首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Ryu JH  Lee Y  Kong WH  Kim TG  Park TG  Lee H 《Biomacromolecules》2011,12(7):2653-2659
Bioinspired from adhesion behaviors of mussels, injectable and thermosensitive chitosan/Pluronic composite hydrogels were synthesized for tissue adhesives and hemostatic materials. Chitosan conjugated with multiple catechol groups in the backbone was cross-linked with terminally thiolated Pluronic F-127 triblock copolymer to produce temperature-sensitive and adhesive sol-gel transition hydrogels. A blend mixture of the catechol-conjugated chitosan and the thiolated Pluronic F-127 was a viscous solution state at room temperature but became a cross-linked gel state with instantaneous solidification at the body temperature and physiological pH. The adhesive chitosan/Pluronic injectable hydrogels with remnant catechol groups showed strong adhesiveness to soft tissues and mucous layers and also demonstrated superior hemostatic properties. These chitosan/Pluronic hydrogels are expected to be usefully exploited for injectable drug delivery depots, tissue engineering hydrogels, tissue adhesives, and antibleeding materials.  相似文献   

2.
The long term in vivo biocompatibility is an essential feature for the design and development of sustained drug release carriers. In the recent intraocular drug delivery studies, hydrogels were suggested as sustained release carriers. The biocompatibility test for these hydrogels, however, was commonly performed only through in vitro cell culture examination, which is insufficient before the clinical applications. We compared three thermosensitive hydrogels that have been suggested as the carriers for drugs by their gel-solution phase-change properties. A new block terpolymer (PEOz-PCL-PEOz, ECE) and two commercial products (Matrigel® and Pluronic F127) were studied. The results demonstrated that the ocular media remained translucent for ECE and Pluronic F127 in the first 2 weeks, but cataract formation for Matrigel occurred in 2 weeks and for Pluronic F127 in 1 month, while turbid media was observed for both Matrigel and Pluronic F127 in 2 months. The electrophysiology examinations showed significant neuroretinal toxicity of Matrigel and Pluronic F127 but good biocompatibility of ECE. The neuroretinal toxicity of Matrigel and Pluronic F127 and superior biocompatibility of ECE hydrogel suggests ECE as more appropriate biomaterial for use in research and potentially in intraocular application.  相似文献   

3.
Penicillium commune, Aureobasidium pullulans, and Paecilomyces farinosus were grown on two different media solidified with agar, Pluronic F-127, Carrageenan X-4910, or Carrageenan X-4910 overlaid with cellophane. Growth on Carrageenan X-4910 was generally the same as that on agar, as was the visual appearance of the colonies, e.g., the pigmentation. The Carrageenan X-4910 gels had a melting point, depending on the medium, of 41 to 46(deg)C, and the dry weights of the colonies were readily determined at 60(deg)C. To determine the dry weights of the colonies grown on agar plates, the gels were boiled for 10 min to melt the agar. Comparison of these two procedures showed that the boiling procedure resulted in a 22% reduction of the biomass dry weight. Cellophane membranes did not affect the radial growth rate profoundly. The biomass density was almost halved for P. commune and P. farinosus grown with membranes, whereas the presence of the membrane did not affect the biomass density of A. pullulans. The biomass densities of the colonies grown on Pluronic F-127 were significantly reduced, while in most cases, the radial growth rates of colonies grown on Pluronic F-127 were significantly higher than those obtained on agar or Carrageenan X-4910. Furthermore, the morphology of the leading hyphae was altered, and the hyphal growth unit length was more than twice that obtained on agar and Carrageenan X-4910. Carrageenan X-4910 is a valuable gelling compound for the study of the growth of fungi, as the biomass dry weight is readily determined and growth is similar to that obtained on agar gels.  相似文献   

