首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the growth, photosynthetic parameters, initial and total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, the relative expression of rbcL, rbcS, and rca gene, and nitrogen metabolism of cucumber (Cucumis sativus L. cv. Jinchun No.2, CS) plants grafted onto figleaf gourd (Cucurbita ficifolia Bouché, CF) and pumpkin (Cucurbita moschata Duch. cv. Chaojiquanwang, CM) rootstocks. Growth inhibition under salt stress (90 mM NaCl) was characterized by the irreversible inhibition of CO2 assimilation in the cucumber plants grafted onto cucumber rootstocks (CS/CS). In contrast, this effect was significantly alleviated by grafting the cucumber plants onto the CF and CM roots (CS/CF, CS/CM). Under NaCl stress, the CS/CF and CS/CM plants exhibited higher photosynthetic activity, higher initial and total Rubisco activity, and higher Rubisco-related gene expression than the CS/CS plants. Salinity resulted in a lesser increase in nitrate content and decrease in free amino acid content in the CS/CF and the CS/CM plants compared with the CS/CS plants. Accordingly, the activity of nitrate reductase, glutamine synthetase, and glutamate synthase decreased significantly, especially in the CS/CS plants. These results suggest that grafting cucumber plants onto salt-tolerant rootstocks enhances Rubisco activity and the expression of Rubisco-related genes by effectively accelerating nitrate transformation into amino acids under NaCl stress, thereby improving the photosynthetic performance of cucumber leaves.  相似文献   

2.
The aim of the current work was to determine whether grafting could improve salinity tolerance of melon and cucumber, and whether possible induction of tolerance to salt stress was associated with the protection of the photosynthetic apparatus. Two greenhouse experiments were carried out to determine gas exchange, mineral composition, growth and yield of melon (Cucumis melo L. cv. Cyrano) and cucumber (Cucumis sativus L. cv. Akito) plants, either ungrafted or grafted onto the Cucurbita hybrid rootstocks (Cucurbita maxima Duch. × Cucurbita moschata Duch.), ??P360??, and ??PS1313??, respectively. Plants were grown hydroponically and supplied with two nutrient solutions ?? a nonsalinized control and a salinized solution which contained 40 mmol L?1 of NaCl. Salinity induced a smaller decrease in leaf area index (LAI), in grafted-compared to ungrafted plants. Similarly, the P N and g s reduction in NaCl treatment compared to control were significantly lower in grafted plants (34% and 34%, respectively, for melon and 14% and 15.5%, respectively, for cucumber) compared to ungrafted plants (42% and 40%, respectively, for melon and 30% and 21%, respectively, for cucumber). In all grafting combinations, negative correlations were recorded between Na+ and Cl? in the leaf tissue and P N. Grafting reduced concentrations of sodium, but not chloride, in leaves. Under saline conditions a smaller reduction in melon and cucumber shoot biomass dry mass and fruit yield were recorded, with positive correlations between shoot biomass, yield and P N. These results suggest that the use of salt tolerant Cucurbita rootstock can improve melon and cucumber photosynthetic capacity under salt stress and consequently crop performance.  相似文献   

3.
Root-knot nematode-susceptible melons (Cantaloupe) were grown in pots with varying levels of Meloidogyne incognita and were compared to susceptible melons that were grafted onto Cucumis metuliferus or Cucurbita moschata rootstocks. In addition, the effect of using melons as transplants in nematode-infested soil was compared to direct seeding of melons in nematode-infested soil. There were no differences in shoot or root weight, or severity of root galling between transplanted and direct-seeded non-grafted susceptible melon in nematode-infested soil. Susceptible melon grafted on C. moschata rootstocks had lower root gall ratings and, at high nematode densities, higher shoot weights than non-grafted susceptible melons. However, final nematode levels were not lower on the grafted than on the non-grafted plants, and it was therefore concluded that grafting susceptible melon on to C. moschata rootstock made the plants tolerant, but not resistant, to the nematodes. Grafting susceptible melons on C. metuliferus rootstocks also reduced levels of root galling, prevented shoot weight losses, and resulted in significantly lower nematode levels at harvest. Thus, C. metuliferus may be used as a rootstock for melon to prevent both growth reduction and a strong nematode buildup in M. incognita-infested soil.  相似文献   

