首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Glial cells, including microglia and astrocytes, are considered the primary source of proinflammatory cytokines in the brain. Immune insults stimulate glial cells to secrete proinflammatory cytokines that modulate the acute systemic response, which includes fever, behavioral changes, and hypothalamic-pituitary-adrenal (HPA) axis activation. We investigated the effect of general anesthetics on proinflammatory cytokine expression in the primary cultured glial cells, the microglial cell line BV-2, the astrocytic cell line A-1 and mouse brain.

Methodology/Principal Findings

Primary cultured glial cells were exposed to lipopolysaccharide (LPS) in combination with general anesthetics including isoflurane, pentobarbital, midazolam, ketamine, and propofol. Following this treatment, we examined glial cell expression of the proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). LPS-induced expression of IL-1β mRNA and protein were significantly reduced by all the anesthetics tested, whereas IL-6 and TNF-α mRNA expression was unaffected. The anesthetics suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK 1/2) phosphorylation, but did not affect nuclear factor-kappaB and activator protein-1 activation. The same effect was observed with BV-2, but not with A-1 cells. In the mouse experiments, LPS was injected intraperitoneally, and isoflurane suppressed IL-1β in the brain and adrenocorticotropic hormone in plasma, but not IL-1β in plasma.

Conclusions/Significance

Taken together, our results indicate that general anesthetics inhibit LPS-induced IL-1β upregulation in glial cells, particularly microglia, and affects HPA axis participation in the stress response.  相似文献   

2.
3.
In the current study of Mycobacterium tuberculosis (MTB)-specific T and B cells, we found that MTB-specific peptides from early secreted antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) induced the expression of IL-21 predominantly in CD4+ T cells. A fraction of IL-21-expressing CD4+ T cells simultaneously expressed Th1 cytokines but did not secrete Th2 or Th17 cytokines, suggesting that MTB-specific IL-21-expressing CD4+ T cells were different from Th1, Th2 and Th17 subpopulations. The majority of MTB-specific IL-21-expressing CD4+ T cells co-expressed IFN-γ and IL-21+IFN-γ+CD4+ T cells exhibited obviously polyfunctionality. In addition, MTB-specific IL-21-expressing CD4+ T cells displayed a CD45RO+CD62LlowCCR7lowCD40LhighICOShigh phenotype. Bcl-6-expression was significantly higher in IL-21-expressing CD4+ T cells than IL-21-CD4+ T cells. Moreover, IL-12 could up-regulate MTB-specific IL-21 expression, especially the frequency of IL-21+IFN-γ+CD4+ T cells. Taken together, our results demonstrated that MTB-specific IL-21+IFN-γ+CD4+ T cells from local sites of tuberculosis (TB) infection could be enhanced by IL-12, which have the features of both Tfh and Th1 cells and may have an important role in local immune responses against TB infection.  相似文献   

4.
Asthma-related mortality has been decreasing due to inhaled corticosteroid use, but severe asthma remains a major clinical problem. One characteristic of severe asthma is resistance to steroid therapy, which is related to neutrophilic inflammation. Recently, the tumor necrosis factor superfamily member (TNFSF) 14/LIGHT has been recognized as a key mediator in severe asthmatic airway inflammation. However, the profiles and intracellular mechanisms of cytokine/chemokine production induced in cells by LIGHT are poorly understood. We aimed to elucidate the molecular mechanism of LIGHT-induced cytokine/chemokine production by bronchial epithelial cells. Human bronchial epithelial cells express lymphotoxin β receptor (LTβR), but not herpesvirus entry mediator, which are receptors for LIGHT. LIGHT induced various cytokines/chemokines, such as interleukin (IL)-6, oncostatin M, monocyte chemotactic protein-1, growth-regulated protein α and IL-8. Specific siRNA for LTβR attenuated IL-6 and IL-8 production by BEAS-2B and normal human bronchial epithelial cells. LIGHT activated intracellular signaling, such as mitogen-activated protein kinase and nuclear factor-κB (NF-κB) signaling. LIGHT also induced luciferase activity of NF-κB response element, but not of activator protein-1 or serum response element. Specific inhibitors of phosphorylation of extracellular signal-regulated kinase (Erk) and that of inhibitor κB attenuated IL-8 production, suggesting that LIGHT-LTβR signaling induces IL-8 production via the Erk and NF-κB pathways. LIGHT, via LTβR signaling, may contribute to exacerbation of airway neutrophilic inflammation through cytokine and chemokine production by bronchial epithelial cells.  相似文献   

5.

Background

We recently reported that colon tumor cells stimulate macrophages to release IL-1β, which in turn inactivates GSK3β and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.

Principal Findings

Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1β by neutralizing IL-1β antibody, or silencing of IL-1β in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1β was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Δψ) and activation of caspases were prevented by macrophages or by recombinant IL-1β. Pharmacological inhibition of IL-1β release from macrophages by vitamin D3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1β failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIκB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1β stabilized Snail in tumor cells in an NF-κB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1β, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.

