首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Genetic stability and phytochemical analysis of in vitro established plants of Picrorhiza kurroa Royle ex Benth, have been carried out. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of tissue culture products including three adventitious shoots from three calli and 6 months old tissue culture raised plants growing in green house condition with mother plant. Apparent genetic variation was detected in the five types of plant materials. The percentage of polymorphic bands in the RAPD and ISSR analysis were 16.25 and 14.54 %, respectively. The genetic similarity was calculated on the basis of RAPD and ISSR data among the five types of plant materials and were ranged from 0.5 to 1.0 (mean 0.75) and 0.47 to 1.0 (mean 0.73), respectively. The similarity coefficient by both RAPD and ISSR analysis revealed that differences between tissue culture raised plants and mother plant was not remarkable, but notable differences were observed among three adventitious shoots regenerated from three calli. The phytochemical analysis of tissue culture raised products showed higher secondary metabolite (picrotin and picrotoxinin) content as compare to mother plant. The information gained on genetic stability/variability will be valuable for the large scale propagation and secondary metabolite production of P. kurroa.  相似文献   

2.
Almond shoots produced by axillary branching from clone VII derived from a seedling of cultivar Boa Casta were evaluated for somaclonal variation using randomly amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) analysis. To verify genetic stability we compared RAPD and ISSR patterns of plantlets obtained after 4 and 6 years of in vitro multiplication. A total of 64 RAPD and 10 ISSR primers gave 326 distinct and reproducible band classes, monomorphic across all 22 plantlets analysed. Thus, a total of 7,172 bands were generated, exhibiting homogeneous RAPD and ISSR patterns for the plantlets tested. These results suggest that the culture conditions used for axillary branching proliferation are appropriate for clonal propagation of almond clone VII, as they do not seem to interfere with the integrity of the regenerated plantlets. These results allowed us to establish the use of axillary branching plantlets (mother-plants) as internal controls for the analysis of somaclonal variation of shoots regenerated from other in vitro culture processes performed with clone VII (adventitious regeneration, regeneration from meristem culture, virus sanitation programs and genetic engineering).M. Martins and D. Sarmento contributed equally to this paper  相似文献   

3.
Guo WL  Gong L  Ding ZF  Li YD  Li FX  Zhao SP  Liu B 《Plant cell reports》2006,25(9):896-906
Codonopsis lanceolata Benth. et Hook. f., commonly known as bonnet bellflower, is a high-valued herb medicine and vegetable. In this study, a large number of plants were regenerated via organogenesis from immature seed-derived calli in C. lanceolata by a simple and efficient method. Compared with the mother donor plant, the regenerated plants did not exhibit visible phenotypic variations in six major morphological traits examined at the stage of one-season-maturity under field conditions. To gain insight into the genomic stability of these regenerated plants, 63 individuals were randomly tagged among a population of more than 2,000 regenerants, and were compared with the single mother donor plant by two molecular markers, the inter-simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD). Apparent genomic variation was detected in the 63 regenerants, whereas preexisting heterozygosiy in the donor plant was deemed minimal by testing 30 seedlings germinated from selfed seeds of the same donor plant. The percentages of polymorphic bands (PPB) in the ISSR and RAPD analysis were respectively 15.7 and 24.9% for the 63 regenerated plants. Cluster analysis indicates that the genetic similarity values calculated on the basis of RAPD and ISSR data among the 64 plants (63 regenerated and one donor) were respectively 0.894 and 0.933, which allow classification of the plants into distinct groups. Nineteen randomly isolated bands underlying the changed RAPD or ISSR patterns were sequenced, and three of them showed significant homology to known-function genes. Detailed pairwise sequence comparison at one locus between the donor plant and a regenerant revealed that insertion of two short (24 and 19 bp) stretches of nucleotides in the regenerated plant relative to the donor plant occurred in an apparently stochastic manner.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
以野生黑果枸杞(Lycium ruthenicum Murr.)的无菌苗叶片作为外植体,建立了两条再生体系:一条是经愈伤组织再分化的间接再生体系,一条是不经愈伤组织再分化的直接再生体系。并采用流式细胞术(FCM)及ISSR分子标记技术对两种途径再生苗进行了遗传稳定性分析。结果表明:(1)最佳愈伤组织诱导培养基为MS+1.5 mg·L-12,4-二氯苯氧乙酸(2,4-D),诱导率达100%;最佳分化培养基为MS+1.5 mg·L-16-苄氨基腺嘌呤(6-BA)+0.1 mg·L-1吲哚-3-丁酸(IBA),1 g愈伤组织上的平均不定芽数为39.4个。(2)叶片直接诱导不定芽的最佳培养基为MS+0.5 mg·L-16-BA+0.3 mg·L-1α-萘乙酸(NAA),不定芽诱导率为92.9%,每个外植体上平均不定芽数为18.1个。(3)两条途径再生的不定芽在不含植物生长调节剂的MS培养基上,2周内均可正常生根。(4)FCM结果显示亲本苗及2种再生苗均为二倍体。(5)ISSR分析表明,间接再生苗的平均遗传相似性系数为0.84,直接再生苗的平均遗传相似性系数为0.91,直接再生体系是一种更加快速高效的繁殖方法。  相似文献   