4.
Due to limited availability of arable land and high market demand for off-season vegetables, cucurbits (plants in the family Cucurbitaceae) are continuously cultivated under unfavorable conditions in some countries. These conditions include environments that are too cold, wet, or dry, or are cool low-light winter greenhouses. Successive cropping can increase salinity, the incidence of cucurbit pests, and soilborne diseases like fusarium wilt caused by Fusarium spp. These conditions cause various physiological and pathological disorders leading to severe crop loss. Chemical pest control is expensive, not always effective, and can harm the environment. Grafting can overcome many of these problems. In fact, in many parts of the world, grafting is a routine technique in continuous cropping systems. It was first commonly used in Japan during the late 1920s by grafting watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] onto pumpkin [Cucurbita moschata Duchesne ex. Poir] rootstocks. Soon after, watermelons were grafted onto bottle gourd [Lagenaria siceraria (Molina) Standl.] rootstocks. This practice helped control declining yield due to soilborne diseases. China produces more than half the world's watermelons and cucumbers (Cucumis sativus L.), and approximately 20% of these are grafted. Use of rootstocks can enhance plant vigor through vigorous attainment of soil nutrients, avoidance of soil pathogens and tolerance of low soil temperatures, salinity, and wet-soil conditions. The type of rootstock affects cucurbit plant growth, yield, and fruit quality. Cucurbit grafting is rare in the United States, but with continued loss of quality disease-free farmland along with the phase-out of methyl bromide, the U.S. cucurbit industry sees grafting as an attractive option. Some seed companies now offer watermelon transplants grafted onto squash or bottle gourd rootstocks, and some transplant facilities offer grafting services. There have been thorough analyses of cucurbit grafting in other countries, but the literature in English is limited. This review summarizes the state of the cucurbit grafting industry on a global level, translating work published in many languages.  相似文献   

5.
Reciprocal cleft and pistillate floral bud grafts were made between parthenocarpic `Fertilla' and nonparthenocarpic `MSU 713-5' cucumber (Cucumis sativus L.) lines to localize the site for stimulation of parthenocarpic fruit set. No fruit set on `MSU 713-5' controls, scion grafted to `Fertilla,' or rootstock with `Fertilla' as the scion. `Fertilla' controls, rootstock, and scions all produced parthenocarpic fruit when grafted to `MSU 713-5.' When pistillate floral buds of `MSU 713-5' were grafted to `Fertilla,' no fruit were produced. However, individual immature pistillate buds of `Fertilla' developed into mature fruits when grafted onto `MSU 713-5.' Hence, the immature ovary is the site of stimulation for parthenocarpic fruit set in cucumber.  相似文献   

6.
The effect of floral stimulus on flower sex expression in monoeciouscucurbits was examined using a qualitative short-day plant,Sicyos angulatus L. Sicyos was induced to flower not only bygrafting it onto a flower-induced plant of the same speciesbut also by intergeneric grafting Onto the day-neutral plantCucumis sativus L. or the quantitative short-day plant Luffacylindrica Roem under noninductive long-day conditions. Sicyosplant grafted onto various cucumber varieties having differentgenetic backgrounds for their sex expression developed bothstaminate and pistillate inflorescences with similar sex expression.When the availability of floral stimulus was restricted as inthe case of grafting of Sicyos onto young cucumber seedlingsat the cotyledonary stage, most inflorescences appearing onthe Sicyos were staminate ones. Pistillate flowers formed onthe cucumber receptors substantially increased when they weregrafted onto Sicyos donors which had a sufficient number ofleaves induced by short-days as compared with those graftedonto noninduced ones. These results suggest that the availabilityof floral stimulus participates in the sex expression of flowersin Cucurbitaceae. Undeveloped pistillate inflorescences, whichoccasionally appear on Sicyos scion, flowered normally whenN6-benzylaminopurine was directly applied to the inflorescence. (Received February 27, 1981; Accepted October 16, 1981)  相似文献   

