首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report evidence for two foot protein isoforms in chicken pectoral muscle. (i) Two polypeptides with molecular masses of approximately 500 kDa copurify with [3H]ryanodine binding. (ii) Both polypeptides are associated with oligomeric proteins similar in size to the mammalian skeletal muscle foot protein. (iii) The polypeptides are shown to be unique by limited proteolysis. (iv) By using isoform-specific antibodies, the polypeptides are shown to be subunits of different [3H]ryanodine-binding proteins. Using immunolabeling techniques, we have localized these proteins in chicken breast muscle by both light and electron microscopy. (v) From immunofluorescent light microscopy of longitudinal sections, it was determined that both ryanodine-binding protein isoforms exhibit identical repetitive punctate distributions near the Z-lines. (vi) In serial cross-sections both proteins have similar distributions in the same fibers. (vii) Both proteins were found to be associated with the terminal cisternae of the sarcoplasmic reticulum by immunoelectron microscopy. Based on their localization to the triadic junction, their large size and their ability to bind [3H]ryanodine, these proteins are identified as foot proteins. In conclusion, two distinct homo-oligomeric foot proteins coexist in avian fast twitch skeletal muscle. We have termed these proteins, alpha and beta foot proteins.  相似文献   

2.
Two isoforms of the sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor or RYR) are expressed together in the skeletal muscles of most vertebrates. We have studied physiological properties of the two isoforms (alpha and beta) by comparing SR preparations from specialized fish muscles that express the alpha isoform alone to preparations from muscles containing both alpha and beta. Regulation of channel activity was assessed through [3H]ryanodine binding and reconstitution into planar lipid bilayers. Distinct differences were observed in the calcium-activation and -inactivation properties of the two isoforms. The fish alpha isoform, expressed alone in extraocular muscles, closely resembled the rabbit skeletal muscle RYR. Maximum [3H]ryanodine binding and maximum open probability (Po) of the alpha RYR were achieved from 1 to 10 microM free Ca2+. Millimolar Ca2+ reduced [3H]ryanodine binding and Po close to zero. The beta isoform more closely resembled the fish cardiac RYR in Ca2+ activation of [3H]ryanodine binding. The most prominent difference of the beta and cardiac isoforms from the alpha isoform was the lack of inactivation of [3H]ryanodine binding and Po by millimolar free Ca2+. Differences in activation of [3H]ryanodine binding by adenine nucleotides and inhibition by Mg2+ suggest that the beta and cardiac RYRs are not identical, however. [3H]ryanodine binding by the alpha RYR was selectively inhibited by 100 microM tetracaine, whereas cardiac and beta RYRs were much less affected. Tetracaine can thus be used to separate the properties of the alpha and beta RYRs in preparations in which both are present. The distinct physiological properties of the alpha and beta RYRs that are present together in most vertebrate muscles support models of EC coupling incorporating both directly coupled and Ca(2+)-coupled channels within a single triad junction.  相似文献   

3.
Cardiac ryanodine receptor was purified from canine ventricle as a single polypeptide of Mr 400,000 by a stepwise sucrose density gradient centrifugation and heparin-Sepharose CL-4B column chromatography. The [3H]ryanodine binding capacity (Bmax) was 60-fold enriched from cardiac microsomes without a change in affinity for [3H]ryanodine. The purity of the final preparation was determined to be greater than 95% by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using this purified preparation as an antigen, we produced six monoclonal antibodies which immunoprecipitated the cardiac ryanodine receptor. Three of these antibodies recognized the cardiac receptor on immunoblot analysis. In contrast, no protein in the microsomes isolated from Type I (slow) or Type II (fast) skeletal muscles was recognized by these antibodies. The [3H]ryanodine binding to cardiac and skeletal muscle microsomes was dependent on free Ca2+ concentration. In skeletal muscle microsomes, the [3H]ryanodine binding was remarkably enhanced by the addition of ATP or KCl and inhibited by high free Ca2+, whereas it was less sensitive to these agents in cardiac microsomes. All of these results clearly demonstrate that the cardiac ryanodine receptor is different from the skeletal muscle receptors and is not present even in Type I (slow) skeletal muscle fibers, in which cardiac isoforms of some of the muscle proteins are constitutively expressed.  相似文献   

