首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
This paper presents evidence that a member of the L1 family of ankyrin-binding cell adhesion molecules is a substrate for protein tyrosine kinase(s) and phosphatase(s), identifies the highly conserved FIGQY tyrosine in the cytoplasmic domain as the principal site of phosphorylation, and demonstrates that phosphorylation of the FIGQY tyrosine abolishes ankyrin-binding activity. Neurofascin expressed in neuroblastoma cells is subject to tyrosine phosphorylation after activation of tyrosine kinases by NGF or bFGF or inactivation of tyrosine phosphatases with vanadate or dephostatin. Furthermore, both neurofascin and the related molecule Nr-CAM are tyrosine phosphorylated in a developmentally regulated pattern in rat brain. The FIGQY sequence is present in the cytoplasmic domains of all members of the L1 family of neural cell adhesion molecules. Phosphorylation of the FIGQY tyrosine abolishes ankyrin binding, as determined by coimmunoprecipitation of endogenous ankyrin and in vitro ankyrin-binding assays. Measurements of fluorescence recovery after photobleaching demonstrate that phosphorylation of the FIGQY tyrosine also increases lateral mobility of neurofascin expressed in neuroblastoma cells to the same extent as removal of the cytoplasmic domain. Ankyrin binding, therefore, appears to regulate the dynamic behavior of neurofascin and is the target for regulation by tyrosine phosphorylation in response to external signals. These findings suggest that tyrosine phosphorylation at the FIGQY site represents a highly conserved mechanism, used by the entire class of L1-related cell adhesion molecules, for regulation of ankyrin-dependent connections to the spectrin skeleton.Vertebrate L1, neurofascin, neuroglial cell adhesion molecule (Ng-CAM),1 Ng-CAM–related cell adhesion molecule (Nr-CAM), and Drosophila neuroglian are members of a family of nervous system cell adhesion molecules that possess variable extracellular domains comprised of Ig and fibronectin type III domains and a relatively conserved cytoplasmic domain (Grumet, 1991; Hortsch and Goodman, 1991; Rathgen and Jessel, 1991; Sonderegger and Rathgen, 1992; Hortsch, 1996). Members of this family, including a number of alternatively spliced forms, are abundant in the nervous system during early development as well as in adults. Neurofascin and Nr-CAM, for example, constitute ∼0.5% of the total membrane protein in adult brain (Davis et al., 1993; Davis and Bennett, 1994). Cellular functions attributed to the L1 family include axon fasciculation (Stallcup and Beasley, 1985; Landmesser et al., 1988; Brummendorf and Rathjen, 1993; Bastmeyer et al., 1995; Itoh et al., 1995; Magyar-Lehmann et al., 1995), axonal guidance (van den Pol and Kim, 1993; Liljelund et al., 1994; Brittis and Silver, 1995; Brittis et al., 1995; Lochter et al., 1995; Wong et al., 1996), neurite extension (Chang et al., 1987; Felsenfeld et al., 1994; Hankin and Lagenaur, 1994; Ignelzi et al., 1994; Williams et al., 1994a ,b,c,d; Doherty et al., 1995; Zhao and Siu, 1995), a role in long term potentiation (Luthl et al., 1994), synaptogenesis (Itoh et al., 1995), and myelination (Wood et al., 1990). The potential clinical importance of this group of proteins has been emphasized by the findings that mutations in the L1 gene on the X chromosome are responsible for developmental anomalies including hydrocephalus and mental retardation (Rosenthal et al., 1992; Jouet et al., 1994; Wong et al., 1995).The conserved cytoplasmic domains of L1 family members include a binding site for the membrane skeletal protein ankyrin. This interaction was first described for neurofascin (Davis et. al., 1993) and subsequently has been observed for L1, Nr-CAM (Davis and Bennett, 1994), and Drosophila neuroglian (Dubreuil et al., 1996). The membrane-binding domain of ankyrin contains two distinct sites for neurofascin and has the potential to promote lateral association of neurofascin and presumably other L1 family members (Michaely and Bennett, 1995). Nodes of Ranvier are physiologically relevant axonal sites where ankyrin and L1 family members collaborate, based on findings of colocalization of a specialized isoform of ankyrin with alternatively spliced forms of neurofascin and NrCAM in adults (Davis et al., 1996) as well as in early axonal developmental intermediates (Lambert, S., J. Davis, P. Michael, and V. Bennett. 