首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Summary Cytotoxic T lymphocytes (CTL), CD3+, / T-cell-receptor-positive, are important effector cells with specific immunity in melanoma patients. The establishment and expansion in vitro of CTL of a specific phenotype to tumor cells strongly depends on the method of activation and sensitization with tumor cells. We generated CD3+ CTL lines to melanoma by co-culturing peripheral blood lymphocytes with autologous irradiated melanoma cells and repetitive stimulation with high-dose interleukin-4 in a cocktail culture medium. CTL lines were investigated for their specificity to kill autologous and allogeneic melanoma. Histocompatibility locus antigen (HLA) class I (A, B) molecules are important restrictive recognition antigens for CTL. Although these antigens are highly polymorphic, they can share a similar immunogenic molecular epitope(s) and can be immunologically cross-reactive. The CTL lines generated were found to kill not only autologous melanoma, but also allogeneic melanomas having class I HLA-A antigens shared or cross-reactive with autologous HLA-A. These CTL lines were poor killers of melanomas bearing non-shared or non-cross-reactive HLA-A. Cold-target inhibition assays demonstrated this CTL cross-reactivity to allogeneic melanoma specificity. Epstein-Barr-virus-transformed autologous and allogeneic B lymphoblastoid cell lines failed to block autologous melanoma killing, indicating that CTL were not recognizing major histocompatibility complex antigens, serum proteins or culture medium products as the primary target antigen. HLA-A2 was the major shared HLA-A antigen recognized by CTL lines on the melanoma lines studied. CTL lines also recognized shared HLA-A11 and A24 on allogeneic melanoma. There were no CTL lines showing restriction to HLA-B. These results suggest that common tumor-associated antigens are present on melanomas and are recognized in association with distinct HLA-A epitopes by CTL.This study was supported by grant CA12 582 awarded by the National Cancer Institute, USA  相似文献   

2.
The host immune response toward autologous human cancer is subject to regulation by the immunoregulatory network. We show that certain CD4+ T cell clones, derived from melanoma involved lymph node lymphocytes and from PBL stimulated by autologous melanoma cells, selectively down-regulated the induction of cytotoxic immune response of PBL against the respective autologous melanoma cells in two autologous systems. In both systems, only the generation of cytotoxic response against the autologous melanoma cells were suppressed. Cytotoxic response against EBV-infected autologous lymphoblastoid cell line in one case and cytotoxic responses against allogeneic targets in the other were not affected. In addition to suppressor activity selectively expressed against the autologous melanoma cells, the T cell clones up-regulated their Tac receptors when cocultured with the autologous melanoma cells and APC. These results support the existence of a putative tumor Ag-driven activation of regulatory T cells that affect cytotoxic immune response, in vitro, against autologous human melanoma.  相似文献   