4.
Choi SH  Lee SH  Park TG 《Biomacromolecules》2006,7(6):1864-1870
Pluronic hydrogel nanoparticles cross-linked with poly(ethylenimine) (PEI) were synthesized by a modified emulsification/solvent evaporation method. Pluronic F-127 preactivated at the terminal group with p-nitrophenyl chloroformate was dissolved in dichloromethane, and the organic solution was emulsified in deionized water containing PEI by sonication. Primary amine groups of PEI in the aqueous phase were conjugated and/or cross-linked with activated Pluronic F-127 in the vicinity of the water/dichloromethane interface, resulting in the formation of shell-cross-linked Pluronic/PEI nanocapsules. Pluronic/PEI nanocapsules exhibited a volume transition behavior over a temperature range of 24-33 degrees C. The thermally reversible swelling/deswelling of Pluronic/PEI nanocapsules was caused by temperature-dependent hydrophobic interaction of cross-linked and/or grafted Pluronic polymer chains in the nanocapsules. Pluronic/PEI nanocapsules were utilized to break up intracellular endosomal compartments by swelling-induced destabilization of the endosomal membrane triggered by a cold-shock treatment.  相似文献   

5.
Temperature and pH-responsive hydrogels based on chitosan grafted with poly acrylic acid (PAAc), poly hydroxy propyl methacrylate (PHPMA), poly (vinyl alcohol) (PVA) and gelatin were prepared for controlled drug delivery. These stimuli-responsive hydrogels were synthesized by gamma irradiation technique. The degree of gelation was over 90% and increased as chitosan, AAc and PVA content increased, while the degree of gelation decrease with the increase of gelatin content. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of 2–9 was investigated. An increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 9. Also antibiotic drug Oxttetracycline was loaded into the hydrogels and the release studies were carried out at different pH and temperature. The in vitro release profiles of the drug showed that, the release of the drug increased as the time, temperature and pH increased and reached to maximum after 48 h at pH 9. The prepared hydrogels were characterized by using SEM, FTIR, and DSC.  相似文献   

6.
The temperature sensitive properties of Pluronic F-127 (MW ∼12?600, PEO98-PPO67-PEO98), a block co-polymer or poloxamer, was used to control liposome-cell adhesion. When associated with liposomes, the PEO moiety of the block co-polymer is expected to inhibit liposome-cell adhesion. Liposomes were made using egg phosphatidylcholine and different mole% of Pluronic F-127. Size measurement of the liposomes at different temperatures, in the presence and absence of Pluronic F-127, shows significant reduction in the size of multilamellar vesicles, at higher temperatures, by the Pluronic molecules. Negative stain electron microscopy study showed the presence of individual molecules and micelles of Pluronic, respectively at temperatures below and above the critical micellar temperature (CMT). Measurement of the surface associated Pluronics indicated that they associated with liposomes when the sample was heated above the Pluronic CMT, and dissociated from liposomes when cooled below the CMT. Attachment of the Pluronic containing liposomes to CHO cells was inhibited at temperatures above the CMT, but not at temperatures below CMT, indicating that temperature-sensitive control of liposome-cell adhesion is achieved.  相似文献   

7.
A series of starch/methacrylic acid (MAAc) copolymer hydrogels of different compositions were synthesized using γ-rays induced polymerization and crosslinking. The effects of the preparation conditions such as the feed solution concentration, feed solution composition and irradiation dose on the gelation process of the synthesized copolymer were investigated. The swelling behavior of the starch/methacrylic acid (MAAc) copolymer hydrogels was characterized by studying the effect of the hydrogel composition on the time- and pH-dependent swelling. Swelling kinetics showed that the synthesized hydrogels possessed Fickian diffusion behavior at pH 1 and non-Fickian diffusion at pH 7 which recommend them as good candidate for colon specific drug delivery systems. The synthesized hydrogels were loaded with ketoprofen as a model drug to investigate the release behavior of the synthesized hydrogels. The results showed the ability of the hydrogels to keep the loaded drug at pH 1 and release it at pH 7. The data also showed that the release rate can be controlled by controlling the preparation conditions such as comonomer concentration and composition and irradiation dose.  相似文献   