1995. Mol. Biol. Cell. 6:98a).L1, after homophilic and/or heterophilic binding, participates in signal transduction pathways that ultimately are associated with neurite extension and outgrowth (Ignelzi et al., 1994; Williams et al., 1994a ,b,c,d; Doherty et al., 1995). L1 copurifies with a serine–threonine protein kinase (Sadoul et al., 1989) and is phosphorylated on a serine residue that is not conserved among other family members (Wong et al., 1996). L1 pathway(s) may also involve G proteins, calcium channels, and tyrosine phosphorylation (Williams et al., 1994a ,b,c,d; Doherty et al., 1995). After homophilic interactions, L1 directly activates a tyrosine signaling cascade after a lateral association of its ectodomain with the fibroblast growth factor receptor (Doherty et al., 1995). Antibodies against L1 have also been shown to activate protein tyrosine phosphatase activity in growth cones (Klinz et al., 1995). However, details of the downstream substrates of L1-promoted phosphorylation and dephosphorylation and possible roles of the cytoplasmic domain are not known.Tyrosine phosphorylation is well established to modulate cell–cell and cell–extracellular matrix interactions involving integrins and their associated proteins (Akiyama et al., 1994; Arroyo et al., 1994; Schlaepfer et al., 1994; Law et al., 1996) as well as the cadherins (Balsamo et al., 1996; Krypta et al., 1996; Brady-Kalnay et al., 1995; Shibamoto et al., 1995; Hoschuetzky et al., 1994; Matsuyoshi et al., 1992). For example, the adhesive functions of the calciumdependent cadherin cell adhesion molecule are mediated by a dynamic balance between tyrosine phosphorylation of β-catenin by TrkA and dephosphorylation via the LARtype protein tyrosine phosphatase (Krypta et al., 1996). In this example the regulation of binding among the structural proteins is the result of a coordination between classes of protein kinases and protein phosphatases.This study presents evidence that neurofascin, expressed in a rat neuroblastoma cell line, is a substrate for both tyrosine kinases and protein tyrosine phosphatases at a tyrosine residue conserved among all members of the L1 family. Site-specific tyrosine phosphorylation promoted by both tyrosine kinase activators (NGF and bFGF) and protein tyrosine phosphatase inhibitors (dephostatin and vanadate) is a strong negative regulator of the neurofascin– ankyrin binding interaction and modulates the membrane dynamic behavior of neurofascin. Furthermore, neurofascin and, to a lesser extent Nr-CAM, are also shown here to be tyrosine phosphorylated in developing rat brain, implying a physiological relevance to this phenomenon. These results indicate that neurofascin may be a target for the coordinate control over phosphorylation that is elicited by protein kinases and phosphatases during in vivo tyrosine phosphorylation cascades. The consequent decrease in ankyrin-binding capacity due to phosphorylation of neurofascin could represent a general mechanism among the L1 family members for regulation of membrane–cytoskeletal interactions in both developing and adult nervous systems.  相似文献   

7.
Suspension-cultured Chenopodium album L. cells are capable of continuous, long-term growth on a boron-deficient medium. Compared with cultures grown with boron, these cultures contained more enlarged and detached cells, had increased turbidity due to the rupture of a small number of cells, and contained cells with an increased cell wall pore size. These characteristics were reversed by the addition of boric acid (≥7 μm) to the boron-deficient cells. C. album cells grown in the presence of 100 μm boric acid entered the stationary phase when they were not subcultured, and remained viable for at least 3 weeks. The transition from the growth phase to the stationary phase was accompanied by a decrease in the wall pore size. Cells grown without boric acid or with 7 μm boric acid were not able to reduce their wall pore size at the transition to the stationary phase. These cells could not be kept viable in the stationary phase, because they continued to expand and died as a result of wall rupture. The addition of 100 μm boric acid prevented wall rupture and the wall pore size was reduced to normal values. We conclude that boron is required to maintain the normal pore structure of the wall matrix and to mechanically stabilize the wall at growth termination.The ultrastructure and physical properties of plant cell walls are known to be affected by boron deficiency (Kouchi and Kumazawa, 1976; Hirsch and Torrey, 1980; Fischer and Hecht-Buchholz, 1985; Matoh et al., 1992; Hu and