3.
To study in vivo activated cytolytic T cells, CD8+ T cells clones were isolated from a melanoma patient (HLA A2, A11) treated with active specific immunotherapy for 5 years. CD8+ T lymphocytes, purified by fluorescence-activated cell sorting, were cloned directly from the peripheral blood without antigen-presenting cells in the presence of irradiated autologous melanoma cells and recombinant interleukin-2 (IL-2) and IL-4. These conditions were inhibitory to de novo in vitro immunization. Of the 28 cytolytic CD8+ T cell clones, 21 lysed the autologous melanoma cell line (M7) but not the autologous lymphoblastoid cell line (LCL-7) nor the two melanoma cell lines, M1 (HLA A28) and M2 (HLA A28, A31), used to immunize the patient. The remaining 7 clones were also melanoma-specific, although their reactivities were broader, lysing several melanoma cell lines but not HLA-matched lymphoblastoid cells. Eight clones from the first group, ostensibly self-MHC-restricted, were expanded for further analysis. All expressed cluster determinants characteristic of mature, activated T cells, but not those of thymocytes, naive T cells, B cells or natural killer (NK) cells. They also expressed CD13, a myeloid marker. Of the 8 clones, 3 expressed both CD4 and CD8, but dual expression was not correlated with specificity of lysis. Two CD8+ and 2 CD4+ CD8+ clones were specific for the autologous melanoma cells, the other 4 were also reactive against other HLA-A2-positive melanomas. Cytotoxicity for both singly and doubly positive clones was restricted by HLA class I but not class II antigens. Analysis of the RNA expression of the T cell receptor (TCR) V and V gene segments revealed heterogeneous usage by the A2-restricted clones and, perhaps, also by the broadly melanoma-specific clones. Apparent TCR-restricted usage was noted for the self-MHC-restricted clones; 2 of the 4 expressed the V17/V7 dimer. Since the T cell clones were derived from separate precursors of circulating cytotoxic T lymphocytes (CTL), the V17/V7 TCR was well represented in the peripheral blood lymphocytes of this patient. In summary, we show that melanoma cells presented their own antigens to stimulate the proliferation of melanoma-reactive CD8+ CTL. CTL with a range of melanoma specificities and different TCR dimers were encountered in this patient, perhaps as a result of hyperimmunization. Restricted TCR gene usage was noted only for classical self-MHC-restricted CD8+ T cell clones, although lysis of the autologous melanoma cells was effected by a variety of TCR structures. Molecular definition of the TCR repertoire of well-characterized T cell clones in this and other patients should provide new insight into the human antitumor immune response.Supported by National Institutes of Health research grants CA 36233 and EY 9031, the Lucy Adams Memorial Fund and a grant from the Concern Foundation  相似文献   

4.
Twenty-five CD4+ cytotoxic T lymphocyte (CTL) clones were obtained from the peripheral blood or tumor tissues of melanoma patients undergoing active specific immunotherapy. Melanoma-reactive T cells were cloned by limiting dilution using either autologous or allogeneic melanoma cells to stimulate their proliferation. Sixteen of the clones reacted against autologous melanoma cells but not against the autologous lymphoblastoid cell line, which we defined as melanoma-specific. Optimal demonstration of the lytic activity of CD4+ CTL required a 16-h incubation period and an effectortarget cell ratio of 401. In addition, a 24-h pre-incubation of the target melanoma cells with 100 U interferon (IFN) consistently augmented lysis by these CD4+ CTL, increasing it from a mean level of 20% to one of 52%. Lysis by 8 of the 11 melanoma-reactive CD4+ T cell clones was exclusively HLA-class-I-restricted, as judged by blocking with monoclonal antibodies (mAb). Five of these HLA class-I-restricted clones were reactive only with the autologous melanoma cells, while the other 3 clones were also reactive with allogeneic melanoma cells. In all cases, the T cells and melanoma targets shared at least one HLA class I allele, usually HLA-A2, HLA-C3 or HLA-B62. Interestingly, lysis by 2 of the 11 clones was inhibited by both anti-HLA-class-I or -HLA-class-II mAb, while lysis by 1 other clone was inhibited by neither. HLA class I molecules and several accessory molecules were maximally expressed by the melanoma target cells, both in terms of distribution and copy number before IFN treatment. Thus, IFN may have acted by increasing the expression of melanoma-associated epitopes as presented by HLA class I (or HLA class II) molecules. A proportion of human CD4+CTL appeared to recognize melanoma-associated epitopes presented by the HLA class I molecule, although their lytic potency may be less than that of their CD8+ counterparts.This work was supported by USPHS grant R01-CA 36233, and a grant from the Concern Foundation for Cancer Research.  相似文献   