5.
Jin S  Mushke R  Zhu H  Tu L  Lin Z  Zhang Y  Zhang X 《Plant cell reports》2008,27(8):1303-1316
Two protocols of plant regeneration for cotton were adopted in this study, namely, 2, 4-D and kinetin hormone combination and IBA and kinetin hormone combination. Twenty-eight embryogenic cell lines via somatic embryogenesis and 67 regenerated plants from these embryogenic calli were selected and used for random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), chromosomal number counting, and flow cytometric analysis. The roles of RAPD and SSR markers in detecting somaclonal variation of cotton (Gossypium hirsutum L.) were evaluated. Two cluster analyses were performed to express, in the form of dendrograms, the relationships among the hormone combinations and the genetic variability. Both DNA-based techniques were able to amplify all of the cell clones and regenerated plantlets genomes and relative higher genetic variation could be detected in the culture type with 2, 4-D and kinetin hormone combination. The result suggested that 2, 4-D and kinetin hormone combination could induce relative high somaclonal variation and RAPD and SSR markers are useful in detecting somaclonal variation of regenerated cotton plants via somatic embryogenesis. Chromosome number counting and flow cytometry analysis revealed that the number of chromosomes and ploidy levels were nearly stable in all regenerated plants except two regenerated plantlets (lost 4 and 5 chromosomes, respectively) which meant that cytological changes were not correlated with the frequency of RAPD and SSR polymorphisms. This result also might mean that the cell lines with variation of chromosome numbers were difficult to regenerate plants.  相似文献   

6.
Occurrence of genetic variants during micropropagation is occasionally encountered when the cultures are maintained in vitro for long period. Therefore, the micropropagated multiple shoots of Vanilla planifolia Andrews developed from axillary bud explants established 10 years ago were used to determine somaclonal variation using random amplified polymorphic DNA (RAPD) and intersimple sequence repeats markers (ISSR). One thousand micro-plants were established in soil of which 95 plantlets (consisting of four phenotypes) along with the mother plant were subjected to genetic analyses using RAPD and ISSR markers. Out of the 45 RAPD and 20 ISSR primers screened, 30 RAPD and 7 ISSR primers showed 317 clear, distinct and reproducible band classes resulting in a total of 30 115 bands. However, no difference was observed in banding patterns of any of the samples for a particular primer, indicating the absence of variation among the micropropagated plants. Our results allow us to conclude that the micropropagation protocol that we have used for in vitro proliferation of vanilla plantlets for the last 10 years might be applicable for the production of clonal plants over a considerable period of time.  相似文献   

7.
Summary Random amplified polymorphic DNA (RAPD) markers were used to verify the clonal fidelity of two micropropagated Drosera species, D. anglica and D. binata, which were regenerated by adventitious budding from leaf explants and shoot tips, respectively. Twenty arbitrary decamers were used to screen 15 randomly selected plantlets of each species. No genetic variation was detected among D. binata regenerants, whereas a 0.08% polymorphism frequency was estimated for D. anglica plantlets. These results indicate that the regeneration of plants through shoot-tip culture is a low-risk method for generating genetic variability, whereas material regenerated through leaf explants requires further verification.  相似文献   

