首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (μ) of 0.28 day?1 and biomass productivities of 132 mg ?L?1? day?1. The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g ?L?1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.  相似文献   

2.
A detailed lipid characterization of Scenedesmus acutus PVUW12, with emphasis on the evaluation of triacylglycerols (TAGs) as a biodiesel feedstock, is presented. When algal cells were grown in nitrogen-free medium (N stress), a lipid increase was detected that was mainly due to TAG accumulation. In situ fluorescence measurements allowed the kinetics and extent of neutral lipid accumulation to be followed. Under N stress, the productivity of total lipids and TAGs increased significantly (80.99 and 63.74 mg L?1 day?1, respectively) compared with controls (29.51 and 16.23 mg L?1 day?1, respectively). Monounsaturated fatty acids were the major fraction and increased further (49.74 %) in stressed cells, with oleic acid as the most abundant compound (46.97 %). The polyunsaturated fatty acid composition of this algal oil appears to meet the European Standard EN 14214. These results indicate that S. acutus oil meets the requirements for its use as a biodiesel feedstock. Since this strain was also proposed for wastewater bioremediation, this opens up the possibility of its use in an integrated system combined with biofuel production.  相似文献   

3.
Rapeseed meal, a major byproduct of biodiesel production, has been used as a low-cost raw material for the production of a generic microbial feedstock through a consolidated bioconversion process. Various strategies were tested for the production of a novel fermentation medium, rich in free amino nitrogen (FAN): commercial enzymes (CEs) (2.7 mg g?1 dry meal), liquid state fungal pre-treatment (LSF) using Aspergillus oryzae (4.6 mg g?1), liquid state fungal pre-treatment followed by fungal autolysis (LSFA) (9.13 mg g?1), liquid state pre-treatment using fungal enzymatic broth (EB) (2.1 mg g?1), but the best strategy was a solid state fungal pre-treatment followed by fungal autolysis (34.5 mg g?1).The bioavailability of the nitrogen sources in the novel medium was confirmed in fed-batch bioreactor studies, in which 82.3 g dry cell L?1 of the oleaginous yeast Rhodosporidium toruloides Y4 was obtained with a lipid content of 48%. The dry cell weight obtained was higher than that obtained using conventional yeast extract, due to a higher total nitrogen content in the novel biomedium. The fatty acids obtained from the microbial oil were similar to those derived from rapeseed oil.  相似文献   

4.
Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One radical approach for removing non-point source nutrients before they reach the bay is to deploy large-scale algal turf scrubbers along its tributaries. The objective of this study was to determine rates of nutrient removal and algal fatty acid production using small ATS units located along three Chesapeake Bay rivers. Small-scale ATS units (each containing 1 m2 growing area) were operated for 5–10 months from April 2007 to April 2008 on three western shore tributaries of the Chesapeake Bay in Maryland: the Bush River, the Patapsco River and the Patuxent River. Total nitrogen (TN) and total phosphorus (TP) removal rates at the Patuxent site fluctuated considerably but averaged 250 mg TN, 45 mg TP m?2 day?1 from May to October 2007, then decreased to 16 mg TN, 3 mg TP m?2 day?1 from December 2007 to February 2008. Nutrient removal rates at the Bush river site also fluctuated but averaged only 85 mg TN, 10 mg TP m?2 day?1 from May to June 2007, before decreasing to <10 mg TN, <1 mg TP m?2 day?1 from July to September 2007. The Patapsco River unit began operation in August 2007, reached its maximum removal values of 150 mg TN, 18 mg TP m?2 day?1 from mid-October to late-November 2007, then decreased to values of 45 mg TN, 4 mg TP m?2 day?1 from November 15, 2007 to mid-April 2008. In the best case (Patuxent site from May to October 2007), daily removal rates of 250 mg N and 45 mg P m?2 are equivalent to removal rates of 380 kg N and 70 kg P ha?1 over a 150-day season in Maryland. Fatty acid (FA) content of the harvested material was consistently low (0.3–0.6% of dry weight) and varied little between sites. Mean algal FA production rates (23–54 mg FA m?2 day?1) are equivalent to rates of 34–81 kg FA ha?1 year?1 based on a 150-day operational season in Maryland.  相似文献   