4.
5.
6.
The skeletal muscles of chickens, frogs, and fish have been reported to express two isoforms (alpha and beta) of the sarcoplasmic reticulum calcium release channel (ryanodine receptor or RYR), while mammals express only one. We have studied patterns of RYR isoform expression in skeletal muscles from a variety of fish, reptiles, and birds with immunological techniques. Immunoblot analysis with a monoclonal antibody that recognizes both nonmammalian RYR isoforms and a polyclonal antibody specific to the alpha isoform show two key results: (a) two reptilian orders share with mammals the pattern of expressing only the alpha (skeletal) RYR isoform in skeletal muscle; and (b) certain functionally specialized muscles of fish and birds express only the alpha RYR isoforms. While both isoforms are expressed in the body musculature of fish and birds, the alpha isoform is expressed alone in extraocular muscles and swimbladder muscles. The appearance of the alpha RYR isoform alone in the extraocular muscles and a fast-contracting sonic muscle in fish (toadfish swimbladder muscle) provides evidence that this isoform is selectively expressed when rapid contraction is required. The functional and phylogenetic implications of expression of the alpha isoform alone are discussed in the context of the mechanism and evolution of excitation-contraction coupling.  相似文献   

7.
Type 1 serine/threonine protein phosphatases (PP1) are important regulators of many cellular and developmental processes, including glycogen metabolism, muscle contraction, and the cell cycle [1] [2] [3] [4] [5]. Drosophila and humans both have multiple genes encoding PP1 isoforms [3] [6] [7]; each has one beta and several alpha isoform genes (alpha(1), alpha(2), alpha(3) in flies, alpha and gamma in humans; mammalian PP1beta is also known as PP1delta). The alpha/beta subtype differences are highly conserved between flies and mammals [6]. Though all these proteins are >85% identical to each other and have indistinguishable activities in vitro, we show here that the Drosophila beta isoform has a distinct biological role. We show that PP1beta9C corresponds to flapwing (flw), previously identified mutants of which are viable but flightless because of defects in indirect flight muscles (IFMs) [8]. We have isolated a new, semi-lethal flw allele that shows a range of defects, especially in muscles, which break away from their attachment sites and degenerate.  相似文献   

8.
One beta1 and two alpha (alpha1 and alpha3) isoforms of Na+/K+-ATPase exist in rat uteri. Previous immunocytochemistry studies have suggested that the alpha3 isoform may be involved in calcium regulation indirectly. Estrogens are known to both modulate Na+/K+-ATPase activities in non-uterine tissues and suppress spontaneous uterine contractions in rats. Thus the purpose of this study was to examine the correlation between estrogens-modulated uterine contraction and the expression of Na+/K+-ATPase alpha3 isoform in rats. After 1-, 2-, and 4- day treatments with 17beta-estradiol (E2, 5 microg/ml/kg, s.c., daily), the diameter of uterine horn was measured. The contraction force of uterine strips was measured by standard muscle bath apparatus. The protein abundance and enzyme activity of Na+/K+-ATPase in rat uteri were measured by Western blot analysis and ATPase assay, respectively. One day of E2 decreased both contraction frequency and alpha3-protein expression without the change in uterine diameter, enzyme activity or other isoforms. Two days of E2 reduced contraction frequency, the enzyme activity, as well as alpha3- and beta1- protein abundance but increased alpha1-protein and uterine diameter. Four days of E2 elicited similar effects as two days of E2, but did not affect alpha1-protein abundance. In conclusion, E2 elicits differential effects on isoform expression. After 1-day treatment with 17beta-estradiol, the decrease in the expression of alpha3 and beta1 without a change in Na+/K+-ATPase activity suggests that some isoform other than beta1 exist in rat uteri. The positive correlation between the reduction of alpha3-and the decrease of contraction frequency suggests the involvement of alpha3 isoform in uterine oscillation.  相似文献   

