首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Marko Tomin  Sanja Tomić 《Proteins》2019,87(5):390-400
Aflatoxin oxidase (AFO), an enzyme isolated from Armillariella tabescens, has been reported to degrade aflatoxin B1 (AFB1). However, recent studies reported sequence and structure similarities with the dipeptidyl peptidase III (DPP III) family of enzymes and confirmed peptidase activity toward DPP III substrates. In light of these investigations, an extensive computational study was performed in order to improve understanding of the AFO functions. Steered MD simulations revealed long-range domain motions described as protein opening, characteristic for DPPs III and necessary for substrate binding. Newly identified open and partially open forms of the enzyme closely resemble those of the human DPP III orthologue. Docking of a synthetic DPP III substrate Arg2-2-naphthylamide revealed a binding mode similar to the one found in crystal structures of human DPP III complexes with peptides with the S1 and S2 subsites’ amino acid residues conserved. On the other hand, no energetically favorable AFB1 binding mode was detected, suggesting that aflatoxins are not good substrates of AFO. High plasticity of the zinc ion coordination sphere within the active site, consistent with that of up to date studied DPPs III, was observed as well. A detailed electrostatic analysis of the active site revealed a predominance of negatively charged regions, unsuitable for the binding of the neutral AFB1. The present study is in line with the most recent experimental study on this enzyme, both suggesting that AFO is a typical member of the DPP III family.  相似文献   

2.
1. Dipeptidyl peptidases (DPP) II and III from porcine spleen have been purified to homogeneity as assessed by disc gel electrophoresis, HPLC and chromatofocusing. 2. The enzyme are both inhibited by diisopropylfluorophosphate suggesting that the active site contains an essential serine residue, but they are also inhibited by a variety of other reagents. 3. The pI of DPP II is 4.8, that of DPP III, 4.0. 4. The former enzyme has a molecular weight of 97,000, the latter 66,000 and both are glycoproteins. 5. The enzymes are compared with those from other sources.  相似文献   

3.
Dipeptidyl peptidase III (DPP III), the zinc peptidase, has a unique helix portion in the metal-binding motif (HELLGH). The enzyme activity of the cupric derivative of rat DPP III (Cu(II)-rat DPP III) for Lys-Ala-β-NA is about 30% of that of the wild-type enzyme. On the other hand, the enzyme activity of Cu(II)-rat del-DPP III, in which Leu453 is deleted from the metal-binding motif, possesses only 1-2% of the enzyme activity of rat del-DPP III. The EPR spectra of Cu(II)-rat DPP III in the presence of various concentrations of the substrate, Lys-Ala-β-NA, changed dramatically, showing formation of the enzyme-metal-substrate complex. The EPR spectra of Cu(II)-rat del-DPP III did not change in the presence of excess Lys-Ala-β-NA. The deletion of Leu453 from the HELLGH motif of rat DPP III leads to a complete loss of flexibility in the ligand geometry around the cupric ions. Under the formation of the enzyme-metal-substrate complex, Glu451 of Cu(II)-rat DPP III is sufficiently able to approach the water molecule via a very different orientation from that of the resting state; however, Glu451 of Cu(II)-rat del-DPP III is not able to access the water molecule.  相似文献   

