首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Internodal cells of Chara australis can accumulate ammoniumto high concentrations (10 to 70 mol m–3) in their vacuoles.When Cl is included in the bathing solution, changesin the cellular concentrations of ammonium, K+, Cl andNa+ have been shown to meet the requirements for electroneutralityand to account for the changes in vacuolar osmotic pressureassociated with ammonium uptake. If accumulation occurs in theabsence of external Cl, however; changes in the inorganicions do not meet these criteria. Malate is found in the vacuolesof cells accumulating amine in the absence of external Cland its presence (at 0·5 to 8·5 mol m–3)allows us to account for electroneutrality and for changes inthe osmotic potential. Key words: Malate, Chara, electroneutrality, ammonium  相似文献   

2.
Effects of Cations on the Cytoplasmic pH of Chara corallina   总被引:1,自引:0,他引:1  
Smith, F. A. and Gibson, J.–L. 1985. Effects of cationson the cytoplasmic pH of Chara corallina.—J.exp. Bot.36: 1331–1340 Removal of external Ca2+ from cells of Chara corallina lowersthe cytoplasmic pH, as determined by the intracellular distributionof the weak acid 5,5–dimethyloxazolidine2–,4–dione(DM0), when the external pH is below about 60. This effect isreversed, at least partially, by addition of the following cationsto Ca2+-free solutions: tetraethylammonium (TEA+) and Na+ at5 or 10 mol m-3, Li+ and Cs+ (10 mol m-3), or Mg2+, Mn2+ andLa3+ (02 or 05 mol m-3). Under the same conditions, increasesin pH sometimes, but not always, occur in the presence of 10mol m-3 K+ or Rb+ The results are discussed in relation to the major transportprocesses that determine pH and the electric potential differenceacross the plasma membrane, namely fluxes of H+ and of K+. Thesimplest explanation of the effects of the various cations testedin this study is that they primarily affect pHic via changesin influx of H+ but direct effects on the H+ pump or on K+ fluxesmay also be involved Key words: Chara corallina, cytoplasmic pH, cations, H+transport  相似文献   

3.
Effects of removal of external Ca2+ on the cytoplasmic pH (pHc)of Chara corallina have been measured with the weak acid 5,5-dimethyl-oxazolidine-2,4-dione(DMO) as a function of external pH (pH0) and of the externalconcentration of K+. Removal of Ca2+ always decreased pHc whenpH0 was below about 6.0; the decrease was about 0.2–0.4units at pH0 5.0, increasing to about 0.5 units at pH0 4.3.When pH0 was 6.0 or higher the removal of Ca2+ had little orno effect on pHc. This situation was not altered by changingthe concentration of K+, though in some experiments at pH0 5.0–5.2there was a slight decrease in pH0 (about 0.2 units) when K+was increased from 0.2 to 2.0 mol m–3, an effect apparentlyreversed when K+ was higher (5.0 or 10.0 mol m–3). Theresults suggest that H+ transport continues in the absence ofexternal Ca2+, despite previous suggestions to the contrary,and that the H+ pump does not necessarily run near thermodynamicequilibrium with its chemical driving reaction. They indicate,rather, that the H+ pump is under kinetic control and providefurther evidence for the inadequacy of present models for theoperation of the H+ pump in charophyte cells, especially inrelation to its proposed role in regulating pHc. Key words: Chara corallina, Cytoplasmic pH, Calcium  相似文献   

4.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

5.
Low concentrations of ammonia and methylamine greatly increaseCl influx into Chara corallina. Both amines have theirmaximum effect at pH 6.5–7.5. The amine stimulation ofCl influx is small below about pH 5.5. Above pH 8.5 theremay be inhibition of influx by amines. Concentrations of 10–25µM ammonia are sufficient to cause the maximum stimulationof Cl influx; the corresponding methylamine concentrationsare 0.1–0.2 mM. It is concluded that entry of amine cations(NH4$ and CH3NH3$), rather than unionized bases (NH3 and CH3NH2),causes Cl transport to be increased. Increases in rates of Cl transport are not necessarilyaccompanied by effects on HCO3$ assimilation and OH efflux.Measurements of localized pH differences at the cell surfaceand of circulating electric currents in the bathing solutionshow that these phenomena are only significantly affected byammonia at or above 50 µM and by methylamine at or above1.0 mM. The significance of the effects of amines is assessedin relation to current ideas about transport of Cl, HCO3,and OH.  相似文献   

