首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiobacillus tepidarius (type strain) was grown in microaerophilic conditions, on tetrathionate, thiosulfate or crystalline So. The rates of tetrathionate, thiosulfate, elemental sulfur (So) and sulfite oxidation of the different cultures were measured respirometrically, using exponentially growing cells, with an oxygen electrode. Cells growing on the three different sulfur compounds retain thiosulfate-, tetrathionate, and So-oxidizing activities (SOA), but lack respiratory sulfite-oxidizing activity. The SOA for all the cultures was almost totally inhibited by 50 M myxothiazol, an inhibitor of the quinone-cytochrome b region, and by 10 M of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). Tetrathionate- and thiosulfate-oxidizing activities were moderately and weakly inhibited by 50 M totally inhibited (>95%) all respiratory activities. This study suggests that electrons released by So oxidation enter the respiratory chain in the quinone-cytochrome b region.Abbreviation SOA sulfur-oxidizing activity  相似文献   

2.
The intermediary production of elemental sulfur during the microbial oxidation of reduced sulfur compounds has frequently been reported. Thiobacillus ferrooxidans, an acidophilic chemolithoautotroph, was found to produce an insoluble sulfur compound, primarily elemental sulfur, during the oxidation of thiosulfate, trithionate, tetrathionate and sulfide. This was confirmed by light and electron microscopy. Sulfur was produced from sulfide by an oxidative step, while the production from tetrathionate was initiated by a hydrolytic step, probably followed by a series of chemical reactions. The oxidation of intermediary sulfur was severely inhibited by sulfhydryl-binding reagents such as N-ethylmaleimide, by the addition of uncouplers or after freezing and thawing of the cells, which probably damaged the cell membrane. The mechanisms behind these inhibitions have not yet been clarified. Finally, it was observed that elemental sulfur oxidation by whole cells depended on the medium composition. The absence of sulfate or selenate reduced the sulfur oxidation rate.Non-standard abbreviations NEM N-ethylmaleimide - CCCP carbonyl cyanide m-chlorophenyl hydrazone  相似文献   

3.
Transpositional mutagenesis of Thiobacillus novellus by Tn501 was achieved by means of the incompatibility of IncP plasmids. Tn501 insertion caused three types of mutant phenotypes: isoleucine auxotrophy, lysine auxotrophy, and a reduced ability to oxidize reduced sulfur compounds and to fix CO2. Oxidation rates for elemental sulfur (S0), thiosulfate (S2O32−), and tetrathionate (S4O62−) in mutants of the latter type were reduced relative to those of the nonmutant control strain. Incorporation of labeled bicarbonate (H14CO3) was also significantly impaired. Although suicide vehicles were not useful for the introduction of transposons into T. novellus, this method was effective for the Tn1721-induced mutagenesis of Thiobacillus versutus. Tn1721 insertions resulted in the loss of the natural resistance of T. versutus to arsenate and gentamicin and in auxotrophies for isoleucine-valine, arginine, phenylalanine, valine, and panthothenate. Transpositional mutagenesis by either method should prove to be a useful tool for further study of these and other members of the genus Thiobacillus.  相似文献   

4.
Thiobacillus denitrificans strain RT could be grown anaerobically in batch culture on thiosulfate but not on other reduced sulfur compounds like sulfide, elemental sulfur, thiocyanate, polythionates or sulfite. During growth on thiosulfate the assimilated cell sulfur was derived totally from the outer or sulfane sulfur. Thiosulfate oxidation started with a rhodanese type cleavage between sulfane and sulfone sulfur leading to elemental sulfur and sulfite. As long as thiosulfate was present elemental sulfur was transiently accumulated within the cells in a form that could be shown to be more reactive than elemental sulfur present in a hydrophilic sulfur sol, however, less reactive than sulfane sulfur of polythionates or organic and inorganic polysulfides. When thiosulfate had been completely consumed, intracellular elemental sulfur was rapidly oxidized to sulfate with a specific rate of 45 natom S°/min·mg protein. Extracellularly offered elemental sulfur was not oxidized under anaerobic conditions.  相似文献   