7.
Boron and salinity effects on grafted and non-grafted melon plants   总被引:7,自引:0,他引:7  
Production of melon (Cucumis melo) may be limited by excesses of boron and salinity, and it was hypothesized that melon grafted onto Cucurbita rootstock would be more tolerant to excessive boron concentrations than non-grafted plants. The objectives of this study were (i) to determine the effects of salinity and excessive boron concentrations in irrigation water on growth and yields of grafted and non-grafted melon plants; and (ii) to study the interaction between the effects of salinity and boron on the uptake of macroelements and boron by grafted and non-grafted melon plants. The plants were grown in pots of Perlite in a greenhouse. The combined effects of boron and salinity on growth and yield were investigated for five boron concentrations, ranging from 0.2 to 10 mg L− 1, and two salinity levels, electrical conductivity (EC) 1.8 and 4.6 dS m− 1, in the irrigation water. With low salinity the boron concentrations in old leaves of non-grafted and grafted plants ranged from 249 to 2827 and from 171 to 1651 mg kg− 1 dry weight, respectively; with high salinity the corresponding concentrations ranged from 192 to 2221 and from 200 to 1263 mg kg− 1 dry weight, respectively. These results indicate that the grafted plants accumulated less boron than the non-grafted plants when they were exposed to similar boron concentrations, and that both plant types absorbed less boron when irrigated with the more saline irrigation water. It is suggested that: (i) the Cucurbita rootstock excluded some boron and that this, in turn, decreased the boron concentration in the grafted plants; and (ii) the low boron uptake under high-salinity irrigation was mainly a result of reduced transpiration of the plants. Significant negative linear regressions were found between fruit yield and leaf boron concentration for grafted plants, under both low and high salinity levels, and for non-grafted plants under low salinity. The fruit yield of the grafted plants was less affected by boron accumulation in the leaves than that of non-grafted plants. Increasing the water salinity decreased the sensitivity of both plant types to increases in leaf boron concentration, which indicates that the effects of boron and salinity on melon plants were not additive.  相似文献   

8.
With the aim of determining whether grafting could improve salinity tolerance of tomato (Lycopersicon esculentum Mill.), and what characteristics of the rootstock were required to increase the salt tolerance of the shoot, a commercial tomato hybrid (cv. Jaguar) was grafted onto the roots of several tomato genotypes with different potentials to exclude saline ions. The rootstock effect was assessed by growing plants at different NaCl concentrations (0, 25, 50, and 75 mM NaCl) under greenhouse conditions, and by determining the fruit yield and the leaf physiological changes induced by the rootstock after 60 d and 90 d of salt treatment. The grafting process itself did not affect the fruit yield, as non-grafted plants of cv. Jaguar and those grafted onto their own root showed the same yield over time under non-saline conditions. However, grafting raised fruit yield in Jaguar on most rootstocks, although the positive effect induced by the rootstock was lower at 25 mM NaCl than at 50 and 75 mM NaCl. At these higher levels, the plants grafted onto Radja, Pera and the hybrid VolgogradskijxPera increased their yields by approximately 80%, with respect to the Jaguar plants. The tolerance induced by the rootstock in the shoot was related to ionic rather than osmotic stress caused by salinity, as the differential fruit yield responses among graft combinations were mainly related to the different abilities of rootstocks to regulate the transport of saline ions. This was corroborated by the high negative correlation found between fruit yield and the leaf Na(+) or Cl(-) concentrations in salt-treated plants after 90 d of salt treatment. In conclusion, grafting provides an alternative way to enhance salt tolerance, determined as fruit yield, in the tomato, and evidence is reported that the rootstock is able to reduce ionic stress.  相似文献   

9.
Cucumber grafting has been used in Egypt recently to induce soil diseases tolerance. The impact of various grafting techniques on the vulnerability of grafted cucumber seedlings to Fusarium which stimulates the stem rot was investigated. Consequently, the anatomical and physiological studies were carried out on the diseased and healthy grafted cucumber seedlings, comparing with the non-grafted ones. Fusarium equiseti (MW216971.1) caused a severe stem rot of the grafted seedling through affecting the connection area of the different grafting methods, leading to complete seedling death. The hole insertion grafting method significantly exhibited the highest diseases incidence (100%), and mean disease severity index (5) when inoculated with F. equiseti. The pathogen remarkably affected the graft union area causing tissue discoloration and decay. The levels of antioxidant enzymes and total phenols were significantly enhanced in the diseased grafted and self-rooted cucumber. However, the diseased grafted cucumber recorded significantly the highest values of the antioxidant enzymes activities and total phenolic content when compared with the self-rooted ones. The results of SDS-PAGE profile revealed variations in the leaves protein profile of the grafted and self- rooted seedlings in response to Fusarium infection. Taken together, grafting cucumber onto a resistant rootstock using the splice technique can alleviate the stem rot severity caused by Fusarium spp. by enhancing the histological, physiological and molecular defense response of the grafted seedling.  相似文献   