6.
The effect of elevated Na+ concentration on Na+ permeability(PNa) and Na+ influx in the presence of two levels of externaldivalent cations was determined in Chara corallina and freshwater-culturedChara buckellii. When Na+ in the medium was increased from 1.0to 70 mol m–3, Na+ influx increased in both species ifCa2+ was low (0.1 mol m–3). If Ca2+ was increased to 7.0mol m–3 when Na+ was increased, Na+ influx remained atthe low control level in C. corallina, and showed only a temporaryincrease in C. buckellii. Mg2+ was a better substitute for Ca2+in C. buckellii than in C. corallina. Na+ permeability data suggest that when the external Ca2+ concentrationis low, PNa does not increase in the presence of elevated NaCl;the increase in Na+ influx appears to be due to the increasein external Na+ concentration alone. Ca2 + supplementation appearsto decrease PNa whereas supplemental Mg2+ has no effect. Na+ effluxes were computed from previously determined net fluxesand the influxes. It was found that for both species, fluxesin both directions were stimulated in response to all experimentaltreatments, but Na+ influx always exceeded efflux. This resultedin net Na+ accumulation in the vacuoles of both species. The results are discussed with reference to net flux and electrophysiologicaldata obtained previously under identical conditions, as wellas the comparative salinity tolerance of both species and theNa+/divalent cation ratio. Key words: Na+ influx, Na+ tolerance, membrane potential, permeability, Chara  相似文献   

7.
Using permeabilized characean cells in which the ionic conditionsat the cytoplasmic side of the tonoplast are easily controlled,effects of Ca2+ ion on tonoplast potential were examined. Whenthe cell was treated with 1 µM Ca2+, the tonoplast potential(EM became positive in a complicated manner in Chara corallinawhile it simply became negative in Nitella axilliformis. Whenthe cell was treated with 9-antracenecarboxylic acid, a Cl-channelinhibitor, Em became more negative and the response of Em toCa2+ was significantly suppressed. It is suggested that Ca2+activates Cl-channel at a low concentration and inactivatesat a higher one in C. corallina while it simply inactivate Cl-channelin N. axilliformis. 1Present address: Biological Laboratory, The University of theAir, Wakaba 2-11, Wakaba, 260 Japan. (Received August 22, 1988; Accepted December 26, 1988)  相似文献   

8.
The contribution of membrane transport to regulation of cytoplasmicpH in Chara corallina has been measured during proton-loadingby uptake of butyric acid. In the short-term (i.e. up to 20min) uptake of butyric acid is not affected by removal of externalK+, Na+ or Cl but over longer periods uptake is decreased(by 20–50% in different experiments) in the absence ofexternal Na+ or, sometimes, K+. Influxes of both Na+ and K+increase temporarily after addition of butyrate, Na+ immediatelyand K+ after a lag. Effects on Cl influx are small butCl efflux increases enormously after a short lag. Anapproximate comparison of internal butyrate with changes inthe concentration of K+, Na+, and Cl suggests that initially(i.e. for a few min) cytoplasmic pH is determined by bufferingand possibly by some decarboxylation of organic acids (biochemicalpH regulation), and that biophysical pH regulation involvingefflux of H+ balanced by influxes of K+, Na+ and especiallyefflux of Cl progressively becomes dominant. When butyric acid is washed out of the cells, cytoplasmic pHis restored completely or partially (depending on the butyrateconcentration used) and this is independent of the presenceor absence of external Cl. Where Cl is present,its influx is relatively small. It is suggested that cytoplasmicpH is then controlled biochemically, involving the synthesisof an (unidentified) organic acid and the accumulation of acidicanions in place of butyurate lost from the cell. During thesecond application of butyrate, net Cl efflux is small:it is suggested that control of cytoplasmic pH then involvesdecarboxylation of the organic acid anions. The questions of the source of Cl lost from the cell(cytoplasm or vacuole) and of possible cytoplasmic swellingassociated with the accumulation of butyrate are discussed. Key words: Chara corallina, butyric acid, cytoplasmic pH, membrane transport  相似文献   