5.
Reduced sulfur compound oxidation by Thiobacillus caldus.   总被引:7,自引:0,他引:7       下载免费PDF全文
The oxidation of reduced inorganic sulfur compounds was studied by using resting cells of the moderate thermophile Thiobacillus caldus strain KU. The oxygen consumption rate and total oxygen consumed were determined for the reduced sulfur compounds thiosulfate, tetrathionate, sulfur, sulfide, and sulfite in the absence and in the presence of inhibitors and uncouplers. The uncouplers 2,4-dinitrophenol and carbonyl cyanide m-chlorophenyl-hydrazone had no affect on the oxidation of thiosulfate, suggesting that thiosulfate is metabolized periplasmically. In contrast, the uncouplers completely inhibited the oxidation of tetrathionate, sulfide, sulfur, and sulfite, indicating that these compounds are metabolized in the cytoplasm of T. caldus KU. N-Ethylmaleimide inhibited the oxidation of tetrathionate and thiosulfate at the stage of elemental sulfur, while 2-heptyl-4-hydroxyquinoline-N-oxide stopped the oxidation of thiosulfate, tetrathionate, and elemental sulfur at the stage of sulfite. The following intermediates in the oxidation of the sulfur compounds were found by using uncouplers and inhibitors: thiosulfate was oxidized to tetrathionate, elemental sulfur was formed during the oxidation of tetrathionate and sulfide, and sulfite was found as an intermediate of tetrathionate and sulfur metabolism. On the basis of these data we propose a model for the metabolism of the reduced inorganic sulfur compounds by T. caldus KU.  相似文献   

6.
Abstract Thiobacillus caldus is a moderately thermophilic acidophile which has been implicated in the biooxidation of arsenic containing mineral Sulfides. The toxic effects of arsenic on this bacterium are presented here. Addition of arsenite to a growing culture of T. caldus caused a transient increase in the optical density of the culture while causing a simultaneous decrease in cell viability. The increase in optical density was shown to be due to the formation of extracellular sulfur. The oxidation rates of tetrathionate and thiosulfate were decreased by increasing concentrations of arsenite, while in a culture induced to arsenic resistance the rates were not as adversely effected. Sulfur oxidation was also inhibited to the same extent as tetrathionate oxidation, with the oxidation of solid sulfur being slightly more effected than the oxidation of sulfur dissolved in acetone. Thus, bactericidal arsenite causes a transient formation of extracellular sulfur in the culture supernatant of T. caldus yet the toxicity of arsenite is not due to direct inhibitory effects on reduced inorganic sulfur compound oxidation by these bacteria.  相似文献   

7.
Mixotrophic growth of the facultatively autotrophic acidophile Thiobacillus acidophilus on mixtures of glucose and thiosulfate or tetrathionate was studied in substrate-limited chemostat cultures. Growth yields in mixotrophic cultures were higher than the sum of the heterotrophic and autotrophic growth yields. Pulse experiments with thiosulfate indicated that tetrathionate is an intermediate during thiosulfate oxidation by cell suspensions of T. acidophilus. From mixotrophic growth studies, the energetic value of thiosulfate and tetrathionate redox equivalents was estimated to be 50% of that of redox equivalents derived from glucose oxidation. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) activities in cell extracts and rates of sulfur compound oxidation by cell suspensions increased with increasing thiosulfate/glucose ratios in the influent medium of the mixotrophic cultures. Significant RuBPCase and sulfur compound-oxidizing activities were detected in heterotrophically grown T. acidophilus. Polyhedral inclusion bodies (carboxysomes) could be observed at low frequencies in thin sections of cells grown in heterotrophic, glucose-limited chemostat cultures. Highest RuBPCase activities and carboxysome abundancy were observed in cells from autotrophic, CO2-limited chemostat cultures. The maximum growth rate at which thiosulfate was still completely oxidized was increased when glucose was utilized simultaneously. This, together with the fact that even during heterotrophic growth the organism exhibited significant activities of enzymes involved in autotrophic metabolism, indicates that T. acidophilus is well adapted to a mixotrophic lifestyle. In this respect, T. acidophilus may have a competitive advantage over autotrophic acidophiles with respect to the sulfur compound oxidation in environments in which organic compounds are present.  相似文献   