5.
The present study investigates the variation in the relative growth, biomass and nutrient allocation in two threatened tree species viz. Magnolia punduana Hook.f. & Th. and Elaeocarpus prunifolius Wall. ex Müll. Berol. grown under three different levels of irradiance. The irradiance ranged between 1 and 12 mol m?2 d?1. Results showed that the highest relative growth rate (RGR) was achieved under the intermediate light treatment for both the species (mean: 0.005 mg mg?1 d?1). The growth response coefficient (GRC) model revealed that net assimilation rate (NAR) was the factor driving the RGR in both species. A significant positive correlation was found between NAR and RGR (R2 = 0.33, p = 0.000) whereas specific leaf area (SLA) and leaf mass fraction (LMF) was negatively correlated to RGR. Overall, multiple regression of the studied species based on the independent variables viz. NAR, SLA, and LMF showed a significant relation with RGR (F(3,50,53 = 13.001, p = 0.000, R2 = 0.43). The biomass distribution in the studied species is in agreement with the “balanced-growth hypothesis” where high irradiance increased allocation to below ground biomass fraction and decreased irradiance increased allocation to the above ground fraction. The highest nitrogen concentration in leaves was observed under the intermediate light treatment. Overall seedlings growth under intermediate light had a higher mean RGR indicating the species' preference for partial light conditions. Long-term experiments under varied light conditions as in the present study would provide useful insight into plant growth strategies in varied environmental conditions.  相似文献   

6.
《Aquatic Botany》2007,86(4):337-345
The seasonal dynamics of seagrass and epiphytic algal primary production were measured in an eelgrass (Zostera marina) bed in the Akkeshi-ko estuary, Hokkaido, Japan (43°02′N, 144°52′E). During spring and early summer, eelgrass biomass increased, with a high production (maximum: 2.89 g C m−2 day−1), but the production and biomass of epiphytic algae remained low. In contrast, epiphytic algae bloomed in August, with a high production (5.21 g C m−2 day−1), but eelgrass production ceased and its biomass subsequently decreased. Therefore, the major primary producers in this eelgrass bed switched seasonally from eelgrass in spring and early summer to epiphytic algae in late summer and autumn. Epiphytic algae maintained similar productivity because of the change of photosynthetic kinetics and the dominant epiphytic diatom changed from highly adhesive species to less adhesive or filamentous small species during the bloom. This suggests that the change of epiphyte density and biomass was due to change of its loss rate, possibly due to herbivorous grazing rate. Moreover, competition between epiphytic algae and eelgrass for nutrients and light may also affect the dramatic seasonal changes in the major primary producers.  相似文献   

7.
The need to develop biomass-based domestic production of high-energy liquid fuels (biodiesel) for transportation can potentially be addressed by exploring microalgae with high lipid content. Selecting the strains with adequate oil yield and quality is of fundamental importance for a cost-efficient biofuel feedstock production based on microalgae. This work evaluated 29 strains of Chlorella isolated from Malaysia as feedstock for biodiesel based on volumetric lipid productivity and fatty acid profiles. Phylogenetic studies based on 18S rRNA gene revealed that majority of the strains belong to true Chlorella followed by Parachlorella. The strains were similarly separated into two groups based on fatty acid composition. Of the 18 true Chlorella strains, Chlorella UMACC187 had the highest palmitic acid (C16:0) content (71.3?±?4.2 % total fatty acids, TFA) followed by UMACC84 (70.1?±?0.7 %TFA), UMACC283 (63.8?±?0.7 %TFA), and UMACC001 (60.3?±?4.0 %TFA). Lipid productivity of the strains at exponential phase ranged from 34.53 to 230.38 mg L?1 day?1, with Chlorella UMACC050 attaining the highest lipid productivity. This study demonstrated that Chlorella UMACC050 is a promising candidate for biodiesel feedstock production.  相似文献   