8.
Thermoreversible-mucoadhesive Gel for nasal delivery of sumatriptan   总被引:1,自引:0,他引:1  
The purpose of the present study was to develop intranasal delivery systems of sumatriptan using thermoreversible polymer Pluronic F127 (PF 127) and mucoadhesive polymer Carbopol 934P (C934P). Formulations were modulated so as to have gelation temperature below 34°C to ensure gelation at physiological temperature after intranasal administration. Gelation temperature was determined by physical appearance as well as by rheological measurement. The gelation temperatures of the formulations decreased by addition of increasing concentrations of Carbopol (ie, from 29°C for 18% PF127 to 23.9°C for 18% PF127, 0.5% Carbopol). The mucoadhesive force in terms of detachment stress, determined using sheep nasal mucosal membrane, increased with increasing concentration of Carbopol. The results of in vitro drug permeation studies across sheep nasal mucosa indicate that effective permeation coefficient could be significantly increased by using in situ gelling formulation with Carbopol concentration 0.3% or greater. Finally, histopathological examination did not detect any damage during in vitro permeation studies. In conclusion, the PF 127 gel formulation of sumatriptan, with in situ gelling and mucoadhesive properties with increased permeation rate is promising for prolonging nasal residence time and thereby nasal absorption. Published: August 4, 2006  相似文献   

9.
Novel polyelectrolyte hydrogels (coded as GA) based on cationic guar gum (CGG) and acrylic acid monomer by photoinitiated free-radical polymerization were synthesized with various feed compositions. Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) confirmed that the formation of the polyelectrolyte hydrogels was attributed to the strong electrostatic interaction between cationic groups in CGG and anionic groups in poly (acrylic acid) (PAA). Swelling experiments provided important information on drug diffusion properties, which indicated the GA hydrogels were highly sensitive to pH environments. Potential applications of the hydrogels matrices in controlled drug delivery were also examined. The ketoprofen-loaded CGG/PAA matrices were prepared by hydrogels and directly compressed tablets, respectively. Release behavior of ketoprofen relied on the preparative methods of matrices, ratios of CGG/AA and pH environments. The release mechanism was studied by fitting experimental data to a model equation and calculating the corresponding parameters. The result showed that the kinetics of drug release from the hydrogels in pH 7.4 buffer solution was mainly non-Fickian diffusion. However, for tablets, the drug release in pH 7.4 buffer solution was mainly affected by polymer erosion. The pH of the dissolution medium appeared to have a strong effect on the drug transport mechanism. At more basic pH values, Case II transport was observed, indicating a drug release mechanism highly influenced by macromolecular chain relaxation. The ketoprofen release is also tested in the conditions chosen to simulate gastrointestinal tract conditions. The results implied that the GA hydrogels can be exploited as potential carriers for colon-specific drug delivery.  相似文献   

10.
Quantitation of lymphocyte intracellular free calcium signals using indo-1   总被引:2,自引:0,他引:2  
C S Owen 《Cell calcium》1988,9(3):141-147
The calcium-responsive fluorescent dye indo-1 has been used in lymphocyte suspensions to measure changes in internal free calcium concentration, [Ca2+]i, in response to crosslinking of cell surface immunoglobulin. The quantitation of [Ca2+]i requires that indo-am ester used to load the cells be completely hydrolyzed to the indo-1 form inside the cells. This is shown to be greatly facilitated in the lymphocyte by the detergent Pluronic F-127. The quantitation of [Ca2+]i transients also requires an estimate of the fraction of the cells which contribute to the observed changes. The use of excessive amounts of intracellular dye can buffer [Ca2+]i transients and this effect has been used to estimate the size of the pool of calcium which is available for release when the B cell is stimulated by anti-immunoglobulin.  相似文献   