8.
Nitrogen-limited cells of the obligate chemolithotroph Thiobacillus neapolitanus formed an intracellular polymer during growth in the chemostat. This polymer was isolated and characterized as a branched polyglucose composed of units joined by -14 and -16 linkages. Polyglucose in T. neapolitanus can be considered a storage compound since formation of this compound took place during excess of energy and CO2 whilst shortage of CO2 resulted in rapid breakdown of polyglucose. Moreover the breakdown of polyglucose generated metabolically useful energy as could be demonstrated by polyglucose-dependent protein synthesis. Possession of polyglucose did not influence the viability of T. neapolitanus during prolonged periods of energy starvation. Activities of key enzymes of the oxidative pentose phosphate cycle, glucose-6-phosphatedehydrogenase and 6-phospho-gluconate-dehydrogenase, were demonstrated in cell free extracts of T. neapolitanus and appeared to increase 5- and 3-fold, respectively, during growth on NO 3 - instead of NH 4 + as a nitrogen source.  相似文献   

9.
Thiobacillus tepidarius, isolated from the hot springs at Bath, Avon, UK, grew optimally at 43–45°C and pH 6.0–7.5 on thiosulphate or tetrathionate. In batch culture, thiosulphate was oxidized stoichiometrically to tetrathionate, with a rise in pH. The tetrathionate was then oxidized to sulphate, supporting growth and producing a fall in pH to a minimum of ph 4.8. The organism contained high levels of thiosulphate-oxidizing enzyme, rhodanese and ribulose bisphosphate carboxylase. It was obligately chemolithotrophic and autotrophic. In chemostat culture, T. tepidarius grew autotrophically with the following sole energy-substrates: sulphide, thiosulphate, trithionate, tetrathionate, hexathionate or heptathionate. Thiocyanate, dithionate and sulphite were not used as sole substrates, although sulphite enhanced growth yields in the presence of thiosulphate. Maximum specific growth rate on tetrathionate was 0.44 h-1. True growth yields (Y max) and maintenance coefficients (m) were calculated for sulphide, thiosulphate, trithionate and tetrathionate and observed yields at a single fixed dilution rate compared with those on hexathionate and heptathionate. Mean values for Y max, determined from measurements of absorbance, dry wt, total organic carbon and cell protein, were similar for sulphide, thiosulphate and trithionate (10.9 g dry wt/mol substrate) as expected from their equivalent oxygen consumption for oxidation. Y max for tetrathionate (20.5) and the relative Y o values (as g dry wt/g atom oxygen consumed) for thiosulphate and all four polythionates indicated that substrate level phosphorylation did not contribute significantly to energy conservation. These Y max values were 40–70% higher than any of those previously reported for obligately aerobic thiobacilli. Mean values for m were 6.7 mmol substrate oxidized/g dry wt·h for sulphide, thiosulphate and trithionate, and 2.6 for tetrathionate.Abbreviation PIPES Piperazine-N,N-bis(ethane sulphonic acid)  相似文献   