8.
There has been renewed interest in the combined use of high-rate algal ponds (HRAP) for wastewater treatment and biofuel production. Successful wastewater treatment requires year-round efficient nutrient removal while high microalgal biomass yields are required to make biofuel production cost-effective. This paper investigates the year-round performance of microalgae in a 5-ha demonstration HRAP system treating primary settled wastewater in Christchurch, New Zealand. Microalgal performance was measured in terms of biomass production, nutrient removal efficiency, light absorption and photosynthetic potential on seasonal timescales. Retention time-corrected microalgal biomass (chlorophyll a) varied seasonally, being lowest in autumn and winter (287 and 364 mg m?3day?1, respectively) and highest in summer (703 mg m?3day?1), while the conversion efficiency of light to biomass was greatest in winter (0.39 mg Chl- a per μmol) and lowest in early summer (0.08 mg Chl- a per μmol). The percentage of ammonium (NH4–N) removed was highest in spring (79 %) and summer (77 %) and lowest in autumn (47 %) and winter (53 %), while the efficiency of NH4–N removal per unit biomass was highest in autumn and summer and lowest in winter and spring. Chlorophyll-specific light absorption per unit biomass decreased as total chlorophyll increased, partially due to the package effect, particularly in summer. The proportional increase in the maximum electron transport rate from winter to summer was significantly lower than the proportional increase in the mean light intensity of the water column. We concluded that microalgal growth and nutrient assimilation was constrained in spring and summer and carbon limitation may be the likely cause.  相似文献   

9.
Large improvements in biomass and lipid production are required to make massive scale algal biodiesel production an economic reality. The application of the biodiversity strategy to enhance algal biomass as biofuel feedstock is little. The algal diversity was manipulated in this study to investigate the effects of a combination of biodiversity complementarity and a new medium consisting of seawater and agricultural fertilizer on lipid productivity. The algae diverse community includes two strains of Dunaliella salina (Dunaliella salina 19/30 and 19/18) and three species of Nannochloropsis (Nannochloropsis oculata, Nannochloropsis salina, and Nannochloropsis gaditana). The results showed that the most diverse community (5 species) produced an average of sixfold more biomass in the new medium than did the standard f/2 culture medium. The most diverse polyculture had the highest growth rate (1.01 day?1), biomass (1.2 g L?1), and lipid productivity (0.31 g L?1 day?1). The assessment of algal polycultures relative to monocultures is particularly interesting and novel for this biofuel field, and the observations that these polycultures resulted in significant lipid productivity improvements are very useful addition to the biofuel research. The possible mechanism (resource diversity) to explain the synergy in mixed cultures warrants further investigation.  相似文献   

10.
This study was conducted to evaluate the chemical composition of asafoetida (Ferula assa-foetida) essential oil (FAEO) and Shirazi thyme (Zataria multiflora) EO (ZMEO) and their impact on vase life of gerbera cut flowers (Gerbera jamesonii cv. Rosalyn). Five concentrations of both, ZMEO and FAEO including 0, 100, 200, 300 and 400 mg L?1 used as continuous vase solution for gerbera cut flowers. EOs used in this study were extracted by hydrodistillation method using Clevenger apparatus. They were analyzed by GC and GC–MS for determination of the active compounds. Thirty five compounds were identified in ZMEO, mainly including thymol (40.1%), p-cymene (15.5%) and carvacrol (6.5%). Also, thirty compounds were identified in FAEO. The main components were trans propenyl sec-butyl disulfide (21.7%), eudesmol (10-epu-γ) (19.2%) and cis propenyl sec-butyl disulfide (10.2%). The results showed that both ZMEO and FAEO at all concentrations could act as an effective antibacterial compounds and this property increased by increasing their concentration. The results of this research showed that ZMEO increased the vase life at all concentrations but high concentrations of FAEO increased mortality percentage and reduced the vase life of cut flowers. The relative fresh weight and vase solution uptake of gerbera cut flowers increased by the applied EOs treatments. ZMEO at 400 mg L? 1 and FAEO at 300 and 400 mg L? 1 resulted the least stem color change. Overall, 200 mg L? 1 ZMEO and 100 mg L? 1 FAEO were the best treatments for maintenance of gerbera cut flowers quality during vase life.  相似文献   