9.
The ryanodine-sensitive calcium channels, also called ryanodine receptors, are intracellular Ca(2+)-release channels that have been shown to bind the neutral plant alkaloid ryanodine with nanomolar affinity. The activity of the skeletal muscle (RyR1), cardiac muscle (RyR2), and brain (RyR3) ryanodine receptor isoforms have been shown to be highly regulated by physiological factors including pH, temperature, and ionic strength; endogenous compounds including Ca(2+), Mg(2+), and adenosine triphosphate (ATP); and pharmacological agents including caffeine, ruthenium red, and neomycin. RyR3 is reportedly expressed in diverse tissues including lung; however, specific [(3)H]ryanodine binding sites in mammalian lung tissue have not been characterized. In this study, hamster lung ryanodine binding proteins were shown to specifically bind [(3)H]ryanodine with an affinity similar to that of RyR isoforms found in other tissues and this binding was shown to be sensitive to Ca(2+) concentration, stimulation by caffeine and spermine, and inhibition by Mg(2+), ruthenium red, and neomycin. The solubilized, intact ryanodine binding protein from hamster lung demonstrated approximately the same 30S sedimentation coefficient as RyR1 and RyR2, but a putative ryanodine receptor subunit from hamster lung was not found to cross-react with antibodies specific for the three known isoforms. We conclude that the hamster lung ryanodine binding protein demonstrates sedimentation and binding characteristics that are similar to those of the known RyR isoforms, but may exhibit antigenic dissimilarity from the typical RyR isoforms found in muscle and brain.  相似文献   

10.
《The Journal of cell biology》1994,127(5):1275-1287
Marlins, sailfish, spearfishes, and swordfish have extraocular muscles that are modified into thermogenic organs beneath the brain. The modified muscle cells, called heater cells, lack organized myofibrils and are densely packed with sarcoplasmic reticulum (SR), transverse (T) tubules, and mitochondria. Thermogenesis in the modified extraocular muscle fibers is hypothesized to be associated with increased energy turnover due to Ca2+ cycling at the SR. In this study, the proteins associated with sequestering and releasing Ca2+ from the SR (ryanodine receptor, Ca2+ ATPase, calsequestrin) of striated muscle cells were characterized in the heater SR using immunoblot and immunofluorescent techniques. Immunoblot analysis with a monoclonal antibody that recognizes both isoforms of nonmammalian RYRs indicates that the fish heater cells express only the alpha RYR isoform. The calcium dependency of [3H]ryanodine binding to the RYR isoform expressed in heater indicates functional identity with the non-mammalian alpha RYR isoform. Fluorescent labeling demonstrates that the RYR is localized in an anastomosing network throughout the heater cell cytoplasm. Measurements of oxalate supported 45Ca2+ uptake, Ca2+ ATPase activity, and [32P]phosphoenzyme formation demonstrate that the SR contains a high capacity for Ca2+ uptake via an ATP dependent enzyme. Immunoblot analysis of calsequestrin revealed a significant amount of the Ca2+ binding protein in the heater cell SR. The present study provides the first direct evidence that the heater SR system contains the proteins necessary for Ca2+ release, re-uptake and sequestration, thus supporting the hypothesis that thermogenesis in the modified muscle cells is achieved via an ATP-dependent cycling of Ca2+ between the SR and cytosolic compartments.  相似文献   