5.
Human melanoma is an immunogenic neoplasm whereby enhancement of specific cell-mediated immunity can alter tumor progression. HLA-A2-restricted CTL have been demonstrated to kill allogeneic HLA-A2-matched melanoma. We investigated the ability of allogeneic melanoma cells sharing HLA-A antigens to sensitize melanoma patients' lymphocytes to induce HLA-A-restricted CTL to autologous melanoma. PBL from melanoma patients were cocultured with autologous melanoma cells in defined "cocktail medium" to generate melanoma-specific HLA-A-restricted CTL lines. CTL generated by sensitization with allogeneic melanoma bearing shared HLA-A2, A11, A24, or "cross-reactive" HLA-A antigens could kill almost as many autologous melanoma cells as CTL sensitized with autologous melanoma. There are HLA-A antigens that are immunogenically cross-reactive because they share determinant epitopes. CTL were not activated NK or LAK cells. The HLA restriction and melanoma cell specificity of the CTL were demonstrated by cold target inhibition with autologous and allogeneic melanoma and B lymphoblasts. Anti-CD3 and anti-HLA AB inhibited CTL killing of melanoma. The CTL were predominantly CD3+CD4+ TCR alpha/beta+. These studies demonstrate that melanomas being shared or cross-reactive HLA-A can be used for in vitro generation of HLA-restricted CTL that recognize melanoma-associated antigens. The findings have very important implications in human tumor immunotherapy.  相似文献   

6.
Recent studies increasingly point to a pivotal role of CD4(+) T cells in human anti-tumor immune response. Here we show that lymphocytes purified from a tumor-infiltrated lymph node of a melanoma patient that had remained disease free for 10 years after surgical resection of a lymph node metastasis comprised oligoclonal class II HLA-restricted CD4(+) T cells recognizing the autologous tumor cells in vitro. In fact, the CD4(+) T cell clones isolated from these lymphocytes displayed a tumor-specific, cytotoxic activity in addition to a Th1-like cytokine profile. By a genetic approach, a peptide derived from a mutated receptor-like protein tyrosine phosphatase kappa was identified as a novel HLA-DR10-restricted epitope for all the melanoma-specific CD4(+) T cell clones. The immunogenic peptide was shown to contain the mutated residue that was crucial for T cell recognition and activation. Moreover, a systemic immunity against the mutated peptide was detectable in the patient's peripheral blood T lymphocytes obtained during the disease-free period of follow-up. These findings further support the relevance of CD4(+) T cells directed against mutated epitopes in tumor immunity and provide the rationale for a possible usage of mutated, tumor-specific Ags for immunotherapy of human cancer.  相似文献   

7.
Previous studies have shown that recognition of melanoma by cytotoxic T lymphocytes may be restricted by HLA-A1, A2 and other HLA antigens. The present study examined the cytotoxic specificity and major histocompatibility complex restriction of cloned cytotoxic T lymphocytes (CTL) isolated from a patient with the HLA phenotype A3,31 who had been immunized with a vaccine prepared from HLA-A1,3 melanoma cells. Cytotoxic assays against HLA-typed allogeneic melanoma cells indicated that cloned CTL from the patient were able to kill allogeneic melanoma cells expressing HLA-A1 but not other HLA-A1-positive cells. Studies on a representative clone indicated that proliferation and cytokine (tumour necrosis factor ) production in response to melanoma cells was also associated with HLA-A1 on melanoma cells. Response to the melanoma cells was associated with interleukin-4 (IL-4) rather than IL-2 production. The antigen recognized in the context of HLA-A1 on allogeneic melanoma cells was detected in cytotoxic assays on cells from 9 of 12 HLA-A1+ melanoma cell lines and did not appear to be the product of the MAGE-1 or-3 genes. These findings suggest that T cells can recognize melanoma antigens in the context of alloantigens and that allogeneic vaccines containing immunodominant alloantigens may generate CTL that are ineffective against autologous melanoma. The study does not, however, exclude the possibility that CTL with specificity to the latter may be activated by allogeneic vaccines, and further studies are needed to answer this question.  相似文献   