9.
The pH of the cytoplasm of Chara corallina cells has been measuredwith the weak acid 5,5-dimethyloxazolidine-2,4-dione (DM0).Over an external pH range 4·5–9·5 the resultsfit the regression equation pHcytoplasm=6·28+0·22pHout. Using measured values of the electric potential difference acrossthe plasmalemma we have calculated the electrochemical potentialdifference across this membrane for H+ and Cl. Thesedata are used to test the hypothesis that the inward transportof Cl is coupled to the inthix of H+ or, which comesto the same thing, efflux of OH. One-for-one couplingwill not give net Cl uptake from solutions with pH greaterthan about 7·2, unless the cytoplasmic Cl concentrationis lower than 10 mM, or the pH just outside the membrane islower than that in the bulk solution. It is shown that net Cluptake proceeds from solutions with pH up to 9. The alternative possibility is that Cl transport is broughtabout by co-transport of two H+ for each Cl; this isnot ruled out by the results reported. Such a mechanism mightbe detectable by its electrogenic effect: although such effectshave not been detected, it is shown that they would be smallunder most conditions. Other possible mechanisms are discussed.  相似文献   

10.
Ammonia (pKa 9.25) and methylamine (pKa, 10.65) increase cytoplasmicpH and stimulate Cl influx in Chara corallina, theseeffects being associated with influx of the amine cations ona specific porter. The weak base imidazole (pKa 6.96) has similareffects but diffuses passively into the cell both as an unionizedbase and as a cation. When the external pH is greater than 6.0influx of the unionized species predominates. Imidazole accumulates to high concentrations in the vacuole,where it is protonated. Cytoplasmic pH and vacuolar pH riseby only 0.2–0.3 units, suggesting a large balancing protoninflux across the plasma membrane. Balance of electric chargeis partially maintained by net efflux of K+ and net influx ofCl. Calculation of vacuolar concentrations of imidazole(from (14C] imidazole uptake, assuming that there is no metabolism)plus K+ and Na+ indicates an excess of cations over inorganicanions (Cl). However, although the osmotic potentialof the cells increases, also indicating increased solute concentrations,the increase is less than that predicted by the calculated ionicconcentrations. This discrepancy remains to be resolved. Becausethe osmotic potential also increases when imidazole is absorbedfrom Cl-free solutions it is likely that maintenanceof charge-balance can also involve synthesis and vacuolar storageof organic or amino acids. Key words: Imidazole, potassium, intracellular pH, membrane transport, Chara  相似文献   

11.
Net accumulation of Cl by intact barley plants was virtuallyeliminated in roots and reduced by 40% in shoots when externalmedia (0.5 mol m–3 CaSO4 plus 0–5 mol m–3KCI) were supplemented with 0.25 mol m Ca(NO3)2. Plasmalemma36Cl influx (oc) was shown to be insensitive to externalNO3- in plants which had previously been grown in solutionslacking –3, but oc became sensitive to NO3-after a lagperiod of 3–6 h. Kinetic analyses revealed that the inhibitionof 36C1 influx by external NO3- was complex. At 0.25mol m–3 NO3- the Vmax for Cl influx was reducedby greater than 50%, with insignificant effects upon Km. At0.5 mol m–3 NO3- there was no further effect upon Vmaxbut Km for influx increased from 38±5 mmol m–3to 116±26 mmol m–3. By contrast, Cl effluxwas found to be insensitive to external NO3-. A model for theregulation of Cl influx is proposed which involves bothnegative feedback effects from vacuolar NO3- +Cl) concentrationand (external) NO3- inhibition of Cl influx at the plasmalemma.These combined effects serve to discriminate against Claccumulation, favouring NO3- accumulation, when the latter ionis available. Such observations are inconsistent with recentproposals for the existence of bona fide homeostats for chlorideaccumulation in higher plants. Key words: Nitrate inhibition, Chloride influx, Barley  相似文献   