8.
A cultivar of dessert banana, namely, Nanjanagudu Rasabale (NR), classified under group “silk” (of genotype AAB), is seriously under the threat of extinction due to its susceptibility to bacterial wilt and bunchy-top virus disease. A regeneration protocol using tissue culture method was developed (Venkatachalam et al. 2006), where a large number of plantlets were regenerated from leaf base explants. Simultaneously, a micropropagation protocol was also developed where high levels of up to 53.28 μM of benzylamino purine (BAP) and 55.80 μM of kinetin (Kn) were used. The progressive increase of cytokinins levels resulted in concomitant increase in shoot number, with a maximum of 80 shoot buds per segment in BAP (31.08 μM). The plantlets were analyzed for their genetic stability using randomly amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) markers. A total of 50 RAPD and 12 ISSR primers resulted in 625 distinct and reproducible bands showing homogeneous RAPD and ISSR patterns. Band intensity histogram of each gel confirmed their monomorphic nature with no genetic variation among the plantlets analyzed. The present study has established for the first time that the regeneration and rapid micropropagation protocol developed through the present study will be of great use in conserving the endangered cultivar – NR – without risk of genetic instability.  相似文献   

9.
A regeneration system was developed for oriental lily (Lilium orientalis) based on both leaf and bulb scale. Adventitious shoots were regenerated from leaves of in vitro cultures on Murashige and Skoog medium containing thidiazuron (TDZ) or 6-benzylaminopurine (BA) and naphthaleneacetic acid (NAA). The highest percent regeneration from leaf explants was 74.2%, being observed on medium containing 10.8 μM TDZ and 0.54 μM NAA. The highest mean number of shoots generated was 4.4 and was obtained from bulb scale explants on medium containing 0.54 μM TDZ and 0.54 μM NAA. Adventitious shoots were successfully rooted at rates ranging from 79.2% to 100%. The rooted plantlets survived after acclimatization in the greenhouse. The effect of kanamycin concentration on adventitious shoot regeneration was also evaluated, a value of 100 mg l−1 being suggested as a lethal dose for lily transformation. Eighteen ISSR markers were employed to determine the genetic stability of the regenerated shoots in comparison to their mother plant. Eleven primers in total produced 70 clear and reproducible bands. Genetic similarity indicators among the clonal derivatives and the mother plant ranged from 0.92 to 1.0. All 15 micropropagated progenies and the mother plant could be grouped together in one major cluster with a similarity level of 92%. The somaclonal variation rate across the plantlets was estimated as 4.2%, indicating that direct shoot formation from explant regeneration is a safe method for multiplication of “true-to-type” plants.  相似文献   

