首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

The brain predominantly expressed RING finger protein, Znf179, is known to be important for embryonic neuronal differentiation during brain development. Downregulation of Znf179 has been observed in motor neurons of adult mouse models for amyotrophic lateral sclerosis (ALS), yet the molecular function of Znf179 in neurodegeneration has never been previously described. Znf179 contains the classical C3HC4 RING finger domain, and numerous proteins containing C3HC4 RING finger domain act as E3 ubiquitin ligases. Hence, we are interested to identify whether Znf179 possesses E3 ligase activity and its role in ALS neuropathy.

Methods

We used in vivo and in vitro ubiquitination assay to examine the E3 ligase autoubiquitination activity of Znf179 and its effect on 26S proteasome activity. To search for the candidate substrates of Znf179, we immunoprecipitated Znf179 and subjected to mass spectrometry (MS) analysis to identify its interacting proteins. We found that ALS/ FTLD-U (frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions)-related neurodegenerative TDP-43 protein is the E3 ligase substrate of Znf179. To further clarify the role of E3 ubiquitin ligase Znf179 in neurodegenerative TDP-43-UBI (ubiquitinated inclusions) (+) proteinopathy, the effect of Znf179-mediated TDP-43 polyubiquitination on TDP-43 protein stability, aggregate formation and nucleus/cytoplasm mislocalization were evaluated in vitro cell culture system and in vivo animal model.

Results

Here we report that Znf179 is a RING E3 ubiquitin ligase which possesses autoubiquitination feature and regulates 26S proteasome activity through modulating the protein expression levels of 19S/20S proteasome subunits. Our immunoprecipitation assay and MS analysis results revealed that the neuropathological TDP-43 protein is one of its E3 ligase substrate. Znf179 interactes with TDP-43 protein and mediates polyubiquitination of TDP-43 in vitro and in vivo. In neurodegenerative TDP-43 proteinopathy, we found that Znf179-mediated polyubiquitination of TDP-43 accelerates its protein turnover rate and attenuates insoluble pathologic TDP-43 aggregates, while knockout of Znf179 in mouse brain results in accumulation of insoluble TDP-43 and cytosolic TDP-43 inclusions in cortex, hippocampus and midbrain regions.

Conclusions

Here we unveil the important role for the novel E3 ligase Znf179 in TDP-43-mediated neuropathy, and provide a potential therapeutic strategy for combating ALS/ FTLD-U neurodegenerative pathologies.
  相似文献   

3.
Proteasome impairment has been shown to be involved in neuronal degeneration. Antiepileptic lamotrigine has been demonstrated to have a neuroprotective effect. However, the effect of lamotrigine on the proteasome inhibition-induced neuronal cell death has not been studied. Therefore, we assessed the effect of lamotrigine on the proteasome inhibition-induced neuronal cell apoptosis in relation to cell death process using differentiated PC12 cells and SH-SY5Y cells. The proteasome inhibitors MG132 and MG115 induced a decrease in the levels of Bid and Bcl-2 proteins, an increase in the levels of Bax and p53, loss of the mitochondrial transmembrane potential, cytochrome c release and activation of caspases (-8, -9 and -3). The addition of lamotrigine reduced the proteasome inhibitor-induced changes in the apoptosis-related protein levels, production of reactive oxygen species, depletion and oxidation of glutathione (GSH), and cell death in both cell lines. Lamotrigine and N-acetylcysteine alone did not affect the levels of 26S proteasome and activity of 20S proteasome. MG132 did not alter the levels of 26S proteasome but decreased activity of 20S proteasome. Lamotrigine and N-acetylcysteine attenuated MG132-induced decrease in the activity of 20S proteasome. The results show that lamotrigine appears to suppress the proteasome inhibitor-induced apoptosis in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The suppressive effect of lamotrigine appears to be associated with its inhibitory effect on the production of reactive oxygen species, the depletion and oxidation of GSH and the activity reduction of 20S proteasome.  相似文献   

