首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men and women, significant research attention has focused on comparing adipocyte morphological and metabolic properties, as well as the capacity of preadipocytes derived from different depots for proliferation and differentiation. Available evidence points to possible intrinsic, cell autonomous differences in preadipocytes and adipocytes, as well as modulatory roles for sex steroids, the microenvironment within each adipose tissue, and developmental factors. Gluteal-femoral adipose tissues of women may simply provide a safe lipid reservoir for excess energy, or they may directly regulate systemic metabolism via release of metabolic products or adipokines. We provide a brief overview of the relationship of fat distribution to metabolic health in men and women, and then focus on mechanisms underlying sex differences in adipose tissue biology.  相似文献   

2.
Obesity in both humans and rodents is characterized by adipocyte hypertrophy and the presence of death adipocytes surrounded by macrophages forming "crown-like structures." However, the biochemical pathways involved in triggering adipocyte death as well as the role of death adipocytes in adipose tissue remodeling and macrophage infiltration remain poorly understood. We now show that induction of adipocyte hypertrophy by incubation of mature adipocytes with saturated fatty acids results in lysosomal destabilization and cathepsin B (ctsb), a key lysosomal cysteine protease, activation and redistribution into the cytosol. ctsb activation was required for the lysosomal permeabilization, and its inhibition protected cells against mitochondrial dysfunction. With the use of a dietary murine model of obesity, ctsb activation was detected in adipose tissue of these mice. This is an early event during weight gain that correlates with the presence of death adipocytes, and precedes macrophage infiltration of adipose tissue. Moreover, ctsb-deficient mice showed decreased lysosomal permeabilization in adipocytes and were protected against adipocyte cell death and macrophage infiltration to adipose tissue independent of body weight. These data strongly suggest that ctsb activation and lysosomal permeabilization in adipocytes are key initial events that contribute to the adipocyte cell death and macrophage infiltration into adipose tissue associated with obesity. Inhibition of ctsb activation may be a new therapeutic strategy for the treatment of obesity-associated metabolic complications.  相似文献   

3.
ABSTRACT: Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men and women, significant research attention has focused on comparing adipocyte morphological and metabolic properties, as well as the capacity of preadipocytes derived from different depots for proliferation and differentiation. Available evidence points to possible intrinsic, cell autonomous differences in preadipocytes and adipocytes, as well as modulatory roles for sex steroids, the microenvironment within each adipose tissue, and developmental factors. Gluteal-femoral adipose tissues of women may simply provide a safe lipid reservoir for excess energy, or they may directly regulate systemic metabolism via release of metabolic products or adipokines. We provide a brief overview of the relationship of fat distribution to metabolic health in men and women, and then focus on mechanisms underlying sex differences in adipose tissue biology.  相似文献   

4.
Leptin-induced adipose apoptosis: Implications for body weight regulation   总被引:2,自引:0,他引:2  
Great strides have been made in understanding the genetics of body weight regulation, in part due to the study of rodent models of obesity that are characterized by mutations affecting leptin or its receptors. Leptin, produced in adipose tissue, acts both centrally and peripherally to orchestrate complex metabolic and behavioral changes that increase loss of adipose tissue, including suppressing food intake and increasing thermogenesis. In addition, recent evidence indicates that leptin acts centrally to trigger an apoptotic process resulting in adipocyte deletion. Loss of adipocytes by apoptosis may provide an explanation for the unexpected delay in return to initial energy status following leptin treatments. This review summarizes the major aspects of leptin-induced adipose tissue apoptosis, including some of the newest findings about possible mechanisms of action.  相似文献   