10.
Dwarf dogwoods (or the bunchberries) are the only suffrutex in Cornaceae. They are attractive ground cover ornamentals with clusters of small flowers surrounded by petaloid bracts. Little has been reported on plant regeneration of dogwoods. As a step toward unraveling the molecular basis of inflorescence evolution in Cornus, we report an efficient regeneration system for a dwarf dogwood species C. canadensis through organogenesis from rejuvenated leaves, and characterize the development of the plantlets. We used the nodal stem segments of vegetative branches as explants. Micropropogated shoots were quickly induced from axillary buds of nodes on an induction medium consisting of basal MS medium supplemented with 4.44 μM BAP and 0.54 μM NAA. The new leaves of adventitious shoots were used as explants to induce calli on the same induction medium. Nearly 65% of leaf explants produced calli, 80% of which formed adventitious buds. Gibberellic acid (1.45 μM) added to the same induction medium efficiently promoted quick elongation of most adventitious buds, and 0.49 μM IBA added to the basal MS medium promoted root formation from nearly 50% of the elongated shoots. The growth of plantlets in pot soil was characterized by the development of functional woody rhizomes, which continuously developed new aboveground vegetative branches, but not flowering branches, within the past 12 months. Potential reasons causing the delay of flowering of the regenerated plants are discussed. The establishment of this regeneration system facilitates developing a genetic transformation system to test candidate genes involved in the developmental divergence of inflorescences in Cornus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Agave americana L. callus were exposed to different concentrations of ethyl methanesulphonate (EMS) 0, 15, 30, 45 and 60 mM and to different times of exposure (2 and 4 h). The viability and capacity of shoot formation were shown to be affected when the callus were exposed to high concentrations (30–60 mM). Only the callus exposed to 15 mM EMS presented shoot formation; the exposure time of two hours produced the largest quantity of shoots regenerated per callus (21 shoots/callus). In order to generate somaclonal variants resistant to Fusarium oxysporum, a selection pressure was applied through of a culture filtrate (CF) of 100 ppm of the fungus. This was made in callus obtained in the treatment with 15 mM EMS during 2 h of exposure. The CF caused oxidation and necrosis in 71.25% of the callus; however, they were capable of generating shoots (3.5 shoots/callus). Molecular markers type RAPD, ISSR and DAMD were used to evaluate the genetic variation arising from the mutations caused by EMS on control plants and 16-month-old somaclonal variants. The polymorphic information content (PIC) for each one of the initiating groups was: 0.28 (DAMD), 0.09 (ISSR) and 0.14 (RAPD). DAMD revealed a greater percentage of polymorphism than RAPD and ISSR. Polymorphic bands were detected in the somaclonal variants. This indicated that the EMS caused genetic variation in the regenerated plants conferring resistance to them against Fusarium oxysporum.  相似文献   

12.
辣椒种质遗传多样性的RAPD和ISSR及其表型数据分析   总被引:16,自引:3,他引:13  
用RAPDI、SSR分子标记及28个表型性状数据对辣椒属5个栽培种的13份材料进行了分析,结果表明:23条RAPD引物共扩增出209条带,平均每个引物扩增出9.09条,多态性位点比率为83.73%;16条ISSR引物共扩增出94条带,平均每个引物扩增出5.88条,多态性位点比率为79.79%.与RAPD相比,ISSR标记检测到的有效等位基因数(Ne)及Shannon多样性指数(I)、遗传离散度(Ht)和遗传分化系数(Gst)等遗传多样性参数都较大,多态性位点比例在亲缘关系较近的一年生辣椒(Capsicum annuum)种内较高,说明ISSR有更高的多态性检测效率,并且适合亲缘关系较近的种群间遗传多样性分析.基于RAPDI、SSR的聚类与基于表型数据的聚类之间存在极显著正相关,且都能将C.annuum与其它栽培种区分开来.  相似文献   

13.
The effect of thidiazuron (TDZ) on direct multiple shoot induction in axenic seedlings of a monopodial orchid hybrid Aerides vandarum × Vanda stangeana, using a dual phase culture medium was studied. The culture system consisted of a basal agar solidified half-strength Murashige and Skoog medium overlaid by a liquid fraction of the same composition. Highest regeneration of multiple shoots (15.8 shoots per seedling) was obtained in the medium containing 2% sucrose (w/v) supplemented with 2 mgl−1 TDZ. Genetic stability of the regenerated shoots was assessed using random amplified polymorphic DNA (RAPD), inter simple sequence repeat (ISSR), and restriction fragment length polymorphism of the PCR amplified (PCR-RFLP) nrITS region, as well as those of the coding (matK) and non-coding (trnL-F) regions of the cpDNA. Across the randomly selected mother plant and nine of its regenerated shoots, 2,680 bands were generated by 19 RAPD and 12 ISSR primers, exhibiting monomorphic banding profiles. Homogenous PCR-RFLP profiles were generated for nrITS using four restriction enzymes (REs), matK using five REs, and trnL-F using six REs. These molecular analyses showed no genomic alterations in all regenerated shoots obtained on medium containing 2 mgl−1 TDZ.  相似文献   