4.
Study on dipeptidylpeptidase II (DPP II)   总被引:1,自引:0,他引:1  
Summary The activity of dipeptidylpeptidase II (DPP II; E.C. 3.4.14.2) was investigated by biochemical and histochemical methods in rat, mouse and guinea-pig organs as well as in human enterobiopsies. Lys-Pro-MNA and Ala-Pro-MNA showed the most favorable kinetic properties (K m , V max) and proved to be the most sensitive substrates for biochemical and histochemical studies of DPP II. Lys-Ala-MNA is more specific and is to be preferred due to its relatively low hydrolysis by DPP IV. Lys-Ala-2NA is suitable for the biochemical determination of DPP II activity. Lys-Ala-1NA, Leu-Ala-2NA, Phe-Pro-2NA and Phe-Pro-MNA are inferior. The pH optimum of DPP II amounts to 5.5. Cacodylate, phosphate, citric acid phosphate and succinate buffers deliver similar hydrolysis rates; with citrate and acetate buffers the recorded activities are lower. The reaction can be inhibited by 1 mM DFP, 50 mM Tris and 10 mM puromycin. In the ileum of suckling rats and in human enterobiopsies similar data (K m , pH optimum, optimal substrate concentration) were obtained by biochemical determination and by quantitative histochemistry (microdensitometry) with Lys-Ala-MNA. For the histochemical demonstration of DPP II freeze-dried celloidin-coated cryostat sections are very suitable. Frozen sections of formaldehyde and glutaraldehyde fixed tissue blocks are inferior due to a higher inhibition of DPP II and less precise localization of the azo-dye. K m values and optimal pH are identical in fresh and fixed material. Fast Blue B is the best coupling agent for light microscopical localization. DPP II is present in all organs and tissues investigated. Conspicious organ and species differences exist. In adult rats the highest DPP II activity resides in the kidney, epididymis and spleen; in guinea-pigs the epididymis and testis are the most active organs. In the majority of guinea-pig organs the DPP II activity is lower than in rats. The histochemical demonstration of DPP II shows, in addition, cell-dependent differences of DPP II activity. In most cells the enzyme activity is depicted in lysosomes. Highly active are lysosomes of cells of proximal renal tubules, macrophages, thyroid cells, clear and principal cells of the epididymis of adult animals and of enterocytes of suckling rats. Lysosomes of endocrine cells of adenohypophysis, pancreaas, stomach, small intestine and nerve cells display moderate activity. In lysosomes of smooth muscle cells (intestine, myometrium), myocardial cells, and fibers of striated muscle the enzyme is also present. Spermatids and sperms of guinea-pigs are highly active. In some cases secretion granules of endocrine and exocrine gland cells display a positive reaction. Possibly the Golgi apparatus and the endoplasmic reticulum also show a positive staining in the principle cells of the rat and mouse epididymis. Furthermore, DPP II seems to be secreted into the lumen of several organs.Supported by Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

5.
Dipeptidyl peptidase III (DPP III) is a cytosolic zinc-exopeptidase involved in the intracellular protein catabolism of eukaryotes. Although inhibition by thiol reagents is a general feature of DPP III originating from various species, the function of activity important sulfhydryl groups is still inadequately understood. The present study of the reactivity of these groups was undertaken in order to clarify their biological significance.The inactivation kinetics of human and rat DPP III by sulfhydryl reagent p-hydroxy-mercuribenzoate (pHMB) was monitored by determination of the enzyme's residual activity with fluorimetric detection.Inactivation of this human enzyme exhibited pseudo-first-order kinetics, suggesting that all reactive SH-groups have equivalent reactivity, and the second-order rate constant was calculated to be 3523+/-567M(-1)min(-1). Rat DPP III was hyperreactive to pHMB and showed biphasic kinetics indicating two classes of reactive SH-groups. The second-order rate constants of 3540M(-1)s(-1) for slower reacting sulfhydryl, and 21,855M(-1)s(-1) for faster reacting sulfhydryl were obtained from slopes of linear plots of pseudo-first-order constants versus reagent concentration. Peptide substrates protected both mammalian DPPs III from inactivation by pHMB. Physiological concentrations of biological thiols and H(2)O(2) inactivated the rat DPP III. Human enzyme was resistant to H(2)O(2) attack and less affected by reduced glutathione (GSH) than the rat homologue. A significantly lower DPP III level, determined by activity measurement and Western blotting, was found in the cytosols of highly oxygenated rat tissues.These results provide kinetic evidence that cysteine residues are involved in substrate binding of mammalian DPPs III.  相似文献   