8.
Metastatic or tumor-draining lymph nodes from six of nine melanoma patients undergoing lymph node dissection for metastatic melanoma generated cytotoxic T cells against autologous melanoma when these lymph node cells were treated by in vitro sensitization and recombinant interleukin-2 (IL-2). During the initial lymphocyte culture (2–6 weeks), cross-reactivity with autologous tumor cells, K562 and Daudi cells was usually noted. Cold-target inhibition assay with K562 and Daudi showed K562/Daudi-associated antigens on melanoma cells. During the later phase of lymphocyte culture with repeated in vitro sensitization (over 6–10 weeks), cytotoxicity was noted against autologous and allogeneic melanoma cells but not against K562, Daudi cells or autologous fibroblasts. Repeated in vitro sensitization resulted in the selection of specific cytotoxic lymphocytes against melanoma. Cold-target inhibition assay with autologous and allogeneic melanoma cells revealed shared and individual antigens. Using blocking monoclonal antibodies, MHC-restricted killing was noted in the autologous system. Further, both the autologous and allogeneic systems could be mediated through adhesion molecules such as ICAM-1 and LFA-3 on melanoma cells and LFA-1 on T cells. This study suggests that a constellation of cytotoxic effector cells and melanoma-associated antigens may be pivotal in tumor killing. Thus, future adoptive immunotherapy should modulate and enhance this complex interaction.This work was supported by an Elsa, U. Pardee Foundation grant, the Arizona Chronic Disease Research Commission grant and partly by grant CA23074 from the National Institutes of Health, Bethesda, MD, 20892  相似文献   

9.
Due to their central role in controlling immunity, dendritic cells are logical targets for priming naive cytotoxic T lymphocytes against tumour cells. In a strictly autologous system, we fused dendritic cells with melanoma cells, both of which were derived from patients with metastatic malignant melanoma. Hybridomas were positive for major histocompatibility complex (MHC) class II, CD40, CD54, CD83, CD86, and the pro-inflammatory cytokine interleukin-12. Autologous T lymphocytes were co-incubated with hybridomas. After 6 days, in-vitro-primed T lymphocytes revealed a strong proliferation activity and released Th-1-associated, but not Th-2-associated, cytokines. Furthermore they showed effective anti-melanoma activity, resulting in death of 70 +/- 9% of autologous melanoma cells. After depletion of CD4+ cells from the mixed population of primed T lymphocytes, the remaining CD8+ cells were able to kill 63+/-8% of autologous melanoma cells. Following depletion of CD8+ cells, however, the cytotoxic capacity of the remaining T lymphocytes caused death in only 32+/-6% of autologous melanoma cells. Blocking of MHC class I, but not class II, molecules on hybridomas impaired T cell proliferation, secretion of Th-1-associated cytokines, as well as the cytotoxic activity of primed T cells. These findings strongly suggest that hybridomas deliver melanoma-associated antigens via MHC class I molecules to T lymphocytes, resulting in the generation of CD8+ cytotoxic T lymphocytes with effective anti-melanoma activity in vitro. The data may serve as a basis for the use of hybridomas in the immunotherapy of malignant melanoma in vivo.  相似文献   

10.
We have been investigating whether alloantigen-specific CD4(+)25+ regulatory T cells can be identified for use in treating graft-versus-host disease. CD150, which is upregulated on the surface of all activated T lymphocytes, was identified as a candidate marker for alloantigen-activated CD4(+)25+ regulatory T cells by gene chip analysis. Freshly isolated CD4(+)25+ cells had only low cell-surface expression of CD150, comparable to that of CD4(+)25- T cells. Increased CD150 expression was observed on all T cells after coculture with allogeneic stimulator cells. When purified CD4(+)25+ cells were precultured with allogeneic stimulator cells, then sorted into CD150+ and CD150- subsets, allosuppressive activity was contained primarily in the CD150+ fraction. These cells also suppressed the proliferation of alloantigen-activated autologous T cells, and they could be expanded in vitro without loss of their suppressive capacity. These results suggest that CD150 can be used as a marker for the identification of purified alloantigen-activated CD4(+)25+ regulatory T cells.  相似文献   