4.
Fish gut bacteria can be used as probiotics for aquaculture. The aim of this study is to screen and identify beneficial probiotic bacteria from the gut of Nile tilapia, Oreochromis niloticus. Nine out of one hundred thirty-five isolates were non-pathogenic through intraperitoneal injection and had antibacterial activities with at least a strain from the five isolated fish pathogens, Aeromonas sobria, Aeromonas hydrophila, Pseudomonas aeruginosa, Pseudomonas putida, and Staphylococcus aureus. Further tests showed that such isolates can survive in the presence of high bile concentration (10%) and at different acidic pH values. A strains (14HT) was sensitive to all selected antibiotics, two strains were (9HT and 11HT) resistant to streptomycin and three strains (9HT, 11HT and 38HT) had resistance to two antibiotics. Four isolates (11HT, 33HT, 38HT and 41HT) had an amylase and a protease activities and one strain (47HT) showed only amylase activity. Based on 16S rRNA gene analysis, the isolated strains were identified as follows: Lactococcus lactis (8HT, 9HT, 11HT and 33HT); Enterococcus faecalis (14HT), Lysinibacillus sp. (38HT) and Citrobacter freundii (39HT, 41HT and 47HT).  相似文献   

5.
6.
7.
8.
The antigenotoxic and antioxidant activities of biologically active substances of extracts from Inula britannica L. and Limonium gmelinii (Willd.) Kuntze in E. coli strains MG1655 (pColD-lux), MG1655 (pSoxS-lux), and MG1655 (pKatG-lux) were studied by the bioluminescent test. Plant extracts from I. britannica and L. gmelinii in all used concentrations (0.5, 5.0, 50.0, and 500.0 μg/mL) had no genotoxic or oxidant activity. The extracts statistically significantly reduced the bioluminescence intensity of the pColD-lux, pKatG-lux, and pSoxS-lux sensors (p < 0.05) induced by 4-NQO and dioxidine, hydrogen peroxide, and paraquat, respectively. The activity of the extracts depended on their concentration; the greatest antigenotoxic and antioxidant effects were detected at a concentration of 500.0 μg/mL.  相似文献   