Significance

We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1β, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D3 halts this amplifying loop by interfering with the release of IL-1β from macrophages. Accordingly, vitamin D3 sensitizes tumor cells to TRAIL-induced apoptosis, suggesting that the therapeutic efficacy of TRAIL could be augmented by this readily available chemopreventive agent.  相似文献   

6.
The role played by lung dendritic cells (DCs) which are influenced by external antigens and by their redox state in controlling inflammation is unclear. We studied the role played by nitric oxide (NO) in DC maturation and function. Human DCs were stimulated with a long-acting NO donor, DPTA NONOate, prior to exposure to lipopolysaccharide (LPS). Dose-and time-dependent experiments were performed with DCs with the aim of measuring the release and gene expression of inflammatory cytokines capable of modifying T-cell differentiation, towardsTh1, Th2 and Th17 cells. NO changed the pattern of cytokine release by LPS-matured DCs, dependent on the concentration of NO, as well as on the timing of its addition to the cells during maturation. Addition of NO before LPS-induced maturation strongly inhibited the release of IL-12, while increasing the expression and release of IL-23, IL-1β and IL-6, which are all involved in Th17 polarization. Indeed, DCs treated with NO efficiently induced the release of IL-17 by T-cells through IL-1β. Our work highlights the important role that NO may play in sustaining inflammation during an infection through the preferential differentiation of the Th17 lineage.  相似文献   

7.
8.
9.
Human cardiac stem/progenitor cells and their potential for repair of heart injury are a current hot topic of research. CD117 has been used frequently as a marker for identification of stem/progenitor cells in the heart. However, cardiac mast cells, which are also CD117+, have not been excluded by credible means when selecting putative cardiac progenitors by using CD117 as a marker. We evaluated the relationship between CD117+ cells and mast cells in the left ventricle of human hearts (n=5 patients, ages 1 week–75 years) with the well-established mast cell markers tryptase, toluidine blue, and thionine. A large number (85–100%) of CD117+ cells in the human heart were specifically identified as mast cells. In addition, mast cells showed weak or moderate CD45 immunostaining signals. These results indicate that the majority of CD117+ cells in the heart are mast cells and that these cells are distinctly positive for CD45, although staining was weak or moderate. These results strongly suggest that the newly reported CD117+/CD45dim/moderate putative cardiac progenitor cells are mast cells. The significance of this observation in stem cell research of the heart is discussed. (J Histochem Cytochem 58:309–316, 2010)  相似文献   

10.
How Do Mesenchymal Stromal Cells Suppress T Cells?   总被引:1,自引:0,他引:1  
Keating A 《Cell Stem Cell》2008,2(2):106-108
Accumulating information indicates that mesenchymal stem or stromal cells (MSCs) are immunomodulatory, but the data to explain the observations are frequently conflicting. In this issue of Cell Stem Cell, Ren et al. (2008) provide evidence for a possible underlying mechanism of MSC-mediated T cell suppression. A perspective for considering these interesting observations is discussed.  相似文献   

11.
12.
13.
14.
Cytokines secreted from dendritic cells (DCs) play an important role in the regulation of T helper (Th) cell differentiation and activation into effector cells. Therefore, controlling cytokine secretion from DCs may potentially regulate Th differentiation/activation. DCs also induce de-novo generation of regulatory T cells (Treg) that modulate the immune response. In the current study we used the mixed leukocyte reaction (MLR) to investigate the effect of allospecific Treg on IL-12, TNFα and IL-6 secretion by DCs. Treg cells were found to markedly down-regulate IL-12 secretion from DCs following stimulation with TLR7/8 agonist. This down-regulation of IL-12 was neither due to a direct suppression of its production by the DCs nor a result of marked DC death. We found that IL-12 was rather actively consumed by Treg cells. IL-12 consumption was mediated by a subpopulation of IL-12Rβ2-expressing Treg cells and was dependent on MHC class-II expressed on dendritic cells. Furthermore, IL-12 consumption by Tregs increased their suppressive effect on T cell proliferation and Th1 activation. These results provide a new pathway of Th1 response regulation where IL-12 secreted by DCs is consumed by a sub-population of IL-12Rβ2-expressing Treg cells. Consumption of IL-12 by Tregs not only reduces the availability of IL-12 to Th effector cells but also enhances the Treg immunosuppressive effect. This DC-induced IL-12Rβ2-expressing Treg subpopulation may have a therapeutic advantage in suppressing Th1 mediated autoimmunity.  相似文献   

15.
In this study, B cell function in protective TH2 immunity against N. brasiliensis infection was investigated. Protection against secondary infection depended on IL-4Rα and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Rα−/− mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Rα expressing B cells into naïve BALB/c mice, but not IL-4Rα or IL-13 deficient B cells, conferred protection against primary N. brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4+ T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88−/− B cells. These data suggest TLR dependent antigen processing by IL-4Rα-responsive B cells producing IL-13 contribute significantly to CD4+ T cell-mediated protective immunity against N. brasiliensis infection.  相似文献   

16.
Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB) granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vγ2Vδ2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNγ-producing Vγ2Vδ2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNγ neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vγ2Vδ2 T-cell-driven IFNγ-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vγ2Vδ2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.  相似文献   

17.