11.
Stressor-response models offer guidance for concentration-based nutrient criteria in lakes under human intervention. Diatom-based statistics from biological responses were incorporated to derive taxon-specific and community-level change points (thresholds) of phosphorous and nitrogen in 77 Yangtze floodplain lakes. Diatom metrics relating with conductivity were adopted as response variables, since conductivity explained the maximum variation (38.1%) in diatom assemblages via Bootstrapped regression trees. Nonparametric change-point analysis and Threshold Indicator Taxa ANalysis showed threshold responses of diatom community structure at 0.05–0.08 mg TP/L in connected lakes and 0.02–0.04 mg TP/L in isolated lakes. Distinct community change points of sensitive diatoms occurred at 0.96–1.63 mg TN/L in connected lakes and 0.52–0.63 mg TN/L in isolated lakes. Diatom community structures of tolerant taxa were substantially altered beyond 0.22–0.23 mg/L in connected lakes and 0.52–0.69 mg NOx/L in isolated lakes. Hydrological river-lake connectivity differed significantly in ecological nutrient criteria with more TN/TP criteria and less NOx criteria in connected lakes. Given the ecological significance and biological integrity, diatom-based statistics can provide more reliable change points (thresholds) for nutrient criteria than Chl a-nutrient relationships.  相似文献   

12.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   

13.
Five-day carbonaceous biochemical oxygen demand (CBOD5) removal efficiency was evaluated for the marshland upwelling system (MUS) under both intermediate and saltwater conditions. The MUS treated decentralized wastewater from two private camps and a public restroom in the Grand Bay National Estuarine Research Reserve, Moss Point, Mississippi, and one private camp in the Barataria Terrebonne National Estuary, along Bayou Segnette, Louisiana. Raw wastewater was injected into the surrounding subsurface at a depth of 3.8 or 4.3 m. Various injection flow rates and frequencies were tested in addition to a synthetic wastewater trial. All trials followed a first-order background corrected removal equation, resulting in removal constants ranging from 0.49 to 3.32 m?1 and predicted surface concentrations from 5.7 to 33.0 mg L?1. CBOD5 (unfiltered) influent concentrations of 282 ± 173 mg L?1 were reduced to an overall effluent mean of 13 ± 13 mg L?1 by a vector distance of 7 m at Moss Point and from 365 ± 151 mg L?1 to 3.6 ± 7.6 mg L?1 by a vector distance of 6 m for Bayou Segnette. Of seven trials, only one failed to achieve effluent CBOD5 levels below a National Pollutant Discharge Elimination System (NPDES) standard level of 25 mg L?1.  相似文献   

14.
A series of novel isoxazole-containing neonicotinoids were synthesized from nitromethylene analogues and aromatic aldehydes in the presence of l-proline/K2CO3. Bioassays indicated that several synthesized compounds showed 40–70% mortality against brown planthopper (Nilaparvata lugens) under the concentration of 4 mg L?1, higher than that of imidacloprid (20%). Against cowpea aphid (Aphis craccivora), the best activity of title compounds reached 90% at the concentration of 20 mg L?1.  相似文献   