11.
Mammalian skeletal muscles express a single triad junctional foot protein, whereas avian muscles have two isoforms of this protein. We investigated whether either case is representative of muscles from other vertebrate classes. We identified two foot proteins in bullfrog and toadfish muscles on the basis of (a) copurification with [3H]epiryanodine binding; (b) similarity to avian muscle foot proteins in native and subunit molecular weights; (c) recognition by anti-foot protein antibodies. The bullfrog and toadfish proteins exist as homooligomers. The subunits of the bullfrog muscle foot protein isoforms are shown to be unique by peptide mapping. In addition, immunocytochemical localization established that the bullfrog muscle isoforms coexist in the same muscle cells. The isoforms in either bullfrog and chicken muscles have comparable [3H]epiryanodine binding capacities, whereas in toadfish muscle the isoforms differ in their levels of ligand binding. Additionally, chicken thigh and breast muscles differ in the relative amounts of the two isoforms they contain, the amounts being similar in breast muscle and markedly different in thigh muscle. In conclusion, in contrast to mammalian skeletal muscle, two foot protein isoforms are present in amphibian, avian, and piscine skeletal muscles. This may represent a general difference in the architecture and/or a functional specialization of the triad junction in mammalian and nonmammalian vertebrate muscles.  相似文献   

12.
We showed that frog -ryanodine receptor (-RyR) had a lower gain of Ca2+-induced Ca2+ release (CICR) activity than -RyR in sarcoplasmic reticulum (SR) vesicles, indicating selective "stabilization" of the former isoform (Murayama T and Ogawa Y. J Biol Chem 276: 2953–2960, 2001). To know whether this is also the case with mammalian RyR1, we determined [3H]ryanodine binding of RyR1 and RyR3 in bovine diaphragm SR vesicles. The value of [3H]ryanodine binding (B) was normalized by the number of maximal binding sites (Bmax), whereby the specific activity of each isoform was expressed. This B/Bmax expression demonstrated that ryanodine binding of individual channels for RyR1 was <15% that for RyR3. Responses to Ca2+, Mg2+, adenine nucleotides, and caffeine were not substantially different between in situ and purified isoforms. These results suggest that the gain of CICR activity of RyR1 is markedly lower than that of RyR3 in mammalian skeletal muscle, indicating selective stabilization of RyR1 as is true of frog -RyR. The stabilization was partly eliminated by FK506 and partly by solubilization of the vesicles with CHAPS, each of which was additive to the other. In contrast, high salt, which greatly enhances [3H]ryanodine binding, caused only a minor effect on the stabilization of RyR1. None of the T-tubule components, coexisting RyR3, or calmodulin was the cause. The CHAPS-sensitive intra- and intermolecular interactions that are common between mammalian and frog skeletal muscles and the isoform-specific inhibition by FKBP12, which is characteristic of mammals, are likely to be the underlying mechanisms. excitation-contraction coupling; ryanodine binding; ryanodine receptor  相似文献   

13.
Ryanodine binding proteins of the CNS have been identified using monoclonal antibodies against avian skeletal muscle ryanodine binding proteins. These proteins were localized to intracellular membranes of the dendrites, perikarya, and axons of cerebellar Purkinje neurons using laser confocal microscopy and immunoelectron microscopy. Ryanodine binding proteins were not found in dendritic spines. Immunoprecipitation and [3H]epiryanodine binding experiments revealed that the cerebellar ryanodine binding proteins have a native molecular weight of approximately 2000 kd and are composed of two high molecular weight (approximately 500 kd) polypeptide subunits. A comparable protein having a single high molecular weight polypeptide subunit was observed in the remainder of the brain. If the ryanodine binding proteins in muscle and nerve are similar in function, then the neuronal proteins may participate in the release of calcium from intracellular stores that are mechanistically and spatially distinct from those gated by inositol trisphosphate receptors.  相似文献   