12.
Three distinct mechanisms of HCO3- secretion in rat distal colon   总被引:1,自引:0,他引:1  
HCO3 secretion has long been recognized in the mammalian colon, but it has not been well characterized. Although most studies of colonic HCO3 secretion have revealed evidence of lumen Cl dependence, suggesting a role for apical membrane Cl/HCO3 exchange, direct examination of HCO3 secretion in isolated crypt from rat distal colon did not identify Cl-dependent HCO3 secretion but did reveal cAMP-induced, Cl-independent HCO3 secretion. Studies were therefore initiated to determine the characteristics of HCO3 secretion in isolated colonic mucosa to identify HCO3 secretion in both surface and crypt cells. HCO3 secretion was measured in rat distal colonic mucosa stripped of muscular and serosal layers by using a pH stat technique. Basal HCO3 secretion (5.6 ± 0.03 µeq·h–1·cm–2) was abolished by removal of either lumen Cl or bath HCO3; this Cl-dependent HCO3 secretion was also inhibited by 100 µM DIDS (0.5 ± 0.03 µeq·h–1·cm–2) but not by 5-nitro-3-(3-phenylpropyl-amino)benzoic acid (NPPB), a Cl channel blocker. 8-Bromo-cAMP induced Cl-independent HCO3 secretion (and also inhibited Cl-dependent HCO3 secretion), which was inhibited by NPPB and by glibenclamide, a CFTR blocker, but not by DIDS. Isobutyrate, a poorly metabolized short-chain fatty acid (SCFA), also induced a Cl-independent, DIDS-insensitive, saturable HCO3 secretion that was not inhibited by NPPB. Three distinct HCO3 secretory mechanisms were identified: 1) Cl-dependent secretion associated with apical membrane Cl/HCO3 exchange, 2) cAMP-induced secretion that was a result of an apical membrane anion channel, and 3) SCFA-dependent secretion associated with an apical membrane SCFA/HCO3 exchange. chloride/bicarbonate exchange; short-chain fatty acid/bicarbonate exchange; anion channel; pH stat  相似文献   

13.
Several studies suggest the involvement of Na+ and HCO3 transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3 transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601–C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 ± 0.02 to 7.38 ± 0.02 (n = 41) after addition of CO2/HCO3 into the bath solution. This increase was Na+ dependent and inhibited by the Cl and HCO3 transport inhibitor DIDS (200 µM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3 uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3-dependent net base flux of 0.828 ± 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3 was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3-dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl bicarbonate exchanger, and NBCe2 in this tissue. bicarbonate metabolism; BCECF; cerebrospinal fluid; acid/base transport; ammonium prepulse  相似文献   

14.
Competitive inhibition of the HCO3 transport site, atthe plasmalemma of Chara coraUina, by the CO2–3 ion isdemonstrated. This CO2–3 inhibition was used to demonstratethat HCO3 ions enter the cell by facilitated ‘diffusion’when the HCO3 transport system has been inactivated bytreatment with 10 mM K+. Use of CO2–3 as a HCO3analogue is limited, however, because of the necessity to employsolutions of high pH. Inhibition was not observed in the presenceof a range of organic and inorganic acid anions. These resultsdemonstrate the stereo-specific nature of the HCO3 bindingsite. A variety of amino compounds were found to inhibit H14CO3influx. Inhibition appeared to be competitive, being completelyrelieved at higher substrate (HCO3) concentrations. Asimple correlation was not found between the degree of inhibitionand the concentration of neutral base. A combination of thepresence of neutral base and experimental pH values of at least8·0 was required to produce the reactive species thatinhibited HCO3 transport. This species is consideredto be the amino carbamate. These results are discussed withrespect to further HCO3 analogue experiments.  相似文献   

15.
Potassium Channels at Chara Plasmalemma   总被引:2,自引:0,他引:2  
Exposure to high K+ medium transforms Chara plasmalemma into[K+]osensitive state (K+ state). The current-voltage (I/V)characteristicsunder such conditions display a negative conductance region.This feature results from the complex time and voltage dependenceof K+ channel opening At potentials more negative than a thresholdp.d. the channels are closed and the I/V characteristics becomelinear with a low slope conductance of 0.8 S m2 and only a weakdependence on [K+]o. Such behaviour is usually associated witha non-specific leak current The threshold level for K+ channelclosing depends on [K+]o. In 2.0 mol m–3 and 5.0 mol m–3K+ medium the membrane resting p.d. follows EK, but hyperpolarizesgradually if the [K+]o is lowered. The proton pump thus appearsto be non-operative, while the cell is in the K+ state, andrecovers slowly as the cell is returned to a low K+ medium.Excitation currents decline if the cells are kept in K+ statefor some hours. Key words: K+ channels, Chara corallina, Proton pump, Current/, oltage characteristics, Conductance  相似文献   