6.
Post-translational modification of proteins is an important regulatory event. Numerous biologically active peptides that play an essential role in cancerogenesis contain an evolutionary conserved proline residue as a proteolytic-processing regulatory element. Proline-specific proteases could therefore be viewed as important "check-points". Limited proteolysis of such peptides may lead to quantitative but, importantly, due to the change of receptor preference, also qualitative changes of their signaling potential.Dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5, identical with CD26) was for many years believed to be a unique cell membrane protease cleaving X-Pro dipeptides from the N-terminal end of peptides and proteins. Subsequently, a number of other molecules were discovered, exhibiting various degree of structural homology and DPP-IV-like enzyme activity, capable of cleaving similar set of substrates. These comprise for example, seprase, fibroblast activation protein alpha, DPP6, DPP8, DPP9, attractin, N-acetylated-alpha-linked-acidic dipeptidases I, II and L, quiescent cell proline dipeptidase, thymus-specific serine protease and DPP IV-beta. It is tempting to speculate their potential participation on DPP-IV biological function(s). Disrupted expression and enzymatic activity of "DPP-IV activity and/or structure homologues" (DASH) might corrupt the message carried by their substrates, promoting abnormal cell behavior. Consequently, modulation of particular enzyme activity using e.g. DASH inhibitors, specific antibodies or DASH expression modification may be an attractive therapeutic concept in cancer treatment. This review summarizes recent information on the interactions between DASH members and their substrates with respect to their possible role in cancer biology.  相似文献   

7.
Dipeptidyl peptidase III (DPP III) was purified to homogeneity from rat liver cytosol. The calculated molecular weight of the purified enzyme was 82845.6 according to TOF-MS and 82000 on non-denaturing PAGE, and 82000 on SDS-PAGE in the absence or presence of beta-mercaptoethanol. These findings suggest that the enzyme exists in a monomeric form in rat liver cytosol. The enzyme rapidly hydrolyzed the substrate Arg-Arg-MCA and moderately hydrolyzed Gly-Arg-MCA in the pH range of 7.5 to 9.5. The Km, k(cat) and k(cat)/Km values of DPP III at optimal pH (pH 8.5) were 290 microM, 18.0 s(-1) and 62.1 s(-1) x nM(-1) for Arg-Arg-MCA and 125 microM, 4.53 s(-1) and 36.2 s(-1) x nM(-1) for Ala-Arg-MCA, respectively. DPP III was potently inhibited by EDTA, 1,10-phenanthroline, DFP, PCMBS and NEM. These findings suggest that DPP III is an exo-type peptidase with characteristics of a metallo- and serine peptidase. For further information on the molecular structure, we screened a rat liver cDNA library using affinity-purified anti-rat DPP III rabbit IgG antibodies, determined the cDNA structure and deduced the amino acid sequence. The cDNA, designated as lambdaRDIII-11, is composed of 2640 bp and encodes 738 amino acids in the coding region. Although the enzyme has a novel zinc-binding motif, HEXXXH, DPP III is thought to belong to family 1 in clan MA in the metalloprotease kingdom. The DPP III antigen was detected in significant amounts in the cytosol of various rat tissues by immunohistochemical examination.  相似文献   

8.
Multiple forms of myeloperoxidase from normal human neutrophilic granulocytes obtained from a single donor can be resolved by carboxymethyl (CM)-cellulose ion-exchange column chromatography into three forms (I, II, and III) designated in order of elution of adsorbed enzyme using a linear salt gradient. Selective solubilization of individual forms of the enzyme by detergent (form I) or high-ionic-strength procedures (forms II and III) suggested that these forms of the enzyme were compartmentalized differently. All three forms were purified by a combination of preferential extraction, manipulation of ionic strength, and ion-exchange and molecular sieve chromatography. Purified forms II and III had similar specific activities for a variety of substrates. Form I was less active toward several of these same substrates, most notably iodide, with a specific activity about one-half that of forms II and III. All forms had similar spectral properties characteristic of a type alpha heme. The amino acid compositions of the three forms were similar, yet significant differences were found in selected residues such as the charged amino acids. Native polyacrylamide gel electrophoresis resolved small differences in mobility between the forms which were consistent with the charge heterogeneity observed on CM-cellulose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis data were consistent with the generally accepted subunit structure of two heavy chains and two light chains. All three forms contained a small-molecular-weight subunit of Mr 11,500. Form I contained a large subunit of Mr 63,000, while forms II and III contained a corresponding subunit of Mr approximately 57,500. We conclude that heterogeneity of human myeloperoxidase is accompanied by differences in cellular compartmentalization, enzymatic activity, and subunit structure.  相似文献   