9.
10.
11.
TDP-43 is a nuclear protein involved in exon skipping and alternative splicing. Recently, TDP-43 has been identified as the pathological signature protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis. In addition, TDP-43-positive inclusions are present in Parkinson disease, dementia with Lewy bodies, and 30% of Alzheimer disease cases. Pathological TDP-43 is redistributed from the nucleus to the cytoplasm, where it accumulates. An ∼25-kDa C-terminal fragment of TDP-43 accumulates in affected brain regions, suggesting that it may be involved in the disease pathogenesis. Here, we show that overexpression of the 25-kDa C-terminal fragment is sufficient to cause the mislocalization and cytoplasmic accumulation of endogenous full-length TDP-43 in two different cell lines, thus recapitulating a key biochemical characteristic of TDP-43 proteinopathies. We also found that TDP-43 mislocalization is associated with a reduction in the low molecular mass neurofilament mRNA levels. Notably, we show that the autophagic system plays a role in TDP-43 metabolism. Specifically, we found that autophagy inhibition increases the accumulation of the C-terminal fragments of TDP-43, whereas inhibition of mTOR, a key protein kinase involved in autophagy regulation, reduces the 25-kDa C-terminal fragment accumulation and restores TDP-43 localization. Our results suggest that autophagy induction may be a valid therapeutic target for TDP-43 proteinopathies.TDP-43 (transactive response DNA-binding protein 43) is a conserved and ubiquitously expressed nuclear protein with a theoretical molecular mass of ∼44 kDa. It is encoded by the TARDBP gene on chromosome 1, which is made of six exons that can be alternatively spliced to yield 11 different isoforms, with the mRNA encoding TDP-43 being the major species (1). Functionally, TDP-43 appears to be involved in exon skipping and alternative splicing (2, 3), and it has also been shown to link different types of nuclear bodies (4). Structural studies have confirmed the presence of two RNA recognition motifs (RRM1 and RRM2) and a glycine-rich C-terminal tail, which is thought to mediate protein-protein interaction (5).Recently, TDP-43 has been shown to be the major pathological protein in a wide range of disorders referred to as TDP-43 proteinopathies (68). These include frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U),2 motor neuron disease, and amyotrophic lateral sclerosis (ALS). These last two disorders have been directly linked to mutations in TDP-43 (9, 10). In addition, TDP-43-positive inclusions are present in Parkinson disease, dementia with Lewy bodies, and 30% of Alzheimer disease cases (1114). Sporadic and familial forms of FTLD-U and ALS are characterized by cytoplasmic accumulation of insoluble, hyperphosphorylated, ubiquitinated, and proteolytically cleaved C-terminal fragments in affected brain and spinal cord regions. The cytoplasmic accumulation of TDP-43 is associated with a depletion of nuclear TDP-43 (8, 1521). These data suggest that some of these TDP-43 proteinopathies may share common mechanisms of pathogenesis.FTLD-U is caused by loss-of-function mutations in the progranulin gene, which lead, by an unknown mechanism, to the accumulation of cytoplasmic TDP-43 inclusions (22, 23). Notably, the TDP-43 inclusions in the ALS and FTLD-U brains are enriched with TDP-43 C-terminal fragments (8, 19). It has been suggested that the C-terminal fragments can be obtained by caspase-dependent cleavage of the full-length protein (24). However, it remains to be established if these fragments play a role in the disease pathogenesis.TDP-43 proteinopathies are characterized by the accumulation of abnormally modified TDP-43, suggesting that dysfunction in the intracellular quality control systems (ubiquitin-proteasome system and the autophagy-lysosome system) may be involved in the disease pathogenesis. The autophagic system is a conserved intracellular system designed for the degradation of long-lived proteins and organelles in lysosomes (25, 26). Three types of autophagy have been described: macroautophagy, microautophagy, and chaperon-mediated autophagy. Whereas macroautophagy and microautophagy involve the “in bulk” degradation of regions of the cytosol (27, 28), chaperon-mediated autophagy is a more selective pathway, and only proteins with a lysosomal targeting sequence are degraded (29). Cumulative evidence has suggested that an age-dependent decrease in the autophagy-lysosome system may account for the accumulation of abnormal proteins during aging (30, 31).Macroautophagy is induced when an isolation membrane is formed surrounding cytosolic components, forming an autophagic vacuole, which will eventually fuse with lysosomes for protein/organelle degradation. Induction of the isolation membrane is negatively regulated by mTOR (mammalian target of rapamycin) (32). It has been shown that increasing autophagy activation by mTOR inhibitors has beneficial effects in neurodegeneration (3335).  相似文献   

12.
Lignocellulose-derived microbial inhibitors (LDMICs) prevent efficient fermentation of Miscanthus giganteus (MG) hydrolysates to fuels and chemicals. To address this problem, we explored detoxification of pretreated MG biomass by Cupriavidus basilensis ATCC®BAA-699 prior to enzymatic saccharification. We document three key findings from our test of this strategy to alleviate LDMIC-mediated toxicity on Clostridium beijerinckii NCIMB 8052 during fermentation of MG hydrolysates. First, we demonstrate that growth of C. basilensis is possible on furfural, 5-hydroxymethyfurfural, cinnamaldehyde, 4-hydroxybenzaldehyde, syringaldehyde, vanillin, and ferulic, p-coumaric, syringic and vanillic acid, as sole carbon sources. Second, we report that C. basilensis detoxified and metabolized ~98 % LDMICs present in dilute acid-pretreated MG hydrolysates. Last, this bioabatement resulted in significant payoffs during acetone-butanol-ethanol (ABE) fermentation by C. beijerinckii: 70, 50 and 73 % improvement in ABE concentration, yield and productivity, respectively. Together, our results show that biological detoxification of acid-pretreated MG hydrolysates prior to fermentation is feasible and beneficial.  相似文献   