15.
The anammox process, under different organic loading rates (COD), was evaluated using a semi-continuous UASB reactor at 37 °C. Three different substrates were used: initially, synthetic wastewater, and later, two different pig manure effluents (after UASB-post-digestion and after partial oxidation) diluted with synthetic wastewater. High ammonium removal was achieved, up to 92.1 ± 4.9% for diluted UASB-post-digested effluent (95 mg COD L?1) and up to 98.5 ± 0.8% for diluted partially oxidized effluent (121 mg COD L?1). Mass balance clearly showed that an increase in organic loading (from 95 mg COD L?1 to 237 mg COD L?1 and from 121 mg COD L?1 to 290 mg COD L?1 for the UASB-post-digested effluent and the partially oxidized effluent, respectively) negatively affected the anammox process and facilitated heterotrophic denitrification. Partial oxidation as a pre-treatment method improved ammonium removal at high organic matter concentration. Up to threshold organic load concentration of 142 mg COD L?1 of UASB-post-digested effluent and 242 mg COD L?1 of partially oxidized effluent, no effect of organic loading on ammonia removal was registered (ammonium removal was above 80%). However, COD concentrations above 237 mg L?1 (loading rate of 112 mg COD L?1 day?1) for post-digested effluent and above 290 mg L?1 (loading rate of 136 mg COD L?1 day?1) for partially oxidized effluent resulted in complete cease of ammonium removal. Results obtained showed that, denitrification and anammox process were simultaneously occurring in the reactor. Denitrification became the dominant ammonium removal process when the COD loading was increased.  相似文献   

16.
Sediment may play an important role during the submerged macrophyte decline in the eutrophication progress. In order to investigate the response in root morphology and nutrient contents of submerged macrophytes Myriophyllum spicatum to sediment, five sediment types were treated and used (five types of sediment were used in the experiment: treatment 1 was nature sediment + sand, a 50:50 (v/v) mixture, treatment 2 was the studied sediment only, treatment 3 was sediment + nitrogen (N, NH4Cl 400 mg kg?1), treatment 4 was sediment + phosphorus (P, NaH2PO4 300 mg kg?1); treatment 5 was sediment + phosphorus (P, NaH2PO4 600 mg kg?1)). The results show that the root N content was only significantly affected by adding N in sediments and P was elevated by adding N and P. The root mass and its percentage increased at first, the peak values were reached at 35 d, and then decreased. The root growth was restrained by adding sand and N in sediments, root senescence process was delayed at the later experimental time by adding P in sediments. The increase of root volume showed a similar trend to that of root growth, except for plant with P addition where root volume remained high after 35 d. The root volume decreased while the main root number increased significantly by adding sand in sediments. The mean root length and main root diameter were reduced by adding P in sediments. The compatible sediment nutrient condition is necessary to restore submerged macrophytes in a degraded shallow lake ecosystem, and the effect of sediment on the root morphology and nutrient content is one of the important aspects restricting the restoration of submerged macrophytes.  相似文献   

17.
Two series of novel 1,2,3-benzotriazin-4-one derivatives containing thiourea and acylthiourea were designed and synthesized. The bioassay results showed that most of the test compounds showed good nematicidal activity against M. incognita at the concentration of 10.0 mg L?1in vivo. The compounds A13, A17 and B3 showed excellent nematicidal activity on the second stage juveniles of the root-knot nematode with the inhibition rate of 51.3%, 58.3% and 51.3% at the concentration of 1.0 mg L?1 respectively. It suggested that the structure of 1,2,3-benzotriazin-4-one derivatives containing thiourea and acylthiourea could be optimized further.  相似文献   

18.
Biodegradation rate and the high molecular weight hydrocarbons are among the important concerns for bioremediation of crude oil. Inoculation of a non-oil-degrading bacterium as supplementary bacteria increased oil biodegradation from 57.1% to 63.0% after 10 days of incubation. Both the oil-degrading bacteria and the non-oil-degrading bacteria were isolated from Malaysian marine environment. Based on the 16S rDNA sequences, the oil-degrading bacteria was identified as Pseudomonas pseudoalcaligenes (99% similarity) while the non-oil-degrading bacterium was Erythrobacter citreus (99% similarity). E. citreus does not grow on crude oil enriched medium under present experimental condition but it withstands 5000 mg kg?1 Tapis blended crude oil in sediment. Under optimal condition, the oil-degrading bacterium; P. pseudoalcaligenes, alone utilized 583.3 ± 3.8 mg kg?1 (57.1%) at the rate of 3.97 × 10?10 mg kg?1 cell?1 day?1 Tapis blended crude oil from 1000 mg kg?1 oil-contaminated sediment. Inoculation of E. citreus as the supplementary bacteria to P. pseudoalcaligenes enhanced biodegradation. The bacterial consortium degraded 675.8 ± 18.5 mg kg?1 (63.0%) Tapis blended crude oil from the 1000 mg kg?1 oil-contaminated sediment. Biodegradation rate of the bacterial consortium increased significantly to 4.59 × 10?10 mg kg?1 cell?1 day?1 (p = 0.02). Improvement of the oil degradation by the bacterial consortium was due to the synergetic reaction among the bacterial inoculants. There are two implications: (1) E. citreus may have a role in removing self-growth-inhibiting compounds of P. pseudoalcaligens. (2) P. pseudoalcaligenes degraded Tapis blended crude oil while E. citreus competes for the partially degraded hydrocarbons by P. pseudoalcaligenes. P. pseudoalcaligenes forced to breakdown more hydrocarbons to sustain its metabolic requirement. The bacterial consortium degraded 78.7% of (C12–C34) total aliphatic hydrocarbons (TAHs) and 74.1% of the 16 USEPA prioritized polycyclic aromatic hydrocarbons.  相似文献   