11.
Interleukin-1beta (IL-1β) is a major cause for induction of various inflammatory mechanisms that are decisively involved to provoke pathogenesis of type 2 diabetes mellitus (T2DM). Interleukin-1 receptor antagonist (IL-1Ra) a naturally occurring anti-inflammatory antagonist of IL-1β has been recently approved for treatment of T2DM but due to its short half-life, higher doses and frequent dosing intervals are required. Pluronic F-127 (PF127) has previously shown to prolong the release of various proteinous drugs and their serum half-lives. Subsequently, in our previous work, we developed a new dosage form of IL-1Ra using PF127 and investigated its in-vitro and in-vivo effects. Here in present work, we have extended this approach using diabetic Goto-kakizaki (GK) rats. We administered IL-1Ra loaded in PF127 gel subcutaneously for one month into GK rats. IL-1Ra loaded in PF127 gel exhibited a sustained and prolonged hypoglycemic effects on treated animals. Intraperitoneal glucose tolerance test (IPGTT) results showed that IL-1Ra loaded in PF127 gel increased glucose tolerance along with increased insulin sensitivity and β-cell’s secretory function in treated rats. Moreover, significant reduction in pro-insulin/insulin ratio, lipid profiles and interleukin 6 (IL-6) were also observed. Immunohistochemical analysis showed slight macrophages infiltration in pancreatic islets. Histochemical analysis revealed no PF127-induced alteration in the normal physiology of skin and kidney of treated animals. Hence, we concluded that IL-1Ra loaded in PF127 gel has potential to exhibit broad spectrum anti-inflammatory effects alleviating the symptoms of T2DM.  相似文献   

12.
Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N′-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA–TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied.  相似文献   

13.
Hyun H  Kim YH  Song IB  Lee JW  Kim MS  Khang G  Park K  Lee HB 《Biomacromolecules》2007,8(4):1093-1100
An MPEG-PCL diblock copolymer was synthesized as an in situ gel carrier, and its phase transition behavior in aqueous solutions was examined. For comparison, aqueous solutions of Pluronic F-127, a widely used injectable gel-forming solution, were also studied. Both MPEG-PCL copolymer and Pluronic aqueous solutions were sols at room temperature. As the temperature was increased above room temperature, the diblock copolymer and Pluronic solutions underwent a sol-to-gel phase transition, which manifested as an increase in viscosity indicative of the formation of a gel. All of the copolymer solutions became gels at body temperature, although the gel viscosity increased with the increasing concentration of the MPEG-PCL diblock copolymer in the solution. In in vitro experiments, in which the gels were exposed to PBS, the MPEG-PCL gels maintained their structural integrity for more than 28 days, whereas the Pluronic gel disappeared within 2 days. The same results were observed when the polymer solutions were subcutaneously injected into rats. The MPEG-PCL gels maintained their structural integrity longer than 30 days, while the Pluronic gel could not be observed after 2 days. The ability of the gels as drug carriers was studied by measuring the release of fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) from MPEG-PCL diblock copolymer gels in vitro as well as in vivo. In vitro, BSA release was sustained above 20 days, with a greater release at lower diblock copolymer concentration; by contrast, Pluronic gels exhibited almost complete release of BSA-FITC within 1 day. When the BSA-FITC-loaded diblock copolymer and Pluronic solutions were subcutaneously injected into rats, they immediately transformed into a gel. In vivo, sustained release of BSA-FITC over 30 days was observed from the MPEG-PCL gel, whereas BSA-FITC release from the Pluronic gel ceased within 3 days. Collectively, the present findings show that MPEG-PCL diblock copolymer solutions are thermo-responsive and maintain their structural integrity under physiological conditions, indicating that they are suitable for use as injectable drug carriers.  相似文献   

14.
By encapsulating a pH-sensitive dye, phenol red, in multilamellar liposomes of DMPC, DPPC and DMPC/DPPC mixtures, the permeability of these phospholipid bilayers to dye as a function of temperature has been studied. For both DMPC and DPPC liposomes, dye release begins well below the main gel-to-liquid-crystalline phase transition (24°C and 42°C, respectively) at temperatures corresponding to the onset of the pretransition (about 14°C and 36°C, respectively) with DPPC liposomes exhibiting a permeability anomaly at the main phase transition (42°C). The perturbation occurring in the bilayer structure that allows the release of encapsulated phenol red (approx. 5 Å diameter) is not sufficient to permit the release of encapsulated haemoglobin (approx. 20 Å diameter, negatively charged). In liposomes composed of a range of DMPC/DPPC mixtures, dye release commences at the onset of the pretransition range (determined by optical absorbance measurements) and increases with increasing temperature until the first appearance of liquid crystalline phase after which no further dye release occurs. Interestingly, the dye retaining properties of DMPC and DPPC liposomes well below their respective pretransition temperature regions are very different: DMPC liposomes release much encapsulated dye at incubation temperatures of 5°C whilst DPPC liposomes do not.  相似文献   