9.
1. Pyruvate kinase from the rumen ciliates genus Entodinium was partially purified and the enzymatic properties were investigated. 2. Three types of pyruvate kinase (type I, II and III) on DEAE-cellulose column were eluted with a linear gradient of KCl. The enzymatic properties differed among the types of enzyme, especially type I and type III displayed different kinetic properties to each other. The enzymatic property of type II enzyme was an intermediate between type I and III. 3. The principal enzyme, type I, required a divalent cation, Mg2+ and was activated with AMP and FDP. ATP was a potent inhibitor. The saturation curves for the substrates, PEP and ADP, were hyperbolic and Km values were 0.15 and 0.27 mM, respectively.  相似文献   

10.
The subcellular distribution of dipeptidyl peptidase II (DPP II) in the rat kidney cortex, as determined by subfractionation of the mitochondrial/lysosomal fraction by rate sedimentation, indicated that this enzyme is mainly associated with the large, fast sedimenting lysosomes (protein droplets). The small lysosomes, on the other hand, displayed considerable size heterogeneity as indicated by the broad distribution of DPP II; cathepsin B, and a tripeptidyl peptidase active on Gly-Pro-Met-2-naphthylamide at pH 4 (TPP 4). Cathepsin D and N-acetyl-beta-D-glucosaminidase were limited primarily to the slower-sedimenting, small lysosomes. Equilibrium banding in sucrose gradients of the two main DPP II-containing lysosomal populations showed that the large lysosomes banded at a density of 1.235-1.24 g/ml while small lysosomes banded at three densities: 1.11-1.15 g/ml (lysosomal fragments), 1.20 g/ml (light lysosomes), and 1.235 g/ml (dense lysosomes). Identical distribution pattern were obtained for DPP II using either Lys-Ala-7-(4-methyl)coumarylamide or Gly-Pro-2-naphthylamide as the substrate at pH 5.5 and 5.0, respectively. Notably, DPP II and TPP 4, and cathepsin B as well, gave banding densities and distributions that were consistent with a lysosomal localization. Since triplets of the Gly-Pro-X-type released by the TPP 4 are ideal substrates for DPP II, the integrated action of tripeptidyl and dipeptidyl peptidases could make a novel contribution to the renal depolymerization and reabsorption of polypeptides, in particular the proline-rich, collagen-derived sequences that possess repeating-triplet primary structures.  相似文献   

11.
Dipeptidyl peptidase III (DPP III), a member of the metallopeptidase family M49, was considered as an exclusively eukaryotic enzyme involved in intracellular peptide catabolism and pain modulation. In 2003, new data on genome sequences revealed the first prokaryotic orthologs, which showed low sequence similarity to eukaryotic ones and a cysteine (Cys) residue in the zinc-binding motif HEXXGH. Here we report the cloning and heterologous expression of DPP III from the human gut symbiont Bacteroides thetaiotaomicron. The catalytic efficiency of bacterial DPP III for preferred synthetic substrate hydrolysis was very similar to that of the human host enzyme. Substitution of Cys450 from the active-site motif by serine did not substantially change the enzymatic activity. However, this residue was wholly responsible for the inactivation effect of sulfhydryl reagents. Molecular modeling indicated seven basic amino acid residues in the local environment of Cys450 as a possible cause for its high reactivity. Sequence analysis of 81 bacterial M49 peptidases showed conservation of the HECLGH motif in 68 primary structures with the majority of proteins lacking an active-site Cys originated from aerobic bacteria. Data obtained suggest that Cys450 of B. thetaiotaomicron DPP III is a regulatory residue for the enzyme activity.  相似文献   

12.
Abstract Human dipeptidyl peptidase III (DPP III) is a member of the metallopeptidase family M49 with an implied role in the pain-modulatory system and endogenous defense against oxidative stress. Here, we report the heterologous expression of human DPP III and the site-directed mutagenesis results which demonstrate a functional role for Tyr318 at the active site of this enzyme. The substitution of Tyr318 to Phe decreased kcat by two orders of magnitude without altering the binding affinity of substrate, or of a competitive hydroxamate inhibitor designed to interact with S1 and S2 subsites. The results indicate that the conserved tyrosine could be involved in transition state stabilization during the catalytic action of M49 peptidases.  相似文献   