16.
The role of Cl in the reactivation of O2 evolution inphotosystem II (PS II) particles derived from spinach chloroplastswas studied in the presence of various salts. Multivalent ion(especially anion) salts were found to strongly suppress thereactivation of O2 evolution by Cl in the Cl-depletedPS II particles in a competitive manner. The effectiveness ofanions in the suppression of Cl-supported O2 evolutionwas in the order of trivalent>divalent>monovalent ones.Multivalent anions similarly suppressed O2 evolution in theuntreated PS II particles under low and moderate Cl concentrations.pH dependence of the Cl-affinity (Km) value for Cl)was also studied. Within the pH range 5.5 to 8 the Km valuebecame higher as the pH of the medium increased. These resultssuggest that the membrane surface in the vicinity of the Claction site is net positively charged and attracts Clelectrostatically, and that the site is almost freely accessibleto various anions. The origin and role of the local net positivedomain and the role of peripheral proteins are discussed. (Received May 27, 1985; Accepted October 8, 1985)  相似文献   

17.
The interrelationships between light intensity and the activationof OH bands was investigated. The lag period prior toOH efflux activation was longer than the photosyntheticinduction period. It was found that this lag period dependedupon the light regime employed as well as the photosyntheticcapacity of the cell. The response of the cell to low light intensities revealed thatall OH bands were not of equal status. Below a criticallight intensity the cell did not develop any bands even afterprolonged illumination. An hypothesis is presented to accountfor these results, interms of total cell OH band activationand the regulation of the HCO3 and OH transportsystems. It is proposed that the electrical properties of theChara corallina plasmalemma, observed at high pH values, canbe explained on the basis of the hypothesis presented in thispaper  相似文献   

18.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

19.
This paper describes experiments designed to investigate theeffects of increases in external osmotic pressure on the electrophysiologicalbehaviour of the plasmalemma in cells of the brackish-wateralga, Chara inflata. The electrical conductance of the plasmalemmaof these cells of, due to the diffusion of ions, consists mainlyof K+, Cl and leak components. The addition of sorbitolat concentrations in the range 40–280 mol m–3 tothe external solution bathing the cells, progressively and reversiblydepolarized the cell membrane and increased the total membraneconductance, chiefly due to increases in each of the separateionic conductances. At concentrations higher than about 280mol m–3 when the cells became plasmolysed, the effectsof sorbitol on the electrical properties of the cell ceasedto be fully reversible. When the membrane electrical potentialdifference is stepped in a negative direction with a voltage-clamp,the resulting inward current has voltage-dependent componentsconsisting of an inactivating K+ current, an activating Clcurrent and a constant leak current. The addition of sorbitolto the external solution modified these currents by increasingtheir magnitude, by increasing the half-time of the inactivationof the K+ current, and by decreasing the half-time of activationof the Cl current. Key words: Chara inflata, osmotic effects, K+ and Cl currents  相似文献   

20.
Potassium-Ammonium Uptake Interactions in Tobacco Seedlings   总被引:6,自引:0,他引:6  
Short-term (< 12 h) uptake experiments were conducted with6–7-week-old tobacco (Nicotiana tabacum L. cv. Ky 14)seedlings to determine absorption interactions between K+ andNH4+. At equal solution concentrations (0.5 mol m–3) netK+ uptake was inhibited 30–35% by NH4+ and NH4+ uptakewas decreased 9–24%. Removal of NH4+ resulted in completerecovery in K+ uptake rate, but NH4+ uptake rate did not recoverwhen K+ was removed. In both cases, inhibition of the uptakerate of one cation saturated as the concentration of the othercation was increased up to 0.5 mol m–3. The relative effectof K+-NH4+ interactions was not altered when Cl- was replacedwith SO42–, but the magnitudes of the uptake rates wereless in the absence of Cl-. The Vmax for NH4+ uptake was reducedfrom 128 to 105 µmol g–1 dry wt. h–1 in thepresence of 0.5 mol m–3 K+ and the Km for NH4+ doubledfrom 12 to 27 mmol m–3 in the presence of K+. The resultsof these K+-NH4+ experiments are interpreted as mixed-noncompetitiveinteractions. However, an enhanced efflux of K+ coupled to NH4+influx via an antiporter cannot be ruled out as contributingto the decrease in net K+ uptake. Key words: Nicotiana tabacum, K+, NH4+, Uptake interactions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号