10.
Oxidation of reduced sulphur compounds by Thiobacillus acidophilus was studied with cell suspensions from heterotrophic and mixotrophic chemostat cultures. Maximum substrate-dependent oxygen uptake rates and affinities observed with cell suspensions from mixotrophic cultures were higher than with heterotrophically grown cells. ph Optima for oxidation of sulphur compounds fell within the pH range for growth (pH 2–5), except for sulphite oxidation (optimum at pH 5.5). During oxidation of sulphide by cell suspensions, intermediary sulphur was formed. Tetrathionate was formed as an intermediate during aerobic incubation with thiosulphate and trithionate. Whether or not sulphite is an inter-mediate during sulphur compound oxidation by T. acidophilus remains unclear. Experiments with anaerobic cell suspensions of T. acidophilus revealed that trithionate metabolism was initiated by a hydrolytic cleavage yielding thiosulphate and sulphate. A hydrolytic cleavage was also implicated in the metabolism of tetrathionate. After anaerobic incubation of T. acidophilus with tetrathionate, the substrate was completely converted to equimolar amounts of thiosulphate, sulphur and sulphate. Sulphide- and sulphite oxidation were partly inhibited by the protonophore uncouplers 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) and by the sulfhydryl-binding agent N-ethylmaleimide (NEM). Oxidation of elemental sulphur was completely inhibited by these compounds. Oxidation of thiosulphate, tetrathionate and trithionate was only slightly affected. The possible localization of the different enzyme systems involved in sulphur compound oxidation by T. acidophilus is discussed.  相似文献   

11.
Thiobacillus novellus cannot be grown in mineral salts media unless supplied with yeast extract. The requirement is only for miniscule amounts of yeast extract and is not fully expressed unless cells grown in a complex medium are allowed to multiply in a mineral salts medium for four to five generations. Individual sulfur-containing organic compounds, namely biotin, coenzyme A, and lipoic acid, but not reduced inorganic sulfur compounds, can substitute for the yeast extract requirement. Biotin can fully satisfy this requirement at a concentration insufficient to fulfill the biosynthetic sulfur needs; further, the organisms continue to incorporate 35SO4 into cellular protein in the presence of yeast extract or biotin. It is concluded that biotin is required as a growth factor and not owing to an inability to obtain sulfur from sulfate; the reasons why coenzyme A and thiamine pyrophosphate can substitute for biotin are discussed.Non-standard Abbreviations MS Mineral Salts Base  相似文献   

12.
Ribulose-1,5-bisphosphate carboxylase (RuBPCase) has been quantified by immunological methods in Thiobacillus neapolitanus cultivated under various growth conditions in the chemostat at a fixed dilution rate of 0.07 h-1. RuBPCase was a major protein in T. neapolitanus accounting for a maximum of 17% of the total protein during CO2 limitation and for a minimum of 4% during either ammonium- or thiosulfate limitation in the presence of 5% CO2 (v/v) in the gasphase. The soluble RuBPCase (i.e. in the cytosol) and the particulate RuBPCase (i.e. in the carboxysomes) were shown to be immunologically identical. The intracellular distribution of RuBPCase protein between carboxysomes and cytosol was quantified by rocket immunoelectrophoresis. The particulate RuBPCase content, which correlated with the volume density of carboxysomes, was minimal during ammonium limitation (1.3% of the total protein) and maximal during CO2 limitation (6.8% of the total protein). A protein storage function of carboxysomes is doubtful since nitrogen starvation did not result in degradation of particulate RuBPCase within 24 h. Proteolysis of RuBPCase was not detected. Carboxysomes, on the other hand, were degraded rapidly (50% within 1 h) after change-over from CO2 limitation to thiosulfate limitation with excess CO2. Particulate RuBPCase protein became soluble during this degradation of carboxysomes, but this did not result in an increase in soluble RuBPCase activity. Modification of RuBPCase resulting in a lower true specific activity was suggested to explain this phenomenon. The true specific activity was very similar for soluble and particulate RuBPCase during various steady state growth conditions (about 700 nmol/min·mg RuBPCase protein), with the exception of CO2-limited growth when the true specific activity of the soluble RuBPCase was extremely low (260 nmol/min ·mg protein). When chemostat cultures of T. neapolitanus were exposed to different oxygen tensions, neither the intracellular distribution of RuBPCase nor the content of RuBPCase were affected. Short-term labelling experiments showed that during CO2 limitation, when carboxysomes were most abundant, CO2 is fixed via the Calvin cycle. The data are assessed in terms of possible functions of carboxysomes.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - PEP phosphoenolpyruvate - RIE rocket immunoelectrophoresis - CIE crossed immunoelectrophoresis  相似文献   