13.
Dentinogenesis imperfecta (DGI) is an autosomal dominant inherited dental disease which affects dentin production and mineralization. Genetic linkage studies have been performed on several multigeneration informative kindreds. These studies determined linkage between DGI type II and III and group-specific component (vitamin D-binding protein). This gene locus has been localized to the long arm of human chromosome 4 in the region 4q11-q21. Although this disease has been mapped to chromosome 4, the defective gene product is yet to be determined. Biochemical studies have suggested abnormal levels of dentin phosphoprotein (DPP) associated with DGI type II. This highly acidic protein is the major noncollagenous component of dentin, being solely expressed by the ectomesenchymal derived odontoblast cells of the tooth. The purpose of the present study was to establish whether DPP is associated with DGI types II and III, by using molecular biology techniques. The strategy was to use a synthetic degenerative DPP oligonucleotide probe to map this sequence to the long arm of human chromosome 4, 4q13-q21, by using somatic cell hybrids. Our results indicated that DPP is not localized to any region of human chromosome 4, thus suggesting that the DPP gene is not directly associated with DGI type II or DGI type III. Our data do not exclude the possibility that other proteins associated with DPP posttranslational modifications might be responsible for this genetic disease.  相似文献   

14.
J K Wright  J Feldman  M Takahashi 《Biochemistry》1976,15(17):3704-3710
The kinase active site of the aspartokinase-homoserine dehydrogenase enzyme complex of Excherichia coli has been affinity labeled both with substrates aspartate and adenosine triphosphate and feedback inhibitor threonine. Co(III) exchange-inert adducts of aspartokinase and inhibitor or substrates were produced in situ by oxidation of Co(II) with H2O2. Emzyme-Co(III)-adenosine 5'-triphosphate (ATP), enzyme-Co(III)-aspartate, and enzyme-Co(III)-threonine ternary adducts were produced in this manner. The formation of the enzyme-Co(III)-threonine adduct leads us to conclude that threonine inhibits the kinase activity of this enzyme complex by binding in the first coordination sphere of the catalytic metal ion cofactor, a conclusion which is consistent with evidence derived from previous nuclear magnetic resonance data obtained in this laboratory. The quaternary adducts formed by H2O2 oxidation in the presence of aspartokinase, Co(II), ATP, aspartate, and threonine comprised a mixture of both ezyme-Co(III)-ATP-aspartate and enzyme-Co(III)-ATP-threonine adducts. The formation of the quaternary aspartate-containing adduct was unexpected, since the presence of threonine was expected to prevent access of the aspartate to the active site; most significantly however, the the sum of the numbers of aspartate plus threonine molecules incorporated per active site is one. We believe that this shows direct steric overlap between the metal-adjacent binding sites for aspartate and threonine. Aspartate or threonine can not occupy the kinase active site simultaneously; this conclusion is consistent with the direct competitive inhibition of aspartate by threonine observed in steady-state kinetic studies.  相似文献   

15.
The role of the unique fully conserved tryptophan in metallopeptidase family M49 (dipeptidyl peptidase III family) was investigated by site-directed mutagenesis on human dipeptidyl peptidase III (DPP III) where Trp300 was subjected to two substitutions (W300F and W300L). The mutant enzymes showed thermal stability equal to the wild-type DPP III. Conservative substitution of the Trp300 with phenylalanine decreased enzyme activity 2-4 fold, but did not significantly change the Km values for two dipeptidyl 2-naphthylamide substrates. However, the Km for the W300L mutant was elevated 5-fold and the kcat value was reduced 16-fold with Arg-Arg-2-naphthylamide. Both substitutions had a negative effect on the binding of two competitive inhibitors designed to interact with S1 and S2 subsites.These results indicate the importance of the aromatic nature of W300 in DPP III ligand binding and catalysis, and contribution of this residue in maintaining the functional integrity of this enzyme’s S2 subsite.  相似文献   