15.
《Phytomedicine》2015,22(12):1103-1111
BackgroundCurcumin has a wide range of pharmacological activities including antioxidant, anti-inflammatory, antidiabetic, antibacterial, wound healing, antiatherosclerotic, hepatoprotective and anti-carcinogenic. However, its clinical applications are limited owing to its poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism and rapid elimination due to glucuronidation/sulfation.PurposeThe objective of the current work was to prepare novel curcumin loaded mixed micelles (CUR-MM) of Pluronic F-127 (PF127) and Gelucire® 44/14 (GL44) in order to enhance its oral bioavailability and cytotoxicity in human lung cancer cell line A549.Study design32 Factorial design was used to assess the effect of formulation variables for optimization of mixed micelle batch.MethodsCUR-MM was prepared by a solvent evaporation method. The optimized CUR-MM was evaluated for size, entrapment efficiency (EE), in vitro curcumin release, cytotoxicity and oral bioavailability in rats.ResultsThe average size of CUR-MM was found to be around 188 ± 3 nm with an EE of about 76.45 ± 1.18% w/w. In vitro dissolution profile of CUR-MM revealed controlled release of curcumin. Additionally, CUR-MM showed significant improvement in cytotoxic activity (3-folds) and oral bioavailability (around 55-folds) of curcumin as compared to curcumin alone. Such significant improvement in cytotoxic activity and oral bioavailability of curcumin when formulated into mixed micelles could be attributed to solubilization of hydrophobic curcumin into micelle core along with P-gp inhibition effect of both, PF127 and GL44.ConclusionThus the present work propose the formulation of mixed micelles of PF127 and GL44 which can act as promising carrier systems for hydrophobic drugs such as curcumin with significant improvement in their oral bioavailability.  相似文献   

16.
In this paper, we reported the synthesis and properties of interpenetrating polymer network (IPN) hydrogel systems designed for colon targeted drug delivery. The gels were composed of konjac glucomannan (KGM) and cross-linked poly(acrylic acid) (PAA) by N,N-methylene-bis-(acrylamide) (MBAAm). It was possible to modulate the swelling degree of the gels. And the swelling ratio has sensitive respondence to the environmental pH value variation. The degradation tests show that the hydrogels retain the enzymatic degradation character of KGM. In vitro release of model drug VB12 was studied in the presence of Cellulase E0240 in pH 7.4 phosphate buffer at 37 °C. The accumulative release percent of the model drug reached 85.6% after 48 h and the drug release was controlled by the swelling and the degradation of the hydrogels. The results indicated that the IPN hydrogels can be exploited as potential carriers for colon-specific drug delivery.  相似文献   

17.
The purpose of this study was to develop a buccal paclitaxel delivery system using the thermosensitive polymer Pluronic F127 (PF127) and the mucoadhesive polymer polyethylene oxide (PEO). The anticancer agent paclitaxel is usually used to treat ovarian, breast, and non-small-cell lung cancer. To improve its aqueous solubility, paclitaxel was incorporated into an inclusion complex with (2,6-di-O-methyl)-β-cyclodextrin (DMβCD). The formation of the paclitaxel inclusion complex was evaluated using various techniques, including x-ray diffractometry (XRD), Fourier-transform infrared (FT-IR) spectrophotometry, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Hydrogels were prepared using a cold method. Concentrations of 18, 20, and 23% (w/v) PF127 were dissolved in distilled water including paclitaxel and stored overnight in a refrigerator at 4°C. PEO was added at concentrations of 0.1, 0.2, 0.4, 0.8, and 1% (w/v). Each formulation included paclitaxel (0.5 mg/mL). The sol-gel transition temperature of the hydrogels was measured using the tube-inverting method. Drug release from the hydrogels was measured using a Franz diffusion cell containing pH 7.4 phosphate-buffered solution (PBS) buffer at 37°C. The cytotoxicity of each formulation was measured using the MTT assay with a human oral cancer cell (KB cell). The sol-gel transition temperature of the hydrogel decreased when PF127 was present and varied according to the presence of mucoadhesive polymers. The in vitro release was sustained and the release rate was slowed by the addition of the mucoadhesive polymer. The cytotoxicity of the blank formulation was low, although the drug-loaded hydrogel showed acceptable cytotoxicity. The results of our study suggest that the combination of a PF 127-based mucoadhesive hydrogel formulation and inclusion complexes improves the in vitro release and cytotoxic effect of paclitaxel.  相似文献   