5.
Obesity is associated with adipose tissue remodeling, characterized by adipocyte hypertrophy and macrophage infiltration. Previously, we have shown that very low density lipoprotein receptor (VLDLR) is virtually absent in preadipocytes but is strongly induced during adipogenesis and actively participates in adipocyte hypertrophy. In this study, we investigated the role of VLDLR in adipose tissue inflammation and adipocyte-macrophage interactions in wild type and VLDLR-deficient mice fed a high fat diet. The results show that VLDLR deficiency reduced high fat diet-induced inflammation and endoplasmic reticulum (ER) stress in adipose tissue in conjunction with reduced macrophage infiltration, especially those expressing pro-inflammatory markers. In adipocyte culture, VLDLR deficiency prevented adipocyte hypertrophy and strongly reduced VLDL-induced ER stress and inflammation. Likewise, cultures of primary peritoneal macrophages show that VLDLR deficiency reduced lipid accumulation and inflammation but did not alter chemotactic response of macrophages to adipocyte signals. Moreover, VLDLR deficiency tempered the synergistic inflammatory interactions between adipocytes and macrophages in a co-culture system. Collectively, these results show that VLDLR contributes to adipose tissue inflammation and mediates VLDL-induced lipid accumulation and induction of inflammation and ER stress in adipocytes and macrophages.  相似文献   

6.
Recent studies identifying obesity as a significant and increasingly more common cause of morbidity and mortality have intensified research efforts aimed at increasing our understanding of adipose tissue biology. These efforts have culminated in the discovery of several adipokines, or adipose tissue-derived hormones, that have been implicated in the regulation of multiple physiological functions, as well as the realization that adipose tissue dysfunction plays an important role in the pathogenesis of diseases such as obesity and diabetes. To better understand the role of adipose tissue in these physiological/pathological events, several studies have employed transgenic strategies to eliminate adipose tissue. However, these mouse models of congenital lipoatrophy/lipodystrophy exhibit severe metabolic and somatic cell dysfunction. To circumvent this limitation, we have characterized the first inducible fatless mouse. The FAT-ATTAC mouse is a transgenic model whereby expression of a myristoylated caspase 8-FKBP fusion protein enables selective ablation of adipocytes via induction of apoptosis that occurs upon treatment with a chemical dimerizer. The FAT-ATTAC mouse model not only has the advantage that adipocyte ablation be induced at any time during development, but it is also fully reversible, as adipose tissue regenerates after cessation of dimerizer treatment. The inducibility of this fatless mouse model holds potential for revealing novel physiological roles for adipose tissue as well as its contribution to the etiology and pathogenesis of various disease states. Here we describe several ongoing areas of research employing the FAT-ATTAC mouse; in addition we describe potential uses of the targeted transgenic apoptotic approach to study other cell types of interest.  相似文献   

7.
Obesity is a condition characterized by excess adipose tissue that results from positive energy balance and is the most common metabolic disorder in the industrialized world. The obesity epidemic shows no sign of slowing, and it is increasingly a global problem. Serious clinical problems associated with obesity include an increased risk for type 2 diabetes, atherosclerosis, and cancer. Hence, understanding the origin and development of adipocytes and adipose tissue will be critical to the analysis and treatment of metabolic diseases. Historically, albeit incorrectly, adipocytes were thought to be inert cells whose singular function was lipid storage. It is now known that adipocytes have other critical functions; the most important include sensitivity to insulin and the ability to produce and secrete adipocyte-specific endocrine hormones that regulate energy homeostasis in other tissues. Today, adipocytes are recognized as critical regulators of whole-body metabolism and known to be involved in the pathogenesis of a variety of metabolic diseases. All cells come from other cells and many cells arise from precursor cells. Adipocytes are not created from other adipocytes, but they arise from precursor cells. In the last two decades, scientists have discovered the function of many proteins that influence the ability of precursor cells to become adipocytes. If the expansion of the adipose tissue is the problem, it seems logical that adipocyte development inhibitors could be a viable anti-obesity therapeutic. However, factors that block adipocyte development and limit adipocyte expansion also impair metabolic health. This notion may be counterintuitive, but several lines of evidence support the idea that blocking adipocyte development is unhealthy. For this reason it is clear that we need a better understanding of adipocyte development.  相似文献   