14.
The microspore origin of anther-culture-derived plants of flax was determined using inter-simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) markers. Polymorphic fragments between the two parents of the F1 donor plants were identified and their segregation patterns in anther-culture-derived plants were used to elucidate the origin of those plants and to determine the degree of independence of plants regenerated from the same callus. Using one ISSR primer (UBC 889) and two RAPD primers (UBC 556 and 561), 12 out of 16 plants were unequivocally identified as being derived from microspores. Plants derived from the same callus had identical PCR patterns at five polymorphic loci and thus were likely derived from the same microspore. Therefore, it is proposed that the number of calli forming shoots be used to describe the anther culture efficiency in flax. Received: 3 February 1998 / Revision received: 8 June 1998 / Accepted: 8 July 1998  相似文献   

15.
Murraya koenigii (L.) Spreng. (Rutaceae), is an aromatic plant and much valued for its flavor, nutritive and medicinal properties. In this study, three DNA fingerprinting methods viz., random amplification of polymorphic DNA (RAPD), directed amplification of minisatellite DNA (DAMD), and inter-simple sequence repeat (ISSR), were used to unravel the genetic variability and relationships across 92 wild and cultivated M. koenigii accessions. A total of 310, 102, and 184, DNA fragments were amplified using 20 RAPD, 5 DAMD, and 13 ISSR primers, revealing 95.80, 96.07, and 96.73% polymorphism, respectively, across all accessions. The average polymorphic information content value obtained with RAPD, DAMD, and ISSR markers was 0.244, 0.250, and 0.281, respectively. The UPGMA tree, based on Jaccard’s similarity coefficient generated from the cumulative (RAPD, DAMD, and ISSR) band data showed two distinct clusters, clearly separating wild and cultivated accessions in the dendrogram. Percentage polymorphism, gene diversity (H), and Shannon information index (I) estimates were higher in cultivated accessions compared to wild accessions. The overall high level of polymorphism and varied range of genetic distances revealed a wide genetic base in M. koenigii accessions. The study suggests that RAPD, DAMD, and ISSR markers are highly useful to unravel the genetic variability in wild and cultivated accessions of M. koenigii.  相似文献   

16.
Randomly amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers were applied to assess the genetic stability of micropropagated olive (Olea europaea L. cv. Maurino) plants regenerated by axillary buds. Initial olive explants, isolated from one donor tree, were multiplied on Murashige and Skoog medium for 12 repeated subcultures. A total of 40 RAPD and 10 ISSR markers resulted in 301 distinct and reproducible band classes showing homogeneous RAPD and ISSR patterns. The amplification products revealed genetic stability among the micropropagated plants and between them and the donor plant. The results demonstrate the genetic stability of nine year old mature micropropagated olive plants cultured in field, and corroborated the fact that axillary multiplication is the safest mode for multiplication of true to type plants.  相似文献   

17.
The genetic status of somatic embryo-derived plantlets of Cymbopogon flexuosus was examined by randomly amplified polymorphic DNA (RAPD) analysis. Auxins such as 2, 4-dichlorophenoxyacetic acid (2, 4-D) (1–4 mg/l) were used in Murashige and Skoog (MS) medium for induction of calli from rhizomatous explants of Cymbopogon flexuosus. Optimum calli were induced on MS medium supplemented with 2, 4-dichlorophenoxyacetic acid (2, 4-D) (3.5 mg/l) alone or in combination with N 6-benzyladenine (2 mg/l). Somatic embryogenesis was achieved from long term calli when cultured on MS medium containing 2, 4-dichlorophenoxyacetic acid (2, 4-D) (2 mg/l) along with N 6-benzyladenine (BA) (1–2 mg/l). Regeneration was achieved when freshly induced embryogenic calli were sub-cultured on MS medium supplemented with N 6-benzyladenine (3 mg/l) alone. Long-term cultured embryos showed profuse minute rooting on regeneration medium supplemented with N 6-benzyladenine (3 mg/l). Microshoots were rooted in the presence of indole-butyric acid (IBA) (2 mg/l). DNA samples from the mother plant and 18 randomly selected regenerated plants from a single callus were subjected to RAPD analysis with 6 arbitrary decamer primers for the selection of putative somaclones. A total of 64 band positions were scored, out of which 19 RAPD bands were polymorphic. From genetic similarity coefficient based on RAPD band data sharing, it was found that the majority of the clones were almost identical or more than 92% similar to the mother plant, except CL2 and CL9 (66%) which showed highest degree of genetic change with CL2 and CL9 showing presence of two non-parental bands each.  相似文献   