Background

Myeloid-derived suppressor cells (MDSCs) function in immunosuppression and tumor development by induction of angiogenesis in a STAT3-dependent manner. Knowledge of MDSC biology is mainly limited to mice studies, and more clinical investigations using spontaneous tumor models are required. Here we performed in vitro experiments and clinical data analysis obtained from canine patients.

Methods

Using microarrays we examined changes in gene expression in canine mammary cancer cells due to their co-culture with MDSCs. Further, using Real-time rt-PCR, Western blot, IHC, siRNA, angiogenesis assay and migration/invasion tests we examined a role of the most important signaling pathway.

Results

In dogs with mammary cancer, the number of circulating MDSCs increases with tumor clinical stage. Microarray analysis revealed that MDSCs had significantly altered molecular pathways in tumor cells in vitro. Particularly important was the detected increased activation of IL-28/IL-28RA (IFN-λ) signaling. The highest expression of IL-28 was observed in stage III/IV mammary tumor-bearing dogs. IL-28 secreted by MDSCs stimulates STAT3 in tumor cells, which results in increased expression of angiogenic factors and subsequent induction of angiogenesis by endothelial cells, epithelial-mesenchymal transition (EMT) and increased migration of tumor cells in vitro. Knockdown of IL-28RA decreased angiogenesis, tumor cell invasion and migration.

Conclusions

We showed for the first time that MDSCs secrete IL-28 (IFN-λ), which promotes angiogenesis, EMT, invasion and migration of tumor cells. Thus, IL-28 may constitute an interesting target for further therapies. Moreover, the similarity in circulating MDSC levels at various tumor clinical stages between canine and human patients indicates canines as a good model for clinical trials of drugs targeting MDSCs.  相似文献   

18.
Species-specific differences of post-translational modifications suggested the existence of human IL-15Rα isoforms. We identified eight new isoforms that are predicted to modify the intracellular C termini of IL-15Rα, and another N-terminal exon “Ex2A” that was consistently present in all but one of the C-terminal isoforms. Ex2A encodes a 49-amino acid domain that allowed the transfer of IL-15/IL-15Rα complex to the cell surface but prevented its cleavage from cell membranes and its secretion thus facilitating the transpresentation of IL-15 as part of the immunological synapse. The Ex2A domain also affected the O-glycosylation of IL-15Rα that explained the species-specific differences. The Ex2A domain appeared to be removed from major IL-15Rα species during protein maturation, but both Ex2A and IL-15Rα appeared on the surface of monocytic cells upon activation. The membrane-associated form of the only C-terminal isoform that lacked Ex2A (IC3) was retained inside the cell, but soluble IL-15/IL-15Rα complexes were readily released from cells that expressed IL-15/IL-15Rα-IC3 thus limiting this IL-15/IL-15Rα isoform to act as a secreted molecule. These data suggest that splice versions of IL-15Rα determine the range of IL-15 activities.  相似文献   

19.
IL-12 is a cytokine that stimulates the expression of CD26, a T cell– and raft-associated ectopeptidase. IL-12 also enhances the interaction between CD26 and CD45RO, which removes the phosphatase CD45RO from raft microdomains. Since Janus kinases are known CD45 substrates, our hypothesis was that this relocation of CD45RO in nonraft areas of the membrane could be important to switch off the signaling via cytokine receptors, e.g., the IL-12 receptor (IL-12R). Accordingly, both IL-12R and CD45RO should be equally positioned in the cell membrane upon IL-12R ligation. However, there were no data available on the membrane distribution of IL-12R on human T cells. Working with phytohemagglutinin (PHA) lymphoblasts, we tried to fill that gap. The high-affinity IL-12R is made of two chains: IL-12Rβ1 and IL-12Rβ2. Using flow cytometry, Western blot and confocal microscopy, we obtained data suggesting that IL-12Rβ1 is mainly associated to phospholipid-rich membrane areas, a location even enhanced upon IL-12 incubation of PHA blasts. Instead, IL-12Rβ2 is found more segregated into membrane rafts, which could explain why two IL-12-triggered events, T-cell proliferation and ERK1/2 activation, are both methyl-β-cyclodextrin-sensitive events. Ligation of IL-12R with IL-12 seems to induce a partial enrichment of IL-12Rβ2 in phospholipid-rich areas, where according to our data IL-12Rβ1 is already present. Therefore, although new data will be required, the present results support the initial hypothesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号