8.
Regulation of fat cell number by apoptosis is proposed to be part of a normal physiological cycle in adipose growth and development. To investigate this process, cultured rat adipocytes were treated with various concentrations of tumor necrosis factor alpha (TNFalpha) and/or insulin to determine the roles of these factors in adipocyte apoptosis. The cells were analyzed by flow cytometry using a TUNEL assay. TNFalpha increased adipocyte apoptosis in a dose-dependent fashion. TNFalpha-mediated apoptosis was detectable within 6 h of treatment and continued to increase with time. Decreasing media insulin concentration from 8.5 to 0.85 nM resulted in increased adipocyte apoptosis, whereas high doses of insulin protected adipocytes from TNFalpha-induced apoptosis. TNFalpha-activated apoptosis was accompanied by an increase in caspase 3 activity and could be inhibited by a caspase 3-specific inhibitor. These data suggest that adipose tissue cell number is regulated, in part, by an apoptotic signaling pathway that involves TNFalpha, insulin, and caspase 3.  相似文献   

9.
The obesity epidemic has intensified efforts to understand the mechanisms controlling adipose tissue development. Adipose tissue is generally classified as white adipose tissue (WAT), the major energy storing tissue, or brown adipose tissue (BAT), which mediates non-shivering thermogenesis. It is hypothesized that brite adipocytes (brown in white) may represent a third adipocyte class. The recent realization that brown fat exist in adult humans suggests increasing brown fat energy expenditure could be a therapeutic strategy to combat obesity. To understand adipose tissue development, several groups are tracing the origins of mature adipocytes back to their adult precursor and embryonic ancestors. From these studies emerged a model that brown adipocytes originate from a precursor shared with skeletal muscle that expresses Myf5-Cre, while all white adipocytes originate from a Myf5-negative precursors. While this provided a rational explanation to why BAT is more metabolically favorable than WAT, recent work indicates the situation is more complex because subsets of white adipocytes also arise from Myf5-Cre expressing precursors. Lineage tracing studies further suggest that the vasculature may provide a niche supporting both brown and white adipocyte progenitors; however, the identity of the adipocyte progenitor cell is under debate. Differences in origin between adipocytes could explain metabolic heterogeneity between depots and/or influence body fat patterning particularly in lipodystrophy disorders. Here, we discuss recent insights into adipose tissue origins highlighting lineage-tracing studies in mice, how variations in metabolism or signaling between lineages could affect body fat distribution, and the questions that remain unresolved. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

10.
Leptin induces angiopoietin-2 expression in adipose tissues   总被引:15,自引:0,他引:15  
Adipose tissues consisting of adipocytes, microvasculature, and stroma are completely ablated upon over-expression of leptin in rats. This tissue regression is mediated by enhanced lipid beta-oxidation, adipocyte dedifferentiation, and apoptosis. To further characterize this phenomenon, we studied the possible effect of leptin on the adipose microvasculature. Tissue microvasculature is maintained by the interplay between positive and negative signals mediated by factors including vascular endothelial growth factor (VEGF), basic fibroblast growth factor, angiopoietin-1 (Ang-1), and Ang-2. Expression of the negative signal Ang-2 was reported in fetal tissues and in the adult ovary, which undergoes vascular remodeling or regression. We demonstrate that leptin induces the expression of Ang-2 in adipose tissue without a concomitant increase in VEGF. Induction of Ang-2 occurred in an autocrine manner, as demonstrated in cultured adipocytes but not in several other cell types. This tissue-specific induction of Ang-2 coincided with initiation of apoptosis in adipose endothelial cells. We propose that induction of Ang-2 by leptin in adipose cells is one of the events leading to adipose tissue regression.  相似文献   