Brown, 1994; Findeklee and Goldbach, 1996). Moreover, boron is predominantly localized in the cell wall when plants are grown with suboptimal boron (Loomis and Durst, 1991; Matoh et al., 1992; Hu and Brown, 1994; Hu et al., 1996). In radish, >80% of the cell wall boron is present in the pectic polysaccharide RG-II (Matoh et al., 1993; Kobayashi et al., 1996), which is now known to exist as a dimer that is cross-linked by a borate ester between two apiosyl residues (Kobayashi et al., 1996; O''Neill et al., 1996). Dimeric RG-II is unusually stable at low pH and is present in a large number of plant species (Ishii and Matsunaga, 1996; Kobayashi et al., 1996, 1997; Matoh et al., 1996; O''Neill et al., 1996; Pellerin et al., 1996; Kaneko et al., 1997). The widespread occurrence and conserved structure of RG-II (Darvill et al., 1978; O''Neill et al., 1990) have led to the suggestion that borate ester cross-linked RG-II is required for the development of a normal cell wall (O''Neill et al., 1996; Matoh, 1997).One approach for determining the function of boron in plant cell walls is to compare the responses to boron deficiency of growing plant cells that are dividing and synthesizing primary cell walls with those of growth-limited plant cells in which the synthesis of primary cell walls is negligible. Suspension-cultured cells are well suited for this purpose because they may be reversibly transferred from a growth phase to a stationary phase. Continuous cell growth phase is maintained by frequent transfer of the cells into new growth medium (King, 1981; Kandarakov et al., 1994), whereas a stationary cell population is obtained by feeding the cells with Suc and by not subculturing them. Cells in the stationary phase are characterized by mechanically stabilized primary walls and reduced biosynthetic activity. Here we describe the responses of suspension-cultured Chenopodium album L. cells in the growth and stationary phases to boron deficiency. These cells have a high specific-growth rate, no significant lag phase, and reproducible changes in their wall pore size during the transition from the growth phase to the stationary phase (Titel et al., 1997).  相似文献   

8.
9.
Heme and chlorophyll accumulate to high levels in legume root nodules and in photosynthetic tissues, respectively, and they are both derived from the universal tetrapyrrole precursor δ-aminolevulinic acid (ALA). The first committed step in ALA and tetrapyrrole synthesis is catalyzed by glutamyl-tRNA reductase (GTR) in plants. A soybean (Glycine max) root-nodule cDNA encoding GTR was isolated by complementation of an Escherichia coli GTR-defective mutant for restoration of ALA prototrophy. Gtr mRNA was very low in uninfected roots but accumulated to high levels in root nodules. The induction of Gtr mRNA in developing nodules was subsequent to that of the gene Enod2 (early nodule) and coincided with leghemoglobin mRNA accumulation. Genomic analysis revealed two Gtr genes, Gtr1 and a 3′ portion of Gtr2, which were isolated from the soybean genome. RNase-protection analysis using probes specific to Gtr1 and Gtr2 showed that both genes were expressed, but Gtr1 mRNA accumulated to significantly higher levels. In addition, the qualitative patterns of expression of Gtr1 and Gtr2 were similar to each other and to total Gtr mRNA in leaves and nodules of mature plants and etiolated plantlets. The data indicate that Gtr1 is universal for tetrapyrrole synthesis and that a Gtr gene specific for a tissue or tetrapyrrole is unlikely. We suggest that ALA synthesis in specialized root nodules involves an altered spatial expression of genes that are otherwise induced strongly only in photosynthetic tissues of uninfected plants.Soybean (Glycine max) and numerous other legumes can establish a symbiosis with rhizobia, resulting in the formation of root nodules comprising specialized plant and bacterial cells (for review, see Mylona et al., 1995). Rhizobia reduce atmospheric nitrogen to ammonia within nodules, which is assimilated by the plant host to fulfill its nutritional nitrogen requirement. The high energy requirement for nitrogen fixation necessitates efficient respiration by the prokaryote within the microaerobic milieu of the nodule. The plant host synthesizes a nodule-specific hemoglobin (leghemoglobin) that serves to facilitate oxygen diffusion to the bacterial endosymbiont and to buffer the free oxygen concentration at a low tension (for review, see Appleby, 1992). Both of these functions require that the hemoglobin