11.
Cytotoxic T lymphocytes (CTL) specific for autologous human melanoma have been successfully generated in vitro from tumor bearing lymph nodes without any stimulation by the autologous tumor. Tumor-involved lymph node cells (LNC) were cultured in serum free medium (AIM-V) containing 1,000 U/ml of recombinant interleukin-2. The best expansion and specific cytotoxicity of CTL were achieved in 4 to 6 weeks of culture. The predominant populations in cultured LNC-derived CTL were CD2+, CD3+, CD4-, CD8+, CD56-, and HLA-DR+ T cells. These data suggested that tumor-involved LNC may provide an alternative source for the generation of tumor-specific CTL in adoptive immunotherapy.  相似文献   

12.
To characterize the anti-melanoma reactivity of CD8+ cytotoxic T lymphocytes (CTL) from choroidal melanoma patients, CTL clones were isolated from the peripheral blood of three patients after mixed lymphocyte/tumor cell culture (MLTC). Clones were derived from lymphocytes stimulated by allogeneic (OCM-1, A24, A28) or autologous (OCM-3, Al, A30) melanoma cells. Their reactivity against a panel of HLA-typed melanoma and nonmelanoma cells was assessed, to determine whether a single CTL clone could recognize and lyse a variety of allogeneic melanoma cell lines. While proportionately more clones derived from autologous MLTC were melanoma-specific than allogeneic MLTC (42% versus 14%), melanoma-specific CTL were recovered from both. Notably, a novel melanoma specificity was identified. These CTL clones were termed non-fastidious because they were capable of lysing melanoma cells with which they had no HLA class I alleles in common. Nonetheless, lysis was mediated by the HLA class I molecule. Since lysis was specific for melanoma cells, these CTL appeared to recognize a shared melanoma peptide(s). Because of their prevalence, we propose that non-fastidious CTL are integral to human anti-melanoma T cell immunity. This reinforces clinical findings that allogeneic melanomas can substitute for autologous tumors in active specific immunotherapy. By circumventing the need for autologous melanoma, it is possible to treat patients after removal of the primary choroidal melanoma in an attempt to prevent metastasis.Supported by USPHS grants EY-09031 and EY-09427, and the Lucy Adams Choroidal Melanoma Research Fund to J. K.-M.  相似文献   

13.
The cytotoxic immune response in the peripheral blood lymphocytes (PBL) against an autologous malignant melanoma cell line, PJ-M, was found to be down-regulated in in vitro co-culture (IVC) selectively by unfractionated resident lymph node lymphocytes (derived from a lymph node infiltrated with the PJ-M melanoma cells) and T4+ as well as T8+ fractions of the resident lymph node-derived lymphocytes. In this study, the mechanism involved in, and the specificities of, cytotoxic immune response in this autologous system were examined at population and clonal levels. Resident lymph node lymphocytes were isolated from both involved and uninvolved lymph nodes from the same patient. Resident lymphocytes from both sources regulated the generation of cytotoxic immune response when both types of resident lymph node lymphocytes were further sensitized against the PJ-M cells in IVC and were expanded in interleukin 2 (IL 2). An IL 2-dependent homogeneous lymphocyte line (I-10:1) bearing the phenotype of a helper T cell (T4+) and a T4+ clone (I-10.3) of the I-10:1 line, established by limiting dilution culture, also down-regulated the generation of cytotoxic immune effector cells in the PBL in IVC against the PJ-M targets. The IL 2-dependent T4+ inducer line I-10:1 generated a functionally differentiated T8+ suppressor population(s) that, in turn, could abrogate cytotoxic response in fresh PBL in IVC against PJ-M cells. The inducer line I-10:1 and its subclone I-10.3 suppressed the generation of cytotoxic effector cells in the PBL in IVC selectively against the autologous PJ-M cells. Generation of cytotoxic allo-response in IVC was unaffected by the inducer lines. These results provide further evidence for the involvement of the regulatory network in cytotoxic immune response in an autologous human tumor system, and suggest a potential explanation for cytotoxic unresponsiveness against autologous melanoma cells.  相似文献   