11.
Fat-specific protein 27 regulates storage of triacylglycerol   总被引:4,自引:0,他引:4  
FSP27 (fat-specific protein 27) is a member of the cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) family. Although Cidea and Cideb were initially characterized as activators of apoptosis, recent studies have demonstrated important metabolic roles for these proteins. In this study, we investigated the function of another member of this family, FSP27 (Cidec), in apoptosis and adipocyte metabolism. Although overexpression of FSP27 is sufficient to increase apoptosis of 293T and 3T3-L1 cells, more physiological levels of expression stimulate spontaneous lipid accumulation in several cell types without induction of adipocyte genes. Increased triacylglycerol is likely due to decreased beta-oxidation of nonesterified fatty acids. Altered flux of fatty acids into triacylglycerol may be a direct effect of FSP27 function, which is localized to lipid droplets in 293T cells and 3T3-L1 adipocytes. Stable knockdown of FSP27 during adipogenesis of 3T3-L1 cells substantially decreases lipid droplet size, increases mitochondrial and lipid droplet number, and modestly increases glucose uptake and lipolysis. Expression of FSP27 in subcutaneous adipose tissue of a human diabetes cohort decreases with total fat mass but is not associated with measures of insulin resistance (e.g. homeostasis model assessment). Together, these data indicate that FSP27 binds to lipid droplets and regulates their enlargement.  相似文献   

12.
In a sample of 31 sedentary, ad libitum-fed monkeys, most specimens had less than 5% adipose tissue by weight. Total fatness correlated closely with the number of adipocytes per kilogram lean body mass, but not at all with mean adipocyte volume, except in specimens below 5% fat. The total number of adipocytes per kilogram of lean body mass increased more than tenfold in the most obese specimens. These data suggest that, like humans but in contrast to laboratory rodents, adipocyte proliferation, not adipocyte enlargement, is the chief mechanism of adipose tissue expansion except in very lean monkeys. Adipose tissue was found in all the typical mammalian depots and in the superficial abdominal paunch, which enlarged disproportionately in obese specimens, forming an almost continuous layer over most of the body. Site-specific differences in the activities of some glycolytic enzymes were similar to those of other mammals. Adipocytes in the paunch depot showed biochemical properties in common with those in the groin depots. The distribution and cellularity of adipose tissue in normal humans were similar to those of exceptionally obese monkeys. Many of the interspecific and sex differences can be attributed to the much greater abundance of adipose tissue in humans, and may not be associated with hair reduction or aquatic habits. Some minor changes in the size or shape of certain adipose depots may have arisen recently under sexual selection. The relevance of laboratory rodents as animal models of human obesity is assessed from comparison of the cellular structure, anatomical distribution and enzyme profiles of adipose tissue in monkeys with those of human and other mammals.  相似文献   

13.
The accumulation of fat cells (adipocytes) in bone marrow is now thought to be a factor contributing to age-related bone loss. Women with osteoporosis have higher numbers of marrow adipocytes than women with healthy bone, and bone formation rate is inversely correlated with adipocyte number in bone tissue biopsies from both men and women. Adipogenic differentiation of bone marrow stromal cells increases with age, but the factors regulating populations of mature adipocytes are not well understood. Leptin is thought to regulate adipose tissue mass via its receptors in the ventromedial hypothalamus (VMH). We have therefore tested the hypothesis that stimulation of leptin receptors in the VMH regulates adipocyte number in bone marrow. Results indicate that unilateral twice-daily injections of leptin into the rat VMH for only 4 or 5 days cause a significant reduction in the number of adipocytes in peripheral fat pads and bone marrow and indeed eliminate adipocytes almost entirely from bone marrow of the proximal tibia. Osteoblast surface is not affected with leptin treatment. Apoptosis assays performed on bone marrow samples from control and treated rats have revealed a significant increase in protein concentration of the apoptosis marker caspase-3 with leptin treatment. We conclude that stimulation of leptin receptors in the VMH significantly decreases the adipocyte population in bone marrow, primarily through apoptosis of marrow adipocytes. Elimination of marrow adipocytes via this central pathway may represent a useful strategy for the treatment and prevention of osteoporosis.  相似文献   