13.
Carbon fluxes through main pathways of glucose utilization in Escherichia coli cells-glycolysis, pentose phosphate pathway (PPP), and Enther-Doudoroff pathway (EDP)—were studied. Their ratios were analyzed in E. coli strains MG1655, MG1655Δ(edd-eda), MG1655Δ(zwf, edd-eda), and MG1655Δ(pgi, edd-eda). It was shown that the carbon flux through glycolysis was the main route of glucose utilization, averaging ca. 80%. Inactivation of EDP did not affect growth parameters. Nevertheless, it altered carbon fluxes through the tricarboxylic acid cycles and energy metabolism in the cell. Inactivation of PPP decreased growth rate to a lesser degree than glycolysis inactivation.  相似文献   

14.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

15.
High temperature stress is a major obstacle in rice productivity. Considerable progress has been made on studying heat tolerance (HT) at different stages. However, the genetic basis of HT at the booting stage is poorly understood. In this study, we analyzed the morphological features of a heat-sensitive japonica cultivar Sasanishiki under natural high temperature stress at the booting stage. The anthers became smaller and the number, and fertility, of pollen grains were decreased significantly. As a result, there was a dramatic reduction in spikelet fertility. In contrast, the indica cultivar Habataki showed high HT and normal spikelet fertility under high temperature stress. Additonally, a set of chromosome segment substitution lines, derived from Sasanishiki and Habataki, were evaluated for HT related quantitative trait loci (QTLs) across two environments in the natural field. A total of 12 QTLs associated with HT were detected, of which, 5 were identified in two environments, and 7 in one environment. Furthermore, one of the major-effect QTLs (qHTB3-3) detected on the long arm of chromosome 3, was confirmed using overlapping substituted lines. qHTB3-3 was finally mapped between the two markers RM3525 and 3-M95, approximately 2.8 Mb apart. These findings and further gene cloning of qHTB3-3 will help us better understand the molecular control of HT in rice, and may contribute to the development of high HT rice varieties.  相似文献   

16.
17.
The modulation of N-methyl-D-aspartate receptor (NMDAR) and l-arginine/nitric oxide (NO) pathway is a therapeutic strategy for treating depression and neurologic disorders that involves excitotoxicity. Literature data have reported that creatine exhibits antidepressant and neuroprotective effects, but the implication of NMDAR and l-arginine/nitric oxide (NO) pathway in these effects is not established. This study evaluated the influence of pharmacological agents that modulate NMDAR/l-arginine-NO pathway in the anti-immobility effect of creatine in the tail suspension test (TST) in mice. The NOx levels and cellular viability in hippocampal and cerebrocortical slices of creatine-treated mice were also evaluated. The anti-immobility effect of creatine (10 mg/kg, po) in the TST was abolished by NMDA (0.1 pmol/mouse, icv), d-serine (30 µg/mouse, icv, glycine-site NMDAR agonist), arcaine (1 mg/kg, ip, polyamine site NMDAR antagonist), l-arginine (750 mg/kg, ip, NO precursor), SNAP (25 μg/mouse, icv, NO donor), L-NAME (175 mg/kg, ip, non-selective NOS inhibitor) or 7-nitroindazole (50 mg/kg, ip, neuronal NOS inhibitor), but not by DNQX (2.5 µg/mouse, icv, AMPA receptor antagonist). The combined administration of sub-effective doses of creatine (0.01 mg/kg, po) and NMDAR antagonists MK-801 (0.001 mg/kg, po) or ketamine (0.1 mg/kg, ip) reduced immobility time in the TST. Creatine (10 mg/kg, po) increased cellular viability in hippocampal and cerebrocortical slices and enhanced hippocampal and cerebrocortical NO x levels, an effect potentiated by l-arginine or SNAP and abolished by 7-nitroindazole or L-NAME. In conclusion, the anti-immobility effect of creatine in the TST involves NMDAR inhibition and enhancement of NO levels accompanied by an increase in neural viability.  相似文献   