14.
The potential existence of down-regulation of cytotoxic immune response against an autologous human melanoma line was investigated as a possible explanation for cytotoxic unresponsiveness against the autologous melanoma cells. The melanoma cell line, PJ-M, was established and lymph node resident lymphocytes (LNL) were isolated from a lymph node which was partially infiltrated with the melanoma cells. Autologous peripheral blood lymphocytes (PBL) were sensitized in in vitro co-culture (IVC) against radiated PJ-M cells in the presence or absence of PJ-M-sensitized LNL and enriched suppressor (OKT8+) or inducer (OKT4+) LNL populations, and were assayed for cytotoxicity in a 4-hr 51Cr-release microcytotoxicity assay. Significant cytotoxic response against PJ-M could be generated in the PBL, but not in the LNL. The addition of sensitized, unfractionated LNL, OKT8+, or OKT4+ LNL populations abrogated cytotoxic response in the PBL against PJ-M. The suppression of cytotoxic response was induced selectively against the PJ-M targets, because IVC of PBL in the presence of the sensitized LNL did not affect the generation of polyclonal cytotoxic alloreactivities, nor did they abrogate the generation of cytotoxic response against allogeneic targets in IVC against the corresponding allogeneic targets. These results suggest the possibility that cytotoxic immune response against the autologous melanoma cells might have been suppressed by the individual's own immunoregulatory circuit.  相似文献   

15.
We have previously reported that the antitumor effect of OK-432, aStreptococcal preparation, is markedly augmented when injected intratumorally together with fibrinogen (Cancer, 69: 636–642, 1992). In order to elucidate the mechanism of the antitumor effects, we established T cell clones from regional lymph nodes of colorectal cancer patients who received this local immunotherapy. By culture of lymph node lymphocytes, in the presence of IL-2 and OK-432, 4 clones of T cells were established from 4 patients treated by local immunotherapy. These clones had a helper T cell phenotype (CD3+, CD4+, CD8, CD56, WT31+) and were successfully maintained for several months. The cells strongly expressed CD25 when stimulated with OK-432 and exhibited a high level of cytotoxic activity in part explained by the increased expression of ICAM-1 and LFA-1, and the release of TNF. These results suggest that the CD4+ T cells play a role in the antitumor mechanism of local immunotherapy.  相似文献   

16.
Summary Cytotoxic cells (CTCs) generated from peripheral blood lymphocytes of 5 chronic myeloid leukemia (CML) patients in remission on stimulation with autologous leukemic cells and allogeneic lymphocytes (3-cell assay), were propagated in vitro in interleukin-2 (IL-2)-containing medium and periodic stimulation with autologous leukemic cells, for a period of 4 to 6 months. During this period, the cells were assessed for phenotype and for cytotoxic responses in a 4-h 51Cr release microcytotoxicity assay. The CTCs continued to show specific lysis of autologous leukemic cells and bone marrow (BM) cells. However, the nonspecific lysis of natural killer (NK) targets and the proportion of cells showing NK phenotype (HNK-1 antigen) increased progressively on cultivation in IL-2-containing medium. Therefore cells showing CD8 phenotype and specific cytotoxic function were segregated by cloning CTCs under the condition of limiting dilution in the presence of allogeneic feeder cells and IL-2-containing medium. Three cytotoxic T cell (CTL) clones expressing CD3+, CD8+, and HLA DR+ phenotypes were obtained from CTCs of 2 CML patients. These clonoid populations, maintained in IL-2-containing medium and periodic antigenic stimulation with autologous leukemic cells, showed specific lysis of autologous leukemic cells and BM cells even at lower (10:1) effector:target ratios. They did not kill K562 (erythroblastoid leukemic NK target cell line) cells and autologous phytohemagglutinin-induced blasts. These clones apparently functioned in an MHC-restricted manner as they did not lyse allogeneic CML cells which would also express a similar set of maturation antigens if sensitization was, as it appeared, against these antigens. Finally, interaction of autologous BM cells with CTL clones reduced the colony forming potential of BM cells only to the extent of 18%–30%. The results therefore indicate that such CTL clones can possibly be used in adoptive immunotherapy as they showed minimal BM toxicity.  相似文献   