14.
Biochemical investigation of Ca2+ release channel proteins has been carried out mainly with rabbit skeletal muscles, while frog skeletal muscles have been preferentially used for physiological investigation of Ca2+ release. In this review, we compared the properties of ryanodine receptors (RyR), Ca2+ release channel protein, in skeletal muscles between rabbit and frog. While the Ryr1 isoform is the main RyR of rabbit skeletal muscles, two isoforms, - and -RyR which are homologous to Ryr1 and Ryr3 isoforms in mammals, respectively, coexist as a homotetramer in a similar amount in frog skeletal muscles. The two isoforms in an isotonic medium show very similar property in [3H]ryanodine binding activity which is parallel to Ca2+-induced Ca2+ release (CICR) activity, and make independent contributions to the activities of the sarcoplasmic reticulum. CICR and [3H]ryanodine binding activities of rabbit and frog are qualitatively similar in stimulation by Ca2+, adenine nucleotide and caffeine, however, they showed the following quantitative differences. First, rabbit RyR showed higher Ca2+ affinity than the frog. Second, rabbit RyR showed higher activity in the presence of Ca2+ alone with less stimulation by adenine nucleotide than the frog. Third, rabbit RyR displayed less enhancement of [3H]ryanodine binding by caffeine in spite of having a similar magnitude of Ca2+ sensitization than the frog, which may explain the occasional difficulty by researchers to demonstrate caffeine contracture with mammalian skeletal muscles. Finally, but not least, rabbit RyR still showed marked inhibition of [3H]ryanodine binding in the presence of high Ca2+ concentrations in the 1 M NaCl medium, while frog RyR showed disinhibition. Other matters relevant to Ca2+ release were also discussed.  相似文献   

15.
Polymorphism of estrogen (ER) and progestin receptors (PR) was analyzed simultaneously using high performance hydrophobic interaction chromatography (HPHIC). HPHIC was used previously to characterize four ER isoforms [Hyder et al., J. Chromat. 397 (1987) 251] based on retention times on Synchropak propyl (100 x 6 mm) HPLC columns (Synchrom, Inc.). ER and PR were prepared from human breast cancer. ER was labeled with 3 nM of either [3H]estradiol-17 beta ([3H]E) or [125I]iodoestradiol-17 beta ([125I]E) while PR was associated with 5 nM of either [3H]R5020 ([3H]R) or [125I]iodovinylnortestosterone ([125I]V). ER was resolved by HPHIC into isoforms MI (Rt = 11 min), I(Rt = 16 min), and II (Rt = 24 min). Isoforms I and II each accounted for ca 45% of specific binding. PR separated into isoforms MI (Rt = 14 min) and I (Rt = 21 min, 80% of specific binding) when eluted with the same gradient used for ER chromatography. Upon inclusion of 10 mM molybdate ER resolved into isoforms MI and MII (Rt = 16 min) and PR into isoforms MI and I (here however isoform MI represented 80-95% of specific binding). Elution patterns were preserved with different batches of stationary phase suggesting the integrity of the isoform distribution. HPLC profiles of ER isoforms labeled with earlier [125I]E or [3H]E were identical as were PR isoform profiles labeled with either [3H]R or [125I]V. Pairs of 125I- and 3H-labeled ligands were used in either combination to monitor ER and PR profiles simultaneously. Isoforms analyzed in 50 biopsies gave reproducible retention times, however the ratio between I and II for ER and MI and I for PR varied. This method allows rapid, simultaneous monitoring of the chromatographic behavior of ER and PR isoforms or other associating proteins or nucleotides. One may now better elucidate their interrelationship as it relates to the hormone-response mechanism.  相似文献   

16.
The expression of fast and slow isoforms of the sarcoplasmic reticulum Ca2+-ATPase was studied in the developing chick embryo and in tissue-cultured myotubes. Monoclonal antibodies specific for each isoform were used as probes of protein expression. Analysis of expression of Ca2+-ATPase isoforms in chick thigh muscles by immunofluorescence microscopy revealed that all muscle fibers expressed both isoforms during their development. Primary generation muscle fibers expressed predominantly the slow isoform. Secondary generation fibers expressed both isoforms at comparable levels. Loss of the "inappropriate" isoforms occurred late in embryonic development. Immunoblot analysis of embryonic thigh muscle proteins indicated that the expression of the slow isoform varied little from embryonic Day 6 (ED6) to ED19, while expression of the fast isoform increased dramatically just prior to ED19. Tissue-cultured myotubes derived from ED12 chick thigh muscle myoblasts, plated at high density, expressed both isoforms of the Ca2+-ATPase at very similar levels. Clonal analysis of myoblasts taken from early (ED6) and late (ED12) chick thigh muscles showed that all muscle colonies expressed both forms, consistent with in vivo results. Fiber-type specific isoforms of the Ca2+-ATPase and myosin heavy chain are not coordinately expressed in developing chick skeletal muscle.  相似文献   