18.
Citramalic acid (citramalate) serves as a five-carbon precursor for the chemical synthesis of methacrylic acid. We compared citramalate and acetate accumulation from glycerol using Escherichia coli strains expressing a modified citramalate synthase gene cimA from Methanococcus jannaschii. These studies revealed that gltA coding citrate synthase, leuC coding 3-isopropylmalate dehydratase, and acetate pathway genes play important roles in elevating citramalate and minimizing acetate formation. Controlled 1.0 L batch experiments confirmed that deletions in all three acetate-production genes (poxB, ackA, and pta) were necessary to reduce acetate formation to less than 1 g/L during citramalate production from 30 g/L glycerol. Fed-batch processes using MEC568/pZE12-cimA (gltA leuC ackA-pta poxB) generated over 31 g/L citramalate and less than 2 g/L acetate from either purified or crude glycerol at yields exceeding 0.50 g citramalate/g glycerol in 132 h. These results hold promise for the viable formation of citramalate from unrefined glycerol.  相似文献   

19.

Background

Alzheimer’s disease (AD) is characterized by progressive memory loss and impaired cognitive function. Early-onset familial forms of the disease (FAD) are caused by inheritance of mutant genes encoding presenilin 1 (PS1) variants. We have demonstrated that prion promoter (PrP)-driven expression of human FAD-linked PS1 variants in mice leads to impairments in environmental enrichment (EE)-induced adult hippocampal neural progenitor cell (AHNPC) proliferation and neuronal differentiation, and have provided evidence that accessory cells in the hippocampal niche expressing PS1 variants may modulate AHNPC phenotypes, in vivo. While of significant interest, these latter studies relied on transgenic mice that express human PS1 variant transgenes ubiquitously and at high levels, and the consequences of wild type or mutant PS1 expressed under physiologically relevant levels on EE-mediated AHNPC phenotypes has not yet been tested.

Results

To assess the impact of mutant PS1 on EE-induced AHNPC phenotypes when expressed under physiological levels, we exposed adult mice that constitutively express the PSEN1 M146V mutation driven by the endogenous PSEN1 promoter (PS1 M146V “knock-in” (KI) mice) to standard or EE-housed conditions. We show that in comparison to wild type PS1 mice, AHNPCs in mice carrying homozygous (PS1 M146V/M146V ) or heterozygous (PS1 M146V/+ ) M146V mutant alleles fail to exhibit EE-induced proliferation and commitment towards neurogenic lineages. More importantly, we report that the survival of newborn progenitors are diminished in PS1 M146V KI mice exposed to EE-conditions compared to respective EE wild type controls.

Conclusions

Our findings reveal that expression at physiological levels achieved by a single PS1 M146V allele is sufficient to impair EE-induced AHNPC proliferation, survival and neuronal differentiation, in vivo. These results and our finding that microglia expressing a single PS1 M146V allele impairs the proliferation of wild type AHNPCs in vitro argue that expression of mutant PS1 in the AHNPC niche impairs AHNPCs phenotypes in a dominant, non-cell autonomous manner.
  相似文献   

20.
Escherichia coli KO11 is a popular ethanologenic strain, but is more sensitive to ethanol than other producers. Here, an ethanol-tolerant mutant EM was isolated from ultraviolet mutagenesis library of KO11. Comparative genomic analysis added by piecewise knockout strategy and complementation assay revealed EKO11_3023 (espA) within the 36.6-kb deletion from KO11 was the only locus responsible for ethanol sensitivity. Interestingly, when espA was deleted in strain W (the parent strain of KO11), ethanol tolerance was dramatically elevated to the level of espA-free hosts [e.g., MG1655 and BL21(DE3)]. And overexpression of espA in strains MG1655 and BL21(DE3) led to significantly enhanced ethanol sensitivity. In addition to ethanol, deletion of espA also improved cell tolerance to other short-chain (C2–C4) alcohols, including methanol, isopropanol, n-butanol, isobutanol and 2-butanol. Therefore, espA was responsible for short-chain alcohol sensitivity of W-strains compared to other cells, which provides a potential engineering target for alcohols production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号