth, indicating that EIIAB(Man) is involved in sugar uptake and in carbohydrate catabolite repression. PTS assays of JAM1, and of strains lacking the inducible (fruI) and constitutive (fruCD) EII fructose, revealed that S. mutans EIIAB(Man) transported mannose and glucose and provided evidence that there was also a mannose-inducible or glucose-repressible mannose PTS. Additionally, there appears to be a fructose PTS that is different than FruI and FruCD. To determine whether EIIAB(Man) controlled expression of the known virulence genes, glucosyltransferases (gtfBC) and fructosyltransferase (ftf) promoter fusions of these genes were established in the wild-type and EIIAB(Man)-deficient strains. In the manL mutant, the level of chloramphenicol acetyltransferase activity expressed from the gtfBC promoter was up to threefold lower than that seen with the wild-type strain at pH 6 and 7, indicating that EIIAB(Man) is required for optimal expression of gtfBC. No significant differences were observed between the mutant and the wild-type background in ftf regulation, with the exception that under glucose-limiting conditions at pH 7, the mutant exhibited a 2.1-fold increase in ftf expression. Two-dimensional gel analysis of batch-grown cells of the EIIAB(Man)-deficient strain indicated that the expression of at least 38 proteins was altered compared to that seen with the wild-type strain, revealing that EIIAB(Man) has a pleiotropic effect on gene expression.  相似文献   

5.
6.
Summary Four genes, nagR, A, B and E, clustered in the nag locus of Escherichia coli K12 and Klebsiella pneumoniae, were cloned and physically mapped, and the corresponding gene products involved in amino sugar metabolism identified. Expression of the nag genes was also analysed using a series of lacZ fusions. In both bacteria, the genes are arranged in two divergent operons and controlled by a common NagR repressor. The corresponding gene nagR was found to map in the first operon together with the promoter proximal gene nagB, encoding the enzyme d-glucosamine isomerase (deaminase) (NagB) and the middle gene nagA, coding for N-acetyl-glucosamine deacetylase (NagA). Polar mutations in nagB and nagA prevent the efficient expression of nagR and cause constitutive expression of all nag genes. This includes the gene nagE encoding Enzyme IINag of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS), encoded in the second divergently transcribed operon. No further gene is found in this operon which in both organisms is directly adjacent to the gene glnS. It is interesting that the NagR repressor also affects the mannose PTS (genes manX, Y, Z), the second transport system involved in amino sugar uptake and phosphorylation.  相似文献   

7.
The Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram‐positive human pathogen that must adapt to unique host environments in order to survive. Links between sugar metabolism and virulence have been demonstrated in GAS, where mutants in the phosphoenolpyruvate‐dependent phosphotransferase system (PTS) exhibited Streptolysin S (SLS)‐mediated hemolysis during exponential growth. This early onset hemolysis correlated with an increased lesion size and severity in a murine soft tissue infection model when compared with parental M1T1 MGAS5005. To identify the PTS components responsible for this phenotype, we insertionally inactivated the 14 annotated PTS EIIC‐encoding genes in the GAS MGAS5005 genome and subjected this library to metabolic and hemolysis assays to functionally characterize each EIIC. It was found that a few EIIs had a very limited influence on PTS sugar metabolism, whereas others were fairly promiscuous. The mannose‐specific EII locus, encoded by manLMN, was expressed as a mannose‐inducible operon that exhibited the most influence on PTS sugar metabolism, including mannose. Importantly, components of the mannose‐specific EII also acted to prevent the early onset of SLS‐mediated hemolysis. Interestingly, these roles were not identical in two different M1T1 GAS strains, highlighting the possible versatility of the PTS to adapt to strain‐specific needs.  相似文献   

8.
9.
Commensal oral streptococci play critical roles in oral biofilm formation and promote dental health by competing with, and antagonizing the growth of, pathogenic organisms, such as Streptococcus mutans. Efficient utilization of the spectrum of carbohydrates in the oral cavity by commensal streptococci is essential for their persistence, and yet very little is known about the regulation of carbohydrate catabolism by these organisms. Carbohydrate catabolite repression (CCR) in the abundant oral commensal Streptococcus gordonii strain DL-1 was investigated using the exo-β-D-fructosidase gene (fruA) and a fructose/mannose sugar:phosphotransferase (PTS) enzyme II operon (levDEFG) as model systems. Functional studies confirmed the predicted roles of FruA and LevD in S. gordonii. ManL, the AB domain of a fructose/mannose-type enzyme II PTS permease, contributed to utilization of glucose, mannose, galactose, and fructose and exerted primary control over CCR of the fruA and levD operons. Unlike in S. mutans, ManL-dependent CCR was not sugar specific, and galactose was very effective at eliciting CCR in S. gordonii. Inactivation of the apparent ccpA homologue of S. gordonii actually enhanced CCR of fruA and levD, an effect likely due to its demonstrated role in repression of manL expression. Thus, there are some similarities and fundamental differences in CCR control mechanisms between the oral pathogen S. mutans and the oral commensal S. gordonii that may eventually be exploited to enhance the competitiveness of health-associated commensals in oral biofilms.  相似文献   