17.
Monoclonal antibodies to herpes simplex virus type 2 were found to precipitate different numbers of radiolabeled polypeptides from lysates of virus-infected cells. Antibodies directed against two viral glycoproteins were characterized. Antibodies from hybridoma 17 alpha A2 precipitated a 60,000-molecular-weight polypeptide which chased into a 66,000- and 79,000-molecular-weight polypeptide. All three polypeptides labeled in the presence of [3H]glucosamine and had similar tryptic digest maps. The 60,000-molecular-weight polypeptide also chased into a 31,000-molecular-weight species which did not label with [3H]glucosamine. Antibodies from hybridoma 17 beta C2 precipitated a 50,000-molecular-weight polypeptide which chased into a 56,000- and 80,000-molecular weight polypeptide. These polypeptides also shared a similar tryptic digest map and labeled with [3H]glucosamine. Both monoclonal antibodies were herpes simplex virus type 2 specific. The viral proteins precipitated by 17 alpha A2 antibodies had characteristics similar to those reported for glycoprotein E, whereas the proteins precipitated by 17 beta C2 antibodies appeared to represent a glycoprotein not previously described. This glycoprotein should be tentatively designated glycoprotein F.  相似文献   

18.
Although osteoblasts have been shown to respond to estrogens and express both isoforms of the estrogen receptor (ER alpha and ER beta), the role each isoform plays in osteoblast cell function and differentiation is unknown. The two ER isoforms are known to differentially regulate estrogen-inducible promoter-reporter gene constructs, but their individual effects on endogenous gene expression in osteoblasts have not been reported. We compared the effects of 17 beta-estradiol (E) and tamoxifen (TAM) on gene expression and matrix formation during the differentiation of human osteoblast cell lines stably expressing either ER alpha (hFOB/ER alpha 9) or ER beta (hFOB/ER beta 6). Expression of the appropriate ER isoform in these cells was confirmed by northern and western blotting and the responses to E in the hFOB/ER beta 6 line were abolished by an ER beta-specific inhibitor. The data demonstrate that (1) in both the hFOB/ER cell lines, certain responses to E or TAM (including alkaline phosphatase, IL-6 and IL-11 production) are more pronounced at the late mineralization stage of differentiation compared to earlier stages, (2) E exerted a greater regulation of bone nodule formation and matrix protein/cytokine production in the ER alpha cells than in ER beta cells, and (3) the regulated expression of select genes differed between the ER alpha and ER beta cells. TAM had no effect on nodule formation in either cell line and was a less potent regulator of gene/protein expression than E. Thus, both the ER isoform and the stage of differentiation appear to influence the response of osteoblast cells to E and TAM.  相似文献   