10.
Quantity and quality of irrigation water are considered the most imperative limiting factors for plant production in arid environment. Adoptions of strategies can minimize crop water consumption while nonexistent yield reduction is considered challenge for scholars especially in arid environment. Grafting is regarded as a promising tool to avoid or reduce yield loss caused by abiotic stresses. Tomato (Solanum lycopersium Mill.), commercial cultivar Faridah was grafted on Unifort rootstock and grown under regulated deficit irrigation (RDI) (100%, 80% and 60% ETc), using two types of irrigation water, fresh (EC = 0.86 dS/m) and brackish (EC = 3.52 dS/m). The effects of grafting and RDI on water use efficiency, vegetative growth, yield, fruit quality were investigated. Plant vegetative growth was reduced under water and salinity stresses. Grafting the plant significantly improves the vegetative growth under both conditions. The results showed that crop yield, Ca+2 and K+ were considerably increased in grafted tomato compared to non-grafted plants under water and salinity stresses. Grafted tomato plants accumulated less Na+ and Cl, especially under high levels of salinity compared to non-grafted plants. Grafting tomato plants showed a slight decrease on the fruit quality traits such as vitamin C, titratable acidity (TA) and total soluble solids (TSS). This study confirmed that grafted tomato plants can mitigate undesirable impact of salt stress on growth and fruit quality.  相似文献   

11.
This study aimed to determine the effects of different rootstocks and soilless media on the plant growth and yield of cucumber and on the leaf ion (Na+, Ca++, K+ and Cl?) concentrations. Four commercial rootstocks (TZ148 F1, RS841 F1, Nun9075 F1 and Avar F1) and two local landraces (Local-1 and Local-3 belonging to Cucurbita moschata L.) were used as rootstock and grafted and non grafted plants were tested in three different salinity conditions (2.5 dS m?1, 5.0 dS m?1 and 7.5 dS m?1) on three different soilless media (cocopeat, perlite and rockwool) in spring period under greenhouse conditions. Salinity found to reduce root and shoot dry weight, and yield of plants in all growing media. TZ148, Nun9075 and Local-3 are found to improve tolerance of cucumber plants to saline conditions (5.0 and 7.5 dS m?1) when used as rootstocks. Root and shoot dry weight, yield, Ca++ in leaves and K+/Na+ ratio in leaves were significantly decreased, but Na+ and Cl? concentration in leaves were increased under salt stress. Rootstock potential of Local-3 is also found to be quite good for cucumber under saline conditions.  相似文献   

12.
Two forms of sucrose synthase (SSI and SSII) were resolved from cucumber (Cucumis sativus) fruit pericarp and fruit peduncle tissue using DEAE-cell  相似文献   

13.
Among the most important quality parameters of irrigation water used for greenhouse crops, alkalinity of water is considered critical due to its impact on soil or growing medium solution pH. In this study, plant growth, Fe content, photosynthetic pigment content, maximal quantum yield of PSII photochemistry (Fv/Fm), performance index (PI), leaf relative water content (LRWC), and soluble sugars concentration were investigated in nongrafted and grafted tomato (Lycopersicon esculentum Mill. cv. Red stone) plants onto five rootstocks of eggplant (Solanum melongena cv. Long purple), datura (Datura patula), orange nightshade (Solanum luteum Mill.), local Iranian tobacco (Nicotiana tabacum), and field tomato (Lycopersicon esculentum Mill. cv. Cal.jn3), exposed to 0, 5, and 10 mM NaHCO3 concentrations, to determine whether grafting could improve alkalinity tolerance of tomato. Significant depression of leaf area, leaf and stem dry mass, shoot and root Fe content and LRWC under high NaHCO3 level was observed in both grafted and ungrafted plants. The highest reduction in the shoot Fe content was observed at 10 mM sodium bicarbonate in control plants (greenhouse tomato). Moreover, at high HCO3 ? level, the highest percentage of LRWC reduction was also recorded in ungrafted plants. Values of Fv/Fm and PI decreased significantly at 5 and 10 mM NaHCO3 irrespective of rootstock type. The present study revealed that soluble sugars content, photosynthetic pigments content, Fv/Fm and PI values in plants grafted onto datura rootstock were higher than those in nongrafted and rest of the grafted plants. Thus, the use of datura rootstock could provide a useful tool to improve alkalinity tolerance of tomato plants under NaHCO3 stress.  相似文献   