concentration be high, and, indeed, it exceeds 1 mm in soybean nodules (Appleby, 1984) and is the predominant plant protein in that organ. Once thought to be confined to legume nodules, hemoglobins are found throughout the plant kingdom, and leghemoglobin likely represents a specialization of a general plant phenomenon (for review, see Hardison, 1996). A gene encoding a nonsymbiotic hemoglobin has been identified in soybean and other legumes (Andersson et al., 1996); therefore, expression in nodules involves the specific activation of a subset of genes within a gene family. Leghemoglobin genes may have arisen from gene duplication, followed by specialization (Andersson et al., 1996).Hemes and chlorophyll are tetrapyrroles synthesized from common precursors; chlorophyll is quantitatively the major tetrapyrrole in plants, with heme and other tetrapyrroles being present in minor amounts. Legume root nodules represent an exception, in which heme is synthesized in high quantity in the absence of chlorophyll, thus requiring the activity of enzymes not normally expressed highly in nonphotosynthetic tissues. Heme is synthesized from the universal tetrapyrrole precursor ALA by seven successive enzymatic steps; chlorophyll formation diverges after the synthesis of protoporphyrin, the immediate heme precursor (for review, see O''Brian, 1996). Biochemical and genetic evidence shows that soybean heme biosynthesis genes are strongly induced in root nodules (Sangwan and O''Brian, 1991, 1992, 1993; Madsen et al., 1993; Kaczor et al., 1994; Frustaci et al., 1995; Santana et al., 1998), and immunohistochemical studies demonstrate that induction is concentrated in infected nodule cells (Santana et al., 1998).ALA is synthesized from Glu in plants by a three-step mechanism called the C5 pathway (Fig. (Fig.1);1); the latter two steps are committed to ALA synthesis and are catalyzed by GTR and GSAT, respectively (for review, see Beale and Weinstein, 1990; Jahn et al., 1991). Plant cDNA or genes encoding GTR (Gtr, also called HemA) and GSAT (Gsa) have been identified in several plant species (Grimm, 1990; Sangwan and O''Brian, 1993; Hofgen et al., 1994; Ilag et al., 1994; Frustaci et al., 1995; Wenzlau and Berry-Lowe, 1995; Bougri and Grimm, 1996; Kumar et al., 1996; Tanaka et al., 1996). Two genes for each enzyme have been described, and some genes are reported to be specific to a tissue, tetrapyrrole, or light regimen (Bougri and Grimm, 1996; Kumar et al., 1996; Tanaka et al., 1996). However, soybean Gsa1 is highly expressed in both leaves and nodules and contains a cis-acting element in its promoter that binds to a nuclear factor found in both tissues. (Frustaci et al., 1995). In this study we isolated soybean Gtr1 and characterized the genetic basis of GTR expression in root nodules. Figure 1C5 pathway for ALA synthesis. The committed steps for ALA synthesis catalyzed by GTR and GSAT are boxed. Glutamyl-tRNA synthetase (GluRS) and glutamyl-tRNAGlu also participate in protein synthesis. The gene designations in plants are shown in parentheses ...  相似文献   

10.
11.
A 135-kD actin-bundling protein was purified from pollen tubes of lily (Lilium longiflorum) using its affinity to F-actin. From a crude extract of the pollen tubes, this protein was coprecipitated with exogenously added F-actin and then dissociated from F-actin by treating it with high-ionic-strength solution. The protein was further purified sequentially by chromatography on a hydroxylapatite column, a gel-filtration column, and a diethylaminoethyl-cellulose ion-exchange column. In the present study, this protein is tentatively referred to as P-135-ABP (Plant 135-kD Actin-Bundling Protein). By the elution position from a gel-filtration column, we estimated the native molecular mass of purified P-135-ABP to be 260 kD, indicating that it existed in a dimeric form under physiological conditions. This protein bound to and bundled F-actin prepared from chicken breast muscle in a Ca2+-independent manner. The binding of 135-P-ABP to actin was saturated at an approximate stoichiometry of 26 actin monomers to 1 dimer of P-135-ABP. By transmission electron microscopy of thin sections, we observed cross-bridges between F-actins with a longitudinal periodicity of 31 nm. Immunofluorescence microscopy using rhodamine-phalloidin and antibodies against the 135-kD polypeptide showed that P-135-ABP was colocalized with bundles of actin filaments in lily pollen tubes, leading us to conclude that it is the factor responsible for