17.
The cytotoxic host immune response toward autologous human cancer may be regulated by the immunoregulatory network. Here we show that helper T cells, cloned from peripheral blood lymphocytes that were sensitized in vitro against an autologous human malignant paraganglioma, proliferated against and made interleukin 2 when cocultured with the tumor-associated antigen in the presence of autologous accessory cells. Furthermore, the helper cell clones amplified cytotoxic immune response by peripheral blood lymphocytes against the paraganglioma cells in coculture with the blood lymphocytes and the paraganglioma cells. An autologous T cell line bearing suppressor phenotype, established from a lymph node that had been infiltrated with the paraganglioma tumor cells, in contrast to the helper cells, selectively suppressed the cytotoxic immune response by the blood lymphocytes against the paraganglioma cells in identical coculture. These results, therefore, demonstrate the existence of cell-mediated immunologic regulations of the cytotoxic immune response (concurrent amplification and suppression in the same host) against an autologous human tumor.  相似文献   

18.
Tumor-infiltrating lymphocytes from six patients with metastatic malignant melanoma were expanded by culture in recombinant interleukin 2. Three of the preparations were highly cytotoxic against autologous fresh melanoma tumor cells, but not against autologous fresh normal cells or allogeneic fresh tumor targets. The other three were highly cytotoxic against autologous fresh melanoma tumor cells and also had a limited capacity to kill allogeneic fresh tumor targets. The tumor-associated specific killer cells could be expanded from threefold to 95,652-fold with maintenance of specific antitumor lysis. The expanded tumor-infiltrating cells were Leu-4+ T cells, and in five of six patients the majority were Leu-3+. These studies demonstrate that the melanoma-bearing patient raises an immune response against autologous tumor and presents a method for the generation of human lymphocytes with antitumor reactivity that may be useful in the adoptive immunotherapy of tumors.  相似文献   

19.
20.
Objective: A majority of human cancers, including head and neck cancer (HNC), overexpress p53. Although T cells specific for wild-type (wt) sequence p53 peptides are detectable in the peripheral blood of patients with HNC, it is unknown whether such T cells accumulate in tumor-involved tissues. Also, the localization of regulatory T cells (Treg) to tumor sites in HNC has not been investigated to date. Methods: Tumor infiltrating lymphocytes (TIL), tumor-involved or non-involved lymph node lymphocytes (LNL) and peripheral blood mononuclear cells (PBMC) were obtained from 24 HLA-A2.1+ patients with HNC. Using tetramers and four-color flow cytometry, the frequency of Treg and CD3+CD8+ T cells specific for wt p53 epitopes as well as their functional attributes were determined. Results: The CD3+CD8+ tetramer+ cell frequency was significantly higher (P<0.001) in TIL than autologous PBMC as was the percentage of CD4+CD25+ T cells (P<0.003). TIL were enriched in FOXp3+, GITR+ and CTLA-4+ Treg. CD8+ TIL had low expression and produced little IFN- after ex vivo stimulation relative to autologous PBMC or PBMC from NC. Conclusions: Anti-wt p53 epitope-specific T cells and Treg preferentially localize to tumor sites in patients with HNC. However, despite enrichment in tumor peptide-specific T cells, the effector cell population (CD3+CD8+) in TIL or PBMC was unresponsive to activation in the tumor microenvironment enriched in Treg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号