19.
In this investigation, we report on the treatment of tannery wastewater using microalgae Chlorella species to produce lipid and fatty acid as well as changes in antioxidant metabolism during the treatment. The variation in growth, production of pigments, antioxidant metabolism, lipid and fatty acids, and nutrient removal from wastewater during the remediation were observed. Surprisingly, a profuse growth was found in 50% diluted tannery wastewater (TW), which supported to accumulate high yield of lipid (18.5%) and unsaturated fatty acids (50.05%). The antioxidant activity of microalgae in both the concentrations (50% and 100% TW) were viz., lipid peroxidation 1.6 ± 0.1 and 2.3 ± 0.02nmol MDA mg?1 protein, SOD 10.3 ± 0.4 and 15.7 ± 0.9 U mg?1 protein, CAT 0.17 ± 0.036 and 0.52 ± 0.06 U mg?1 protein, and APX 7.2 ± 0.8 and 11.2 ± 09 U mg?1 protein respectively, which point out that the free radical scavenging mechanism against heavy metal stress. Maximum phycoremediation of heavy metals observed from both concentrations during the healthy growth period were Cr – 73.1, 45.7%, Cu – 90.4, 78.1%, Pb – 92.1, 52.2%, and Zn – 81.2, 44.6%, respectively. This study proved the potential use of Chlorella for heavy metal and nutrient removal from tannery wastewater. Moreover, an unaffected growth with high antioxidant activity of this species promises a sustainable lipid and fatty acid contents for biofuel production.  相似文献   

20.
A level of water quality intended for human consumption does not seem necessary for domestic uses such as irrigation of green spaces. Alternative water supplies like the use of greywater (GW) can thus be considered. However, GW contains pathogenic microorganisms and organic compounds which can cause environmental and health risks. As the risks related to recycling are unknown, GW treatment is necessary before reusing. To describe the risks related to GW reuses, the scientific approach performed in this study was to characterize domestic GW in order to select an appropriate treatment. The biotechnology chosen is a Horizontal sub-surface flow constructed wetland reactor. In order to minimize health risks, an optimization step based on UV disinfection was performed. The treatment performances were then determined. The treated GW produced in this study reached the threshold values expected by the Moroccan regulation for irrigation of green spaces with treated wastewater. Indeed, the COD and the TSS obtained in treated GW without disinfection are respectively 16.6 mg O2 L?1 and 0.40 mg L?1. The horizontal sub-surface flow constructed wetland (HSSF CW) reactor has been used to treat 1.2 m3/d of GW for 100 days. Three lawn plots have been irrigated respectively with raw GW, treated GW and tap water as a reference. Contrary to the lawn plot irrigated with raw GW, the risk analysis performed in this study has shown no significant difference between the law plots irrigated with treated GW combined with UV disinfection and the one irrigated with tap water. Overall, UV disinfection treated GW produced from the HSSF CW reactor developed in this experiment is thought to be an effective and feasible alternative for agricultural reuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号