bundling the filaments.Actin filaments, one of the major components of the cytoskeleton, are organized into a highly ordered architecture and are involved in various kinds of cell motility. Their architecture is regulated by several kinds of actin-binding proteins, including cross-linking proteins, severing proteins, end-capping proteins, and monomer-sequestering proteins in animal, protozoan, and yeast cells (Stossel et al., 1985; Pollard and Cooper, 1986; Vandekerckhove and Vancompernolle, 1992). In plant cells the organization of the actin cytoskeleton also changes remarkably during the cell cycle or during developmental processes, and it is suggested that actin-binding proteins are involved in their dynamic change. However, little is known about actin-binding proteins in plant cells.Only a low-Mr actin-binding and -depolymerizing protein, profilin, in white birch (Betula verrucosa; Valenta et al., 1991), maize (Zea mays; Staiger et al., 1993; Ruhlandt et al., 1994), bean (Phaseolus vulgaris; Vidali et al., 1995), tobacco (Nicotiana tabacum; Mittermann et al., 1995), tomato (Lycopersicon esculentum; Darnowski et al., 1996), Arabidopsis (Arabidopsis thaliana; Huang et al., 1996), and lily (Lilium longiflorum; Vidali and Hepler, 1997), and an ADF in lily (Kim et al., 1993), rapeseed (Brassica napus; Kim et al., 1993), and maize (Rozycka et al., 1995; Lopez et al., 1996), have been identified by biochemical or molecular biological means.The native and recombinant forms of these proteins are capable of binding to animal or plant actin (Valenta et al., 1993; Giehl et al., 1994; Ruhlandt et al., 1994; Lopez et al., 1996; Perelroizen et al., 1996; Carlier et al., 1997). Plant profilin expressed in mammalian BHK-21 cells (Rothkegel et al., 1996) or profilin-deficient Dictyostelium discoideum cells (Karakesisoglou et al., 1996) was able to functionally substitute for endogenous profilin in these cells. The introduction of plant profilin into living stamen hair cells by microinjection caused the rapid reduction of the number of actin filaments (Staiger et al., 1994; Karakesisoglou et al., 1996; Ren et al., 1997). These results indicate that plant profilin and ADF share many functional similarities with other eukaryote profilins and ADFs.It is well known that the actin cytoskeleton undergoes dynamic changes in organization during hydration and activation of the vegetative cells of pollen grains (Pierson and Cresti, 1992). Before hydration actin filaments exist as fusiform or spiculate structures (a storage form), but they are rearranged to form a network upon hydration (Heslop-Harrison et al., 1986; Tiwari and Polito, 1988). In the growing pollen tube there are strands or bundles of actin filaments parallel to the long axis (Perdue et al., 1985; Pierson et al., 1986; Miller et al., 1996) that are involved in cytoplasmic streaming (Franke et al., 1972; Mascarenhas and Lafountain, 1972) and transport of vegetative nuclei and generative cells to the growing tip (Heslop-Harrison et al., 1988; Heslop-Harrison and Heslop-Harrison, 1989). Characterization of the function of actin-binding proteins is essential to understanding the regulation of actin organization during the developmental process of pollen. Since only a small number of vacuoles containing proteases develop in pollen grains and pollen tubes at a younger stage, pollen tubes are suitable materials for isolating and biochemically studying actin-binding proteins responsible for organizing actin filaments into various forms.In a previous paper we reported that several components in a crude extract prepared from lily pollen tubes, including a 170-kD myosin heavy chain and 175-, 135-, and 110-kD polypeptides, could be coprecipitated with exogenously added F-actin (Yokota and Shimmen, 1994). We also found that rhodamine-labeled F-actin was tightly bound to the glass surface treated with the fraction containing the 135- and 110-kD polypeptides (Yokota and Shimmen, 1994). These results suggested that either one or both of the 135- and 110-kD polypeptides possesses an F-actin-binding activity. In the present study, we purified the 135-kD polypeptide from lily pollen tubes by biochemical procedures and then characterized its F-actin-binding properties and distribution in the pollen tubes. This protein was able to bundle F-actin isolated from chicken breast muscle and colocalized with actin-filament bundles in pollen tubes. We refer to this protein as P-135-ABP (Plant 135-kD Actin-Bundling Protein).  相似文献   

12.
13.
14.