13.
Mason  Julie  Kelly  Don P. 《Archives of microbiology》1988,149(4):317-323
Thiobacillus acidophilus can grow in batch and chemostat culture as a heterotroph on glucose, a chemolithoautotroph on tetrathionate and CO2, or as a mixotroph. Mixotrophically it obtains energy from the simultaneous oxidation of tetrathionate and glucose, and carbon from both glucose and CO2. Mixotrophic cultures contain lower activities of ribulose 1,5-bisphosphate carboxylase and exhibit lower specific rates of tetrathionate oxidation than do autotrophic cultures. Mixotrophic cultures with low concentrations of glucose have growth rates that are intermediate between slow autotrophic growth and fast heterotrophic growth. Slightly more glucose-carbon is assimilated by mixotrophic cultures than by heterotrophic ones provided with the same concentrations of glucose. Mixotrophic yield in the chemostat is also slightly greater than predicted from autotrophic and heterotrophic yields. These observations indicate that there is preferential assimilation of glucose, at the expense of energy from tetrathionate oxidation, during mixotrophy, resulting in an overall energy saving that produces enhanced growth yield. These observations are relevant to understanding the regulatory behaviour of T. acidophilus in its acidic, mineral-leaching habitats.  相似文献   

14.
The disappearance of 2-13C-acetate and the subsequent incorporation of label into cellular metabolites were followed in denitrifying cells of Thiobacillus versutus by 13C NMR spectroscopy. In cells grown under acetate-limitation, the specific rate of consumption was idependent of the density of the cell suspension. An isotopic steady state was reached within 30 min if sufficient substrate was added to the cell suspension. In cells grown under nitrate-limitation, the consumption of 2-13C-acetate proceeded at a significantly lower rate. The decrease and final disappearance of 2-13C-acetate were accompanied by incorporation of 13C into glutamate, glutamine, and by the release of labeled HCO 3 and CO2. The appearance of a broad resonance being the methyl endgroup of poly-3-hydroxybutyrate (PHB) was indicative for PHB mobilization during the incubation. The sequence of label incorporation and the distribution among the various carbon nuclei were consistent with the operation of the tricarboxylic acid cycle.  相似文献   

15.
On the sulfur-source requirement for growth of Thiobacillus intermedius   总被引:5,自引:0,他引:5  
Thiobacillus intermedius grows in glucose-mineral salts medium supplemented with any or all of seven reduced organic sulfur compounds but does not grow in the absence of the supplement(s). This growth represents a physiological capability of T. intermedius and does not result from contaminated or mutant cultures. T. intermedius is not capable of assimilating sulfate; exogenous 35SO4 -is not incorporated by T. intermedius growing autotrophically or heterotrophically. The demonstrated need for a reduced sulfur source explains the previously reported inability of T. intermedius to grow in glucose-mineral salts medium.  相似文献   

16.
The relatively high specific sulfite reductase activity of 25 mU/mg protein was found in extracts from Thiobacillus denitrificans. The absorption spectrum of the partially purified enzyme was similar to the siroheme containing sulfite reductases from other sources. It is suggested that the T. denitrificans sulfite reductase may function during the oxidation of reduced sulfur compounds.  相似文献   