16.
The three-dimensional structure of the saccharopine reductase enzyme from the budding yeast Saccharomyces cerevisiae was determined to 1.7-A resolution in the apo form by using molecular replacement. The enzyme monomer consists of three domains: domain I is a variant of the Rossmann fold, domain II folds into a alpha/beta structure containing a mixed seven-stranded beta-sheet as the central core, and domain III has an all-helical fold. Comparative fold alignment with the enzyme from Magnaporthe grisea suggests that domain I binds to NADPH, and domain II binds to saccharopine and is involved in dimer formation. Domain III is involved in closing the active site of the enzyme once substrates are bound. Structural comparison of the saccharopine reductase enzymes from S. cerevisiae and M. grisea indicates that domain II has the highest number of conserved residues, suggesting that it plays an important role in substrate binding and in spatially orienting domains I and III.  相似文献   

17.
Dipeptidyl peptidase IV (DPP‐IV) is a drug target in the treatment of human type II diabetes. It is a type II membrane protein with a single transmembrane domain (TMD) anchoring the extracellular catalytic domain to the membrane. DPP‐IV is active as a dimer, with two dimer interacting surfaces located extracellularly. In this study, we demonstrate that the TM of DPP‐IV promotes DPP‐IV dimerization and rescues monomeric DPP‐IV mutants into partial dimers, which is specific and irreplaceable by TMs of other type II membrane proteins. By bioluminescence resonance energy transfer (BRET) and peptide electrophoresis, we found that the TM domain of DPP‐IV is dimerized in mammalian cells and in vitro. The TM dimer interaction is very stable, based on our results with TM site‐directed mutagenesis. None of the mutations, including the introduction of two prolines, resulted in their complete disruption to monomers. However, these TM proline mutations result in a significant reduction of DPP‐IV enzymatic activity, comparable to what is found with mutations near the active site. A systematic analysis of TM structures deposited in the Protein Data Bank showed that prolines in the TM generally produce much bigger kinking angles than occur in nonproline‐containing TMs. Thus, the proline‐dependent reduction in enzyme activity may result from propagated conformational changes from the TM to the extracellular active site. Our results demonstrate that TM dimerization and conformation contribute significantly to the structure and activity of DPP‐IV. Optimal enzymatic activity of DPP‐IV requires an optimal interaction of all three dimer interfaces, including its TM.  相似文献   

18.
Dipeptidyl peptidases III (DPPs III) form a distinct metallopeptidase family characterized by the unique HEXXGH motif. High susceptibility to inactivation by organomercurials suggests the presence of a reactive cysteine residue(s) in, or close to, their active site. Yeast DPP III contains five Cys, none of which is absolutely conserved within the family. In order to identify reactive residue(s), site-directed mutagenesis on yeast His6-tagged DPP III was employed to substitute specifically all five cysteine residues to serine. The variant enzymes thus obtained were enzymatically active and showed an overall structure not greatly affected by the mutations as judged by circular dichroism. Analysis by native and SDS-PAGE under non-reducing conditions revealed the existence of a monomeric and dimeric form in all DPP III proteins except in the C130S, implying that dimerization of yeast DPP III is mediated by the surface-exposed cysteine 130.  相似文献   

19.
20.
Dipeptidyl-peptidases III (DPP III) are zinc-dependent enzymes that specifically cleave the first two amino acids from the N terminus of different length peptides. In mammals, DPP III is associated with important physiological functions and is a potential biomarker for certain types of cancer. Here, we present the 1.95-A crystal structure of yeast DPP III representing the prototype for the M49 family of metallopeptidases. It shows a novel fold with two domains forming a wide cleft containing the catalytic metal ion. DPP III exhibits no overall similarity to other metallopeptidases, such as thermolysin and neprilysin, but zinc coordination and catalytically important residues are structurally conserved. Substrate recognition is accomplished by a binding site for the N terminus of the peptide at an appropriate distance from the metal center and by a series of conserved arginine residues anchoring the C termini of different length substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号