The desmosome is a highly organized plasma membrane domain that couples intermediate filaments to the plasma membrane at regions of cell–cell adhesion. Desmosomes contain two classes of cadherins, desmogleins, and desmocollins, that bind to the cytoplasmic protein plakoglobin. Desmoplakin is a desmosomal component that plays a critical role in linking intermediate filament networks to the desmosomal plaque, and the amino-terminal domain of desmoplakin targets desmoplakin to the desmosome. However, the desmosomal protein(s) that bind the amino-terminal domain of desmoplakin have not been identified. To determine if the desmosomal cadherins and plakoglobin interact with the amino-terminal domain of desmoplakin, these proteins were co-expressed in L-cell fibroblasts, cells that do not normally express desmosomal components. When expressed in L-cells, the desmosomal cadherins and plakoglobin exhibited a diffuse distribution. However, in the presence of an amino-terminal desmoplakin polypeptide (DP-NTP), the desmosomal cadherins and plakoglobin were observed in punctate clusters that also contained DP-NTP. In addition, plakoglobin and DP-NTP were recruited to cell–cell interfaces in L-cells co-expressing a chimeric cadherin with the E-cadherin extracellular domain and the desmoglein-1 cytoplasmic domain, and these cells formed structures that were ultrastructurally similar to the outer plaque of the desmosome. In transient expression experiments in COS cells, the recruitment of DP-NTP to cell borders by the chimera required co-expression of plakoglobin. Plakoglobin and DP-NTP co-immunoprecipitated when extracted from L-cells, and yeast two hybrid analysis indicated that DP-NTP binds directly to plakoglobin but not Dsg1. These results identify a role for desmoplakin in organizing the desmosomal cadherin–plakoglobin complex and provide new insights into the hierarchy of protein interactions that occur in the desmosomal plaque.Desmosomes are highly organized adhesive intercellular junctions that couple intermediate filaments to the cell surface at sites of cell–cell adhesion (Farquhar and Palade, 1963; Staehelin, 1974; Schwarz et al., 1990; Garrod, 1993; Collins and Garrod, 1994; Cowin and Burke, 1996; Kowalczyk and Green, 1996). Desmosomes are prominent in tissues that experience mechanical stress, such as heart and epidermis, and the disruption of desmosomes or the intermediate filament system in these organs has devastating effects on tissue integrity (Steinert and Bale, 1993; Coulombe and Fuchs, 1994; Fuchs, 1994; McLean and Lane, 1995; Stanley, 1995; Bierkamp et al., 1996; Ruiz et al., 1996). Desmosomes are highly insoluble structures that can withstand harsh denaturing conditions (Skerrow and Matoltsy, 1974; Gorbsky and Steinberg, 1981; Jones et al., 1988; Schwarz et al., 1990). This property of desmosomes facilitated early identification of desmosomal components but has impaired subsequent biochemical analysis of the protein complexes that form between desmosomal components. Ultrastructurally, desmosomes contain a core region that includes the plasma membranes of adjacent cells and a cytoplasmic plaque that anchors intermediate filaments to the plasma membrane. The plaque can be further divided into an outer dense plaque subjacent to the plasma membrane and an inner dense plaque through which intermediate filaments appear to loop.Molecular genetic analysis has revealed that the desmosomal glycoproteins, the desmogleins and desmocollins, are members of the cadherin family of cell–cell adhesion molecules (for review see Buxton et al., 1993, 1994; Cowin and Mechanic, 1994; Kowalczyk et al., 1996). The classical cadherins, such as E-cadherin, mediate calcium-dependent, homophilic cell–cell adhesion (Nagafuchi et al., 1987). The mechanism by which the desmosomal cadherins mediate cell–cell adhesion remains elusive (Amagai et al., 1994; Chidgey et al., 1996; Kowalczyk et al., 1996), although heterophilic interactions have recently been detected between desmogleins and desmocollins (Chitaev and Troyanovsky, 1997). Both classes of the desmosomal cadherins associate with the cytoplasmic plaque protein plakoglobin (Kowalczyk et al., 1994; Mathur et al., 1994; Roh and Stanley, 1995b ; Troyanovsky et al., 1994), which is part of a growing