17.
Thiobacillus ferrooxidans was grown in chemostat cultures with thiosulfate and tetrathionate as the limiting substrates. The yields at steady state on both substrates at different dilution rates were calculated. In a few experiments the air supply was supplemented with 2% CO2 (v/v). This resulted in a slightly increased yield.Cells from the chemostat cultures were used to study the kinetics of thiosulfate, tetrathionate, sulfite and sulfide oxidation. With all substrates mentioned the Ks values were in the micromolar range. The values for thiosulfate and tetrathionate were 2 orders of magnitude lower that those published previously.  相似文献   

18.
An analysis was made of the specific enzyme activities of the TCA and glyoxylate cycle in Thiobacillus versutus cells grown in a thiosulphate- or acetate-limited chemostat. Activities of all enzymes of the TCA cycle were detected, irrespective of the growth substrate and they were invariably lower in the thiosulphate-grown cells. Of the glyoxylate cycle enzymes, isocitrate lyase was absent but malate synthase activity was increased from 15 nmol·min-1·mg-1 protein in thiosulphate-grown cells to 58 nmol·min-1·mg-1 protein in acetate-grown cells. Suspensions of cells grown on thiosulphate were able to oxidize acetate, although the rate was 3 times lower than that observed with acetate-grown cells. The respiration of acetate was completely inhibited by 10 mM fluoroacetate or 5 mM arsenite. Partially purified citrate synthase from both thiosulphate- and acetate-grown cells was completely inhibited by 0.5 mM NADH and was insensitive to inhibition by 1 mM 2-oxoglutarate or 1 mM ATP. The specific enzyme activities of the TCA and glyoxylate cycle in T. versutus were compared with those of Pseudomonas fluorescens, an isocitrate lyase positive organism, after growth in a chemostat limited by acetate, glutarate, succinate or glutamate. The response of the various enzyme activities to a change in substrate was similar in both organisms, with the exception of isocitrate lyase.Abbreviations TCA tricarboxylic acid - DNTB 2,2-dinitro-5,5-dithiobenzoic acid - APAD acetylpyridine adenine dinucleotide - PMS phenazine methosulphate - DCPIP 2,6-dichlorophenol-indophenol - DOC dissolved organic carbon  相似文献   

19.
Thiobacillus ferrooxidans was cultivated on 100-nm-thick synthetic pyrite (FeS2) films. The steps of biooxidation were studied with high-resolution transmission electron microscopy. The crystallized sulfide was transformed into colloidal sulfur (4–70 nm, depending on the age of the cell and the degree of substrate oxidation; 70nm initially and 4nm after oxidation of the pyrite substrate), which was taken up and distributed over an organic capsule around the bacteria. This colloidal sulfur acted as intermediate energy storage and was transferred by contact to daughter cells not directly attached to the sulfide substrate.  相似文献   

20.
The periplasmic location of enzymes A and B of the thiosulphate-oxidizing multienzyme system of Thiobacillus versutus has been further confirmed by differential radiolabelling of periplasmic and cytoplasmic proteins. The stoichiometries of respiration-driven proton translocation in T. versutus were determined using the oxygen pulse and the initial rate methods. A value for the H+/O quotient (number of protons translocated per oxygen atom reduced) of about 2.8 was found for the oxidation of thiosulphate, and of about 2.5 for sulphite. The H+/O quotient for endogenous respiration was about 5.7. The data are shown to be in good agreement with the scheme proposed previously for thiosulphate oxidation by this organism. Proton generation during the oxidation of thiosulphate or sulphite is indicated to occur in the periplasm rather than by pumping across the cytoplasmic membrane. The results also suggest that a H+/O quotient of six occurs during NADH oxidation (from endogenous metabolism measurements) and that the terminal cytochrome oxidase, aa3, does not function as a proton pump.Abbreviations DCCD dicyclohexyl carbodiimide - FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone - HQNO 2-n-heptyl-4-hydroxyquinoline N-oxide - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - IEF isoelectric focusing - HIC hydrophobic interaction chromatography - EAI ethyl acetimidate hydrochloride - IAI isethionyl acetimidate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号