14.
Young leaf discs of cucumber (Cucumis sativus) emit H2S at 50–100 pmol/min/cm2 in response to 25 mM K2SO4 and light. The light-de  相似文献   

15.
The poorly understood physiological and biochemical drought responses induced in sweet orange by citrus rootstocks of contrasting drought tolerance were investigated during a drought/rewatering cycle under controlled conditions. Long-term exposure of the grafted trees to a gradually increasing water deficit and subsequent recovery revealed distinct strategies of drought acclimation that were induced by the different rootstocks. Trees grafted onto the drought-tolerant rootstock ‘Cravo’ rangpur lime were less water conservative, exhibiting an increased cell-wall elasticity that contributes to turgor maintenance and its related processes of growth and photosynthesis over a wider range of soil–water potentials. On the other hand, the drought-tolerant ‘Sunki Tropical’ mandarin and drought-sensitive ‘Flying Dragon’ trifoliate orange rootstocks induced a water conservation strategy by increasing tissue rigidity under drought. ‘Sunki Tropical’ was also able to induce osmotic adjustment, conferring thereby a more efficient water conservation strategy than ‘Flying Dragon’ by allowing for turgor maintenance at lower soil–water potentials while attenuating cell dehydration and shrinkage. In contrast to ‘Cravo’ and ‘Sunki Tropical’, trees grafted onto ‘Flying Dragon’ exhibited a significant photoinhibition of the photosystem II reaction centers, as well as an increased H2O2 production and lipid peroxidation under drought treatment. A significantly higher activity of the antioxidant enzyme GPX was also observed in drought stressed trees grafted onto ‘Flying Dragon’. Collectively, these results support the involvement of elastic and osmotic adjustments, as well as the control of oxidative stress, as functional leaf traits associated with the rootstock-induced drought tolerance in sweet orange.  相似文献   

16.
The effects of chilling at 14 and 7°C on plant growth, CO2 assimilation, light allocation, photosynthetic electron flux and antioxidant metabolism were examined in cucumber (Cucumis sativus L. cv. Jinyan No. 4, CS) plants with figleaf gourd (Cucurbita ficifolia Bouché, CF) and cucumber as rootstocks, respectively. Growth inhibition by chilling at 7°C was characterized by irreversible inhibition of CO2 assimilation in grafted plants with cucumber as rootstock and scion (CS/CS) but this effect was significantly alleviated by grafting onto CF roots (CS/CF). Chilled CS/CF plants exhibited a higher photosynthetic activity and lower proportion of energy dissipation than chilled CS/CS plants. Chilling resulted in a greater decrease in the electron flux in photosystem (PS) II (J PSII) than the rate of energy dissipation either via light-dependent (J NPQ) or via constitutive thermal dissipation and fluorescence (J f,D) in CS/CS plants. In parallel with the reduction in J PSII, electron flux to oxygenation (J o) and carboxylation by Rubisco (J c) all decreased significantly whilst alternative electron flux in PS II (J a) increased, especially in CS/CS plants. Moreover, CS/CF plants exhibited higher activity of antioxidant enzymes, lower antioxidant content and less membrane peroxidation relative to CS/CS plants after chilling.  相似文献   