family of proteins that share a repeated motif first identified in the Drosophila protein Armadillo (Peifer and Wieschaus, 1990). This multigene family also includes the desmosomal proteins band 6/plakophilin 1, plakophilin 2a and 2b, and p0071, which are now considered to comprise a subclass of the armadillo family of proteins (Hatzfeld et al., 1994; Heid et al., 1994; Schmidt et al., 1994; Hatzfeld and Nachtsheim, 1996; Mertens et al., 1996).The most abundant desmosomal plaque protein is desmoplakin, which is predicted to be a homodimer containing two globular end domains joined by a central α-helical coiled-coil rod domain (O''Keefe et al., 1989; Green et al., 1990; Virata et al., 1992). Previous studies have demonstrated that the carboxyl-terminal domain of desmoplakin interacts with intermediate filaments (Stappenbeck and Green, 1992; Stappenbeck et al., 1993; Kouklis et al., 1994; Meng et al., 1997), and the amino-terminal domain of desmoplakin is required for desmoplakin localization to the desmosomal plaque (Stappenbeck et al., 1993). Direct evidence supporting a role for desmoplakin in intermediate filament attachment to desmosomes was provided recently when expression of an amino-terminal polypeptide of desmoplakin was found to displace endogenous desmoplakin from cell borders and disrupt intermediate filament attachment to the cell surface in A431 epithelial cell lines (Bornslaeger et al., 1996).The classical cadherins, such as E-cadherin, bind directly to both β-catenin and plakoglobin (Aberle et al., 1994; Jou et al., 1995; for review see Cowin and Burke, 1996). β-Catenin is also an armadillo family member (McCrea et al., 1991; Peifer et al., 1992), and both plakoglobin and β-catenin bind directly to α-catenin (Aberle et al., 1994, 1996; Jou et al., 1995; Sacco et al., 1995; Obama and Ozawa, 1997). α-Catenin is a vinculin homologue (Nagafuchi et al., 1991) and associates with both α-actinin and actin (Knudson et al., 1995; Rimm et al., 1995; Nieset et al., 1997). Through interactions with β- and α-catenin, E-cadherin is coupled indirectly to the actin cytoskeleton, and this linkage is required for the adhesive activity of E-cadherin (Ozawa et al., 1990; Shimoyama et al., 1992). In addition, E-cadherin association with plakoglobin appears to be required for assembly of desmosomes (Lewis et al., 1997), underscoring the importance of E-cadherin in the overall program of intercellular junction assembly. However, the hierarchy of molecular interactions that couple the desmosomal cadherins to the intermediate filament cytoskeleton is largely unknown, although the desmocollin cytoplasmic domain appears to play an important role in recruiting components of the desmosomal plaque (Troyanovsky et al., 1993, 1994). Since desmosomal cadherins form complexes with plakoglobin and because the amino-terminal domain of desmoplakin is required for desmoplakin localization at desmosomes, we hypothesized that the amino-terminal domain of desmoplakin interacts with the desmosomal cadherin– plakoglobin complex.In previous studies, we used L-cell fibroblasts to characterize plakoglobin interactions with the cytoplasmic domains of the desmosomal cadherins and found that the desmosomal cadherins regulate plakoglobin metabolic stability (Kowalczyk et al., 1994) but do not mediate homophilic adhesion (Kowalczyk et al., 1996). To test the ability of the desmoplakin amino-terminal domain to interact with the desmosomal cadherin–plakoglobin complex, we established a series of L-cell lines expressing the desmosomal cadherins in the presence or absence of a desmoplakin amino-terminal polypeptide (DP-NTP).1 The results indicate that one important function of the desmoplakin amino-terminal domain is to cluster desmosomal cadherin–plakoglobin complexes. In addition, DP-NTP and plakoglobin were found to form complexes that could be co-immunoprecipitated from L-cell lysates. Using the yeast two hybrid system, DP-NTP was found to bind directly to plakoglobin but not Dsg1. These data suggest that plakoglobin couples the amino-terminal domain of desmoplakin to the desmosomal cadherins and that desmoplakin plays an important role in organizing the desmosomal cadherin–plakoglobin complex into discrete plasma membrane domains.  相似文献   

15.
16.
17.
18.
19.
20.