14.
Enlarged fat cells exhibit modified metabolic capacities, which could be involved in the metabolic complications of obesity at the whole body level. We show here that sterol regulatory element-binding protein 2 (SREBP-2) and its target genes are induced in the adipose tissue of several models of rodent obesity, suggesting cholesterol imbalance in enlarged adipocytes. Within a particular fat pad, larger adipocytes have reduced membrane cholesterol concentrations compared with smaller fat cells, demonstrating that altered cholesterol distribution is characteristic of adipocyte hypertrophy per se. We show that treatment with methyl-beta-cyclodextrin, which mimics the membrane cholesterol reduction of hypertrophied adipocytes, induces insulin resistance. We also produced cholesterol depletion by mevastatin treatment, which activates SREBP-2 and its target genes. The analysis of 40 adipocyte genes showed that the response to cholesterol depletion implicated genes involved in cholesterol traffic (caveolin 2, scavenger receptor BI, and ATP binding cassette 1 genes) but also adipocyte-derived secretion products (tumor necrosis factor alpha, angiotensinogen, and interleukin-6) and proteins involved in energy metabolism (fatty acid synthase, GLUT 4, and UCP3). These data demonstrate that altering cholesterol balance profoundly modifies adipocyte metabolism in a way resembling that seen in hypertrophied fat cells from obese rodents or humans. This is the first evidence that intracellular cholesterol might serve as a link between fat cell size and adipocyte metabolic activity.  相似文献   

15.
The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes   总被引:16,自引:0,他引:16  
Ghrelin, a stomach-derived hormone, induces adiposity when administered to rodents. Because ghrelin receptor is abundantly expressed in adipose tissue, we investigated the role of ghrelin in adipocyte biology. We observed ghrelin receptor expression in 3T3-L1 preadipocytes and adipocytes. Treatment of preadipocytes with ghrelin induced cellular proliferation and differentiation to mature adipocytes, as well as basal and insulin-stimulated glucose transport, but it inhibited adipocyte apoptosis induced by serum deprivation. Exposure of 3T3-L1 cells to ghrelin caused a rapid activation of MAPKs, especially ERK1/2. Chemical inhibition of MAPK blocked the mitogenic and antiapoptotic effects of ghrelin. Ghrelin also stimulated the insulin receptor substrate-associated phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 preadipocytes and adipocytes, whereas inhibition of this pathway blocked the effects of ghrelin on cell proliferation, antiapoptosis and glucose uptake. These findings suggest that the direct effects of ghrelin on proliferation, differentiation, and apoptosis in adipocytes may play a role in regulating fat cell number. These effects may be mediated via activation of the MAPK and phosphatidylinositol 3-kinase/Akt pathways.  相似文献   

16.
Research efforts investigating the pathophysiology of adipose tissue have often focused separately on either the metabolic or cardiovascular components of an expanding fat mass. However, the growth and development of the fat cells and their vasculature are closely interrelated, a fact that has been established through more than a century of diverse studies of adipose tissue. Recently, the prevalence of obesity in the United States has stimulated investigations into the cardiovascular and metabolic correlates occurring with excessive lipid deposition and subsequent adipose tissue expansion. These investigations have resulted in conclusive evidence that, from a cardiovascular perspective, obesity results in an elevated blood volume and cardiac output, accompanied by an expansion of adipose water space, whereas from a metabolic aspect, the disease is characterized by adipocyte enlargement and associated alterations in metabolic pathways and hormonal responsiveness. Because these separate areas of research have independently shown interdepot differences in perfusion requirements and metabolic adaptations during the transition from the lean to obese state, adipocyte expansion may be partially dependent on the pattern of vascularity. This hypothesis is discussed by examining the integral relationship between the cardiovascular system and adipocyte metabolism, hopefully providing new insight into control of the pathophysiological processes of an expanding adipose organ.  相似文献   

17.
The objectives of this experiment were to determine whether leptin causes adipocyte apoptosis in mice, whether peripheral administration is an effective means of studying leptin-induced adipocyte apoptosis, and whether high-fat feeding results in reduced responsiveness to leptin-induced adipocyte apoptosis. Continuous 13-day intraperitoneal infusion of 10 microg/day leptin significantly increased adipocyte apoptosis in the epididymal/parametrial fat pads of male and female mice, but only male mice developed reduced responsiveness to leptin-induced adipocyte apoptosis after high-fat (45% fat) feeding for 5 or 15 weeks. There was a positive correlation between serum leptin concentration and percent apoptotic adipocytes. These findings demonstrate that leptin administered peripherally is effective in inducing adipocyte apoptosis in mice, thus extending the possibility of studying this effect of leptin in a wider variety of animal models. In addition, high-fat feeding has a gender-specific effect on development of reduced responsiveness to leptin-induced adipocyte apoptosis.  相似文献   