18.
Our aim was to synthesize a biomaterial that stimulates angiogenesis for tissue engineering applications by exploiting the ability of heparin to bind and release vascular endothelial growth factor (VEGF). The approach adopted involved modification of a hydrogel with positively charged peptides (oligolysine or oligoarginine) to achieve heparin binding. Precursor hydrogels were produced from copolymerization of N‐vinyl pyrolidone, diethylene glycol bis allyl carbonate and acrylic acid (PNDA) and functionalized after activation of the carboxylic acid groups with trilysine or triarginine peptides (PNDKKK and PNDRRR). Both hydrogels were shown to bind and release bioactive VEGF165 with arginine‐modified hydrogel outperforming the lysine‐modified hydrogel. Cytocompatibility of the hydrogels was confirmed in vitro with primary human dermal fibroblasts and human dermal microvascular endothelial cells (HUDMECs). Proliferation of HUDMECs was stimulated by triarginine‐functionalized hydrogels, and to a lesser extent by lysine functionalized hydrogels once loaded with heparin and VEGF. The data suggests that heparin‐binding hydrogels provide a promising approach to a pro‐angiogenic biomaterial. Biotechnol. Bioeng. 2013; 110: 296–317. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
doi: 10.1111/j.1741‐2358.2010.00379.x
Effectiveness of different cleaning agents on the adherence of Candida albicans to acrylic denture base resin Objective:  To evaluate the ability of three alkaline peroxide‐type (Polident, Efferdent, Fittydent) and two mouth rinse cleaning agents (CloSYSII and Corsodyl) to inhibit Candida albicans on acrylic denture base resin. Background:  Appropriate routine cleaning of dentures is necessary to prevent denture stomatitis and maintenance of healthy supporting tissues. Materials and methods:  A total of 180 acrylic resin specimens (10 × 10 × 2 mm) were prepared and divided into six groups. Candida albicans was incubated on Sabouraud dextrose agar (SDA) at 37°C for 48 h. After dilution, a final yeast suspension of approximately 10 6 C. albicans per millimetre was prepared. Ten acrylic resin specimens for each group were placed in a sterile Petri dish covered with 20 ml of fungal suspension and incubated at 37°C for 90 min. Then, the specimens were immersed in 40 ml of the test solution at 37°C for 15, 30 and 60 min. Fungal cells adhering to acrylic resin surfaces were fixed in formaldehyde and counted microscopically. Results:  Mouth rinses showed the highest removal activity for all the treatment times and completely eliminated the adherence of C. albicans. Conclusions:  The use of mouth rinse may be a suitable method for cleaning dentures.  相似文献   

20.
A new injectable biodegradable hydrogel system with thermosensitive sol-gel transition behavior was developed. A series of A-B-A triblock copolymers consisting of Pluronic copolymer end-capped with D- or L-lactic acid oligomers (PL-LA(n)) with various chain lengths (n = 5,12) was synthesized. It was assumed that a pair of two triblock copolymers with enantiomeric oligolactide chains, when blended in an equimolar mixture, would form more stable, self-assembled, and stereocomplexed (ST) hydrogels. A series of blend hydrogels encapsulating human growth hormone (hGH) was prepared by varying blend ratios between PL and stereocomplexed PL copolymers. They showed sustained release of hGH via an erosion-dependent mechanism. The hydrogel with a 5% blending ratio exhibited the most delayed mass erosion as well as sustained protein release patterns in vitro possibly due to the formation of a fish-net like 3-D mesh structure. The effect of incubation condition on hGH release and degradation behaviors was also assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号