18.
Alkaligrass (Puccinellia chinampoensis Ohwi), one of the important forage grasses in saline-alkalieroded grasslands, has been proved to be invaluable for improving saline-alkali soils. However, little is known of its genetic instabilities during in vitro culture for its artificial breeding. In this paper, a simple and efficient regeneration system of mature seed-induced calli in alkaligrass was established, and the somaclonal variation in the regenerated plants was assessed by inter-simple sequence repeat (ISSR) and retrotransposon-microsatellite amplified polymorphism (REMAP) markers. 18 randomly chosen regenerants were subjected to ISSR and REMAP analysis with the shoot from the same grain of seed as the control. ISSR analysis showed that of the 145 scored bands, 13 were polymorphic among the analyzed samples, giving rise to a genetic variation frequency of 8.97%. REMAP analysis revealed that 4 out of 127 scored bands were polymorphic, a genetic variation frequency of 3.15% occurred. Cluster analysis indicated that the genetic similarity index calculated on the basis of ISSR data or REMAP data among the 18 regenerated plants and the donor plant was 0.974 and 0.996 respectively. All the results confirmed that somaclonal variation was induced by tissue culture in alkaligrass at a higher frequency, and indicated that the regeneration system could be a viable option for genetic improvement of alkaligrass by biotechniques.  相似文献   

19.
The aim of this work is to develop a method of plant regeneration from leaf explants of Platanus occidentalis L. successfully. Woody plant medium (HortScience 16:453–459, 1981) and Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium were used as induced and rooted basal medium, respectively. The effects of combinations of 6-BA, IBA, NAA and KT with different concentrations on adventitious bud regeneration from P. occidentalis leaf explants were compared. The results showed that the highest shoot regeneration frequency (90%) and maximum number (13.72 ± 0.44) of shoots per explant was recorded on WPM medium supplemented with 22.20 mmol l−1 6-BA and 0.49 mmol l−1 IBA. A 40-day-old explants were much more productive for shoot formation than others in this study. The regenerated shoots were cultured on MS medium supplemented with 1.33 mmol l−1 6-BA, 0.16 mmol l−1 NAA and 2% (w/v) adenine, after 2-week shoots were transferred to 1/2 MS medium supplemented with 0.49 mmol l−1 IBA for rooting. Hardened plantlets via acclimatization were transferred to pots and transplanted to the soil finally. To ascertain whether tissue culture had effects on the genetic stability of plantlets regenerated, the genetic diversity was assessed using RAPD marker. A total of 96 bands ranging from 0.5 to 2.2 kb with an average of 6.4 bands per primer, were obtained using 15 primers. Amplified products exhibited few of polymorphic patterns across all the plants of P. occidentalis and the overall frequency of detection of somaclonal polymorphisms was lower than 0.0104%. Yuehua Sun, Yanling Zhao, and Xiaojuan Wang contributed equally to this work.  相似文献   

20.
An efficient micropropagation protocol produced large number of plants of the three elite banana (Musa spp.) cultivars Robusta (AAA), Giant Governor (AAA) and Martaman (AAB) from shoot tip meristem. The genetic relationships and fidelity among the cultivars and micropropagated plants as assessed by random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers, revealed three somaclonal variants from Robusta and three from Giant Governor. A total of 5330 RAPD and 2741 ISSR fragments were generated with 21 RAPD and 12 ISSR primers in micropropagated plants. The percentage of polymorphic loci by RAPD and ISSR were found to be 1.75, 5.08 in Robusta and 0.83, 5.0 in Giant Governor respectively. Among the two marker systems used, ISSR fingerprinting detected more polymorphism than RAPD in Robusta and Giant Governor with most of the primers showing similar fingerprinting profile, whereas Martaman revealed complete genetic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号