18.
Adult adipose tissue contains a large supply of progenitors that can renew fat cells for homeostatic tissue maintenance and adaptive growth or regeneration in response to external challenges. However, the in vivo mechanisms that control adipocyte progenitor behavior are poorly characterized. We recently demonstrated that recruitment of adipocyte progenitors by macrophages is a central feature of adipose tissue remodeling under various adipogenic conditions. Catabolic remodeling of white adipose tissue by β3-adrenergic receptor stimulation requires anti-inflammatory M2-polarized macrophages to clear dying adipocytes and to recruit new brown adipocytes from progenitors. In this Extra Views article, we discuss in greater detail the cellular elements of adipogenic niches and report a strategy to isolate and characterize the subpopulations of macrophages and adipocyte progenitors that actively participate in adrenergic tissue remodeling. Further characterization of these subpopulations may facilitate identification of new cellular targets to improve metabolic and immune function of adipose tissue.  相似文献   

19.
Since evidence has appeared that tumor necrosis factor-alpha (TNF) is involved in the loss of body fat in the course of wasting diseases, a large number of studies have investigated the physiological role of this cytokine in adipose tissue. TNF treatment of several in vitro models of adipogenesis clearly showed that TNF is a potent inhibitor of adipose differentiation. This antiadipogenic property is accompanied by suppression of developmental and metabolic markers of fat cell differentiation, such as peroxisome proliferator-activated receptor (PPAR)-gamma2, lipoprotein lipase (LPL), glycerol-3-phosphate dehydrogenase (GPDH) and GLUT4. Moreover, TNF promotes lipolysis in mature adipocytes and, subsequently, a reversion of the adipocyte phenotype. Recent studies demonstrated that TNF directly interferes with the insulin signaling cascade at early steps and, thus, impairs insulin-stimulated glucose transport. Further progress in understanding the role of TNF in adipose tissue was made when endogenous TNF mRNA expression was demonstrated in adipose tissue. Obesity was found to represent a state of overexpression of the TNF system. Such findings support the hypothesis that TNF is a mediator of obesity-linked insulin resistance. However, this concept is mainly based on animal data and is so far only partially supported by studies in humans. Taken together, the results of a variety of experimental and clinical studies suggest that TNF may act as an important auto/paracrine regulator of fat cell function which serves to limit adipose tissue expansion, probably by inducing insulin resistance which may in turn cause metabolic disturbances. Elucidation of the molecular mechanisms of TNF production and action in adipose tissue may help to find new approaches for the treatment of insulin resistance in humans.  相似文献   

20.
Accumulating evidence demonstrates that adipose tissue is a major site of tumor necrosis factor-alpha (TNF-alpha) gene expression, which is markedly high in obese animals and may contribute to obesity-linked insulin resistance. We now report that recombinant murine TNF-alpha triggers the apoptotic degeneration of brown adipocytes differentiated in culture. Moreover, noradrenaline, which has been described as having trophic effects on brown fat and accelerating the differentiation of brown adipocytes, is capable of dose-dependently preventing the TNF-alpha-induced apoptosis of brown fat cells. Since obesity is characterized by greatly increased TNF-alpha production and reduced catecholaminergic activity, apoptosis was studied in the brown fat of genetically obese animals. In situ DNA fragmentation analysis revealed a larger number of apoptotic cells in the brown fat of obese (fa/fa) than in that of lean (+/+) Zucker rats. The exposure of obese rats to low temperatures for 7 days, which increases the sympathetic activity of brown adipose tissue, significantly reduces the number of apoptotic brown adipocytes. We hypothesize that TNF-alpha may play a significant role in the control of brown fat homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号