10.
In most streptococci, glucose is transported by the phosphoenolpyruvate (PEP):glucose/mannose phosphotransferase system (PTS) via HPr and IIABMan, two proteins involved in regulatory mechanisms. While most strains of Streptococcus thermophilus do not or poorly metabolize glucose, compelling evidence suggests that S. thermophilus possesses the genes that encode the glucose/mannose general and specific PTS proteins. The purposes of this study were to determine (i) whether these PTS genes are expressed, (ii) whether the PTS proteins encoded by these genes are able to transfer a phosphate group from PEP to glucose/mannose PTS substrates, and (iii) whether these proteins catalyze sugar transport. The pts operon is made up of the genes encoding HPr (ptsH) and enzyme I (EI) (ptsI), which are transcribed into a 0.6-kb ptsH mRNA and a 2.3-kb ptsHI mRNA. The specific glucose/mannose PTS proteins, IIABMan, IICMan, IIDMan, and the ManO protein, are encoded by manL, manM, manN, and manO, respectively, which make up the man operon. The man operon is transcribed into a single 3.5-kb mRNA. To assess the phosphotransfer competence of these PTS proteins, in vitro PEP-dependent phosphorylation experiments were conducted with purified HPr, EI, and IIABMan as well as membrane fragments containing IICMan and IIDMan. These PTS components efficiently transferred a phosphate group from PEP to glucose, mannose, 2-deoxyglucose, and (to a lesser extent) fructose, which are common streptococcal glucose/mannose PTS substrates. Whole cells were unable to catalyze the uptake of mannose and 2-deoxyglucose, demonstrating the inability of the S. thermophilus PTS proteins to operate as a proficient transport system. This inability to transport mannose and 2-deoxyglucose may be due to a defective IIC domain. We propose that in S. thermophilus, the general and specific glucose/mannose PTS proteins are not involved in glucose transport but might have regulatory functions associated with the phosphotransfer properties of HPr and IIABMan.  相似文献   

11.
H De Reuse  A Roy  A Danchin 《Gene》1985,35(1-2):199-207
The nucleotide sequence of an Escherichia coli DNA segment containing the ptsH gene and the first 162 nucleotides of the ptsI gene encoding, respectively, Hpr and enzyme I of the phosphoenolpyruvate-dependent glycose phosphotransferase system (PTS), was determined. The ptsH promoter was localized using the S1 mapping technique. A nucleotide sequence very similar to the consensus binding site for cAMP receptor protein was found in the -35 region of the ptsH promoter. The ptsH gene is transcribed in the same direction as the ptsI gene and the crr gene (encoding enzyme IIIGlc of the PTS). Analysis of the nucleotide sequence substantiates the notion that the ptsH-ptsI-crr genes constitute a polycistronic operon.  相似文献   

12.
We report the presence of Mlc in a thermophilic bacterium. Mlc is known as a global regulator of sugar metabolism in gram-negative enteric bacteria that is controlled by sequestration to a glucose-transporting EII(Glc) of the phosphotransferase system (PTS). Since thermophilic bacteria do not possess PTS, Mlc in Thermus thermophilus must be differently controlled. DNA sequence alignments between Mlc from T. thermophilus (Mlc(Tth)) and Mlc from E. coli (Mlc(Eco)) revealed that Mlc(Tth) conserved five residues of the glucose-binding motif of glucokinases. Here we show that Mlc(Tth) is not a glucokinase but is indeed able to bind glucose (K(D) = 20 microM), unlike Mlc(Eco). We found that mlc of T. thermophilus is the first gene within an operon encoding an ABC transporter for glucose and mannose, including a glucose/mannose-binding protein and two permeases. malK1, encoding the cognate ATP-hydrolyzing subunit, is located elsewhere on the chromosome. The system transports glucose at 70 degrees C with a K(m) of 0.15 microM and a V(max) of 4.22 nmol per min per ml at an optical density (OD) of 1. Mlc(Tth) negatively regulates itself and the entire glucose/mannose ABC transport system operon but not malK1, with glucose acting as an inducer. MalK1 is shared with the ABC transporter for trehalose, maltose, sucrose, and palatinose (TMSP). Mutants lacking malK1 do not transport either glucose or maltose. The TMSP transporter is also able to transport glucose with a K(m) of 1.4 microM and a V(max) of 7.6 nmol per min per ml at an OD of 1, but it does not transport mannose.  相似文献   

13.
14.
15.
16.
The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-beta-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号