A reversibly glycosylated polypeptide from pea (Pisum sativum) is thought to have a role in the biosynthesis of hemicellulosic polysaccharides. We have investigated this hypothesis by isolating a cDNA clone encoding a homolog of Arabidopsis thaliana, Reversibly Glycosylated Polypeptide-1 (AtRGP1), and preparing antibodies against the protein encoded by this gene. Polyclonal antibodies detect homologs in both dicot and monocot species. The patterns of expression and intracellular localization of the protein were examined. AtRGP1 protein and RNA concentration are highest in roots and suspension-cultured cells. Localization of the protein shows it to be mostly soluble but also peripherally associated with membranes. We confirmed that AtRGP1 produced in Escherichia coli could be reversibly glycosylated using UDP-glucose and UDP-galactose as substrates. Possible sites for UDP-sugar binding and glycosylation are discussed. Our results are consistent with a role for this reversibly glycosylated polypeptide in cell wall biosynthesis, although its precise role is still unknown.The primary cell wall of dicot plants is laid down by young cells prior to the cessation of elongation and secondary wall deposition. Making up to 90% of the cell''s dry weight, the extracellular matrix is important for many processes, including morphogenesis, growth, disease resistance, recognition, signaling, digestibility, nutrition, and decay. The composition of the cell wall has been extensively described (Bacic et al., 1988; Levy and Staehelin, 1992; Zablackis et al., 1995), and yet many questions remain unanswered regarding the synthesis and interaction of these components to provide cells with a functional wall (Carpita and Gibeaut, 1993; Carpita et al., 1996).Heteropolysaccharide biosynthesis can be divided into four steps: (a) chain or backbone initiation, (b) elongation, (c) side-chain addition, and (d) termination and extracellular deposition (Waldron and Brett, 1985). The similarity between various polysaccharide backbones leads to the prediction that the synthesizing machinery would be conserved between them. For example, the backbone of xyloglucan polymers, β-1,4 glucan, can be synthesized independently of or concurrently with side-chain addition (Campbell et al., 1988; White et al., 1993), and this polymer and the chains that make up cellulose are identical. The later addition of side chains to xyloglucan are catalyzed by specific transferases (Kleene and Berger, 1993) such as xylosyltransferase (Campbell et al., 1988), galactosyltransferase, and fucosyltransferase (Faïk et al., 1997), all of which are localized to the Golgi compartment (Brummell et al., 1990; Driouich et al., 1993; Staehelin and Moore, 1995).The enzymes involved in wall biosynthesis have been recalcitrant to isolation (Carpita et al., 1996; Albersheim et al., 1997). Only recently has the first gene encoding putative cellulose biosynthetic enzymes, celA, been isolated from cotton (Gossypium hirsutum) and rice (Oryza sativa; Pear et al., 1996).During studies of polysaccharide synthesis in pea (Pisum sativum) Golgi membranes, Dhugga et al. (1991) identified a 41-kD protein doublet that they suggested was involved in polysaccharide synthesis. The authors showed that this protein could be glycosylated by radiolabeled UDP-Glc but that this labeling could be reversibly competed with by unlabeled UDP-Glc, UDP-Xyl, and UDP-Gal, the sugars that make up xyloglucan (Hayashi, 1989). The 41-kD protein was named PsRGP1 (P. sativum Reversibly Glycosylated Polypeptide-1; Dhugga et al., 1997). Furthermore, the conditions that stimulate or inhibit Golgi-localized β-glucan synthase activity are the same conditions that stimulate or inhibit the glycosylation of PsRGP1 (Dhugga et al., 1991). To address the role of this protein in polysaccharide synthesis, the authors purified the polypeptides and obtained the sequences from tryptic peptides (Dhugga and Ray, 1994). Antibodies raised against PsRGP1 showed that it is soluble and localized to the plasma membrane (Dhugga et al., 1991) and Golgi compartment (Dhugga et al., 1997). In addition to its Golgi localization, the steady-state glycosylation of PsRGP1 is approximately 10:7:3 (UDP-Glc:-Xyl:-Gal), which is similar to the typical sugar composition of xyloglucan (1.0:0.75:0.25; Dhugga et al., 1997).We were interested in studying various aspects of cell wall metabolism, including the synthesis of polysaccharides and their delivery to the cell wall. Studies in pea have shown that a 41-kD protein may be involved in cell wall polysaccharide synthesis, possibly that of xyloglucan (Dhugga et al., 1997). Here we report the characterization of AtRGP1 (Arabidopsis thaliana Reversibly Glycosylated Polypeptide-1), a soluble protein that can also be found weakly associated with membrane fractions, most likely the Golgi fraction. The reversible nature of the glycosylation of this Arabidopsis homolog by the substrates used to make polysaccharides (nucleotide sugars) suggests a possible role for AtRGP1 in polysaccharide biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号