19.
Two distinct isoforms of a Type II calcium/calmodulin-dependent protein kinase were separated from high-speed supernates (cytosol) of rat neonatal [postnatal day 10 (P10)] and adult [postnatal day 40 (P40)] cerebellum using cation-exchange chromatography. The isoenzymes contained variable amounts of three subunits of apparent Mr's of 50 kDa (alpha), 58 kDa (beta'), and 60 kDa (beta). The specific activity of calmodulin-dependent kinase (CaM kinase II) in crude homogenates increased sixfold between P10 and P40 using exogenous MAP 2 as substrate. Cytosol from cerebellum at P40 contained a predominant isoform (approximately 40% of total cytosolic activity) with a 1:5 molar ratio of alpha:beta',beta subunits that eluted with 150 mM NaCl (designated 150) and a less abundant isoform (approximately 20% of total cytosolic activity) containing a 1:8 molar ratio of alpha:beta',beta subunits that eluted with 350 mM NaCl (designated 350). In neonatal cerebellum at P10, the relative abundance of the two isoforms was reversed such that approximately 50% of the cytosolic calmodulin-dependent kinase activity was recovered in the 350 isoform, whereas only 20% of the total cytosolic kinase activity was recovered in the 150 isoform. Previous studies indicate that cerebellar granule cells may contain an all beta',beta isoform of CaM kinase II that lacks alpha subunit. Thus, to assess the cell-specific localization of kinase isoforms within cerebellum, cytosol prepared from primary cultures of rat cerebellar granule cells was applied to cation-exchange chromatography and analyzed for calmodulin-dependent kinase activity. The cells contained both isoforms of the kinase that were present in fresh tissue suggesting that granule cell-enriched cultures express all three kinase subunits. The data demonstrate that rat cerebellum contains unique mixtures of CaM kinase II isoenzymes and that their expression is developmentally regulated.  相似文献   

20.
To more clearly define the physiologic roles of thromboxane (TX)A2 and primary prostaglandins (PG) in vascular tissue we examined vascular contractility, cell signaling, and growth responses. The growth-promoting effects of (15S)-hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid (U46619; TXA2 agonist), PGF2 alpha, and PGE2 consisted of protein synthesis and proto-oncogene expression, but not DNA synthesis or cell proliferation. U46619 contracted rat aortas and increased cultured rat aortic vascular smooth muscle cell intracellular free calcium concentration [Ca2+]i, [3H]inositol monophosphate (IP) accumulation, myosin light chain phosphorylation, and protein synthesis ([3H]leucine incorporation) with EC50 values ranging from 10 to 50 nM. Each of these responses was inhibitable with the TXA2 receptor antagonist [1S]1 alpha,2 beta(5Z),3 beta,4 alpha-7-(3-[2- [(phenylamino)carbonyl]hydrazino]methyl)-7-oxabicyclo[2.2.1]hept-2- yl-5-heptenoic acid (SQ29548). In contrast, PGF2 alpha increased [Ca2+]i, [3H]IP, and protein synthesis with EC50 values of 30-230 nM but contracted rat aortas with an EC50 of 4800 nM. PGE2 increased [Ca2+]i, [3H]IP accumulation, protein synthesis, and contracted rat aortas with EC50 values of 2.5-3.5 microM. TXA2 receptor blockade prevented PGF2 alpha- and PGE2-induced aortic contraction and cell myosin light chain phosphorylation, but not cell signaling or protein synthesis. Binding studies to vascular smooth muscle TXA2 receptors using 1S-[1 alpha,2 beta(5Z),3 alpha(1E,3S),4 alpha]-7-(3-[3-hydroxy-4-(p- [125I]iodophenoxy)-1-butenyl]7-oxabicyclo[2.2.1]hept-2-yl)-5-hepte noic acid ([125I]BOP) showed U46619, SQ29548, PGF2 alpha, and PGE2 competition for TXA2 receptor binding at concentrations similar to their EC50 values for aortic contraction, while binding competition with [3H]PGF2 alpha and [3H]PGE2 demonstrated the specificity of [125I]BOP and SQ29548 for TXA2 receptors. The results suggest that 1) PGF2 alpha- and E2-stimulated vessel contraction is due to cross-agonism at vascular TXA2 receptors; 2) PGF2 alpha stimulates TXA2 receptor-independent vascular smooth muscle protein synthesis at nanomolar concentrations, consistent with an interaction at its primary receptor; and 3) TXA2 is a potent stimulus for vascular smooth muscle contraction and protein synthesis. We suggest that the main physiologic effect of PGF2 alpha may be as a stimulus for vascular smooth muscle cell hypertrophy, not as a contractile agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号