17.
Potato is an important world crop but its cultivation is relatively limited by its sensitivity to salt-stress. Auto- and hetero-grafting was used to examine the effect of rootstock and abscisic acid (ABA) on expression of the Ca2+-storage protein calreticulin (CR) and salt-stress tolerance in potato. Sibling-selected diploid clones of potato (S. tuberosum) were utilized that are distinguished by differential root Na+ absorption; including type: late-maturing, LM and excluding type, early-maturing, EM under salt treatment; salt-stress sensitivity (S/T, sensitive or tolerant); and abscisic acid production (AD/AN, ABA-deficient or-normal sibling lines). CR expression, osmotic potential (OP) and leaf Ca2+ were measured at the end of a 5 days NaCl stress treatment applied at tuber initiation. Increased CR expression was induced by NaCl stress and associated with salt tolerance in early-maturing tolerant (EMT) and late-maturing tolerant (LMT) clones with higher levels of CR in LMT compared to the EMT clone. Early-maturing sensitive (EMS) clone salt tolerance increased when grafted onto LMT but not onto EMT rootstocks. EMS scions maintained less negative leaf OP when grafted onto LMT rootstocks than grafting onto the EMT rootstock. Exogenous ABA application induced a less negative upper leaf OP in the salt-stress sensitive AD clone but not in the AN clone. AD clones were characterized by low CR levels, which did not increase after stress. However, grafting the AD clone onto LMT increased CR expression in the AD portion of the graft combination. Salt-stress induced CR expression and is positively associated with the presence of ABA and the salt-stress tolerant phenotypes. Both, elevation in CR expression and salt tolerance in the tolerant rootstocks, were translocated to sensitive scions although highest permeation depended on the LM type. Calreticulin expression appears to be involved in ABA-induced salt tolerance and both salt-stress tolerance and CR expression appear to be regulated by the roots.  相似文献   

18.
In order to investigate the effects of low irradiation (LI) on cucumber (Cucumis sativus L. cv. Jinyou 35) during a ripening stage, our experiment was carried out in a climate chamber. Two levels of PAR were set for plants: normal irradiation [NI, 600 μmol(photon) m?2 s?1] and low irradiation [LI, 100 μmol(photon) m?2 s?1], respectively. The experiments lasted for 9 d; then both groups of plants were transferred under NI to recover for 16 d. The plants showed severe chlorosis after the LI treatment. Chlorophyll (Chl) a, initial slope, photosynthetic rate at saturating irradiation (Pmax), light saturation point, maximal photochemical efficiency of PSII (Fv/Fm), electron transport rate of PSII (ETR), soluble protein content, and catalase (CAT) activity in cucumber leaves decreased under LI stress, while Chl b, carotenoids, light compensation point, nonphotochemical quenching (qN), superoxide dismutase (SOD), and malondialdehyde (MDA) exhibited an increasing trend under LI. After 16 d of recovery, values of Pmax, Fv/Fm, ETR, qN, SOD, CAT, MDA, and soluble protein were close to those of the control after one, three, and five days of the LI treatment, while those kept under LI for 7 and 9 d could not return to the control level. Therefore, 7 d of LI stress was a meteorological disaster index for LI in cucumber at the fruit stage.  相似文献   

19.
Cucumber fruit mottle mosaic tobamovirus (CFMMV) causes severe mosaic symptoms and yellow mottling on leaves and fruits and, occasionally, severe wilting of cucumber (Cucumis sativus L.) plants. No genetic source of resistance against this virus has been identified in cucumber. The gene coding for the putative 54-kDa replicase gene of CFMMV was cloned into an Agrobacterium tumefaciens binary vector, and transformation was performed on cotyledon explants of a parthenocarpic cucumber cultivar. R1 seedlings were screened for resistance to CFMMV by symptom expression, back inoculation on an alternative host and ELISA. From a total of 14 replicase-containing R1 lines, eight resistant lines were identified. Line I44 – homozygous for the putative 54-kDa replicase gene – was immune to CFMMV infection by mechanical and graft inoculation, and to root infection following planting in CFMMV-infested soil. A substantial delay of symptom appearance was observed following infection by three additional cucurbit-infecting tobamoviruses. When used as a rootstock, line I44 protected susceptible cucumber scions from soil infection by CFMMV. This paper is the first report on protection of a susceptible cultivar against a soil-borne viral pathogen, by grafting onto a transgenic rootstock.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号