首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this work we used the yeast two-hybrid (Y2H) system to deepen our understanding of protein-protein interactions that are involved in the nitrogen regulatory network in Escherichia coli. Three different genes, encoding GlnB, GlnK and AspA, respectively, were found among 64 positive clones identified from E. coli Sau 3AI Y2H libraries using the nitrogen regulator NtrB as bait. Structural and functional analysis of the prey clones provided information on library features and the degree of saturation achieved in the screens. Further analysis revealed that the C-terminal kinase domain of NtrB is required for the interaction with GlnK, while AspA91–312 interacts specifically with the conserved histidine phosphotransfer domain of NtrB, thus providing additional evidence for the involvement of the conserved transmitter module of the histidine kinase NtrB in input sensory functions.Communicated by A. Kondorosi  相似文献   

2.
We have used the yeast two-hybrid system to analyze protein-protein interactions mediated by domains of regulatory proteins of the ntr signal transduction system, including interactions among NtrB derivatives and their interactions with NtrC and PII from Klebsiella pneumoniae. Interactions took place only between proteins or protein domains belonging to the ntr signal transduction system and not between proteins or domains from noncognate regulators. NtrB and its transmitter domain, but not NtrC, CheA, or the cytoplasmic C terminus of EnvZ, interacted with PII. In addition, interaction of NtrB with NtrC, but not with PII, depended on the histidine phosphotransfer domain. Point mutation A129T, diminishing the NtrC phosphatase activity of NtrB, affected the strength of the signals between NtrC and the transmitter module of NtrB but had no impact on PII signals, suggesting that A129T prevents the conformational change needed by NtrB to function as a phosphatase for NtrC, rather than disturbing binding to PII.  相似文献   

3.
4.
Previous studies have established that the Escherichia coli protein kinase/phosphatase nitrogen regulator II (NRII also known as NtrB) becomes autophosphorylated on a histidine residue when incubated with ATP. We show that the major site at which NRII was autophosphorylated was contained within a peptide consisting of amino acid residues 136-142 of NRII, and thus probably corresponds to His-139. A minor site of phosphorylation, accounting for about 2% of the phosphate in NRII-P, was found in a peptide that corresponds to residues 158-169.  相似文献   

5.
M N Levit  Y Liu  J B Stock 《Biochemistry》1999,38(20):6651-6658
The chemotaxis receptor for aspartate, Tar, generates responses by regulating the activity of an associated histidine kinase, CheA. Tar is composed of an extracellular sensory domain connected by a transmembrane sequence to a cytoplasmic signaling domain. The cytoplasmic domain fused to a leucine zipper dimerization domain forms soluble active ternary complexes with CheA and an adapter protein, CheW. The kinetics of kinase activity within these complexes compared to CheA alone indicate approximately a 50% decrease in the KM for ATP and a 100-fold increase in the Vmax. A truncated CheA construct that lacks the phosphoaccepting H-domain and the CheY/CheB-binding domain forms an activated ternary complex that is similar to the one formed by the full-length CheA protein. The Vmax of H-domain phosphorylation by this complex is enhanced approximately 60-fold, the KM for ATP decreased to 50%, and the KM for H-domain decreased to 20% of the values obtained with the same CheA construct in the absence of receptor and CheW. The kinetic data support a mechanism of CheA regulation that involves perturbation of an equilibrium between an inactive form where the H-domain is loosely bound and an active form where the H-domain is tightly associated with the CheA active site and properly positioned for phosphotransfer. The data are consistent with an asymmetric mechanism of CheA activation [Levit, M., Liu, I., Surette, M. G., and Stock, J. B. (1996) J. Biol. Chem. 271, 32057-32063] wherein only one phosphoaccepting domain of CheA at a time can interact with an active center within a CheA dimer.  相似文献   

6.
7.
8.
9.
10.
In Escherichia coli, PhoR is the histidine kinase of the phosphate regulon. It has been postulated that PhoR may function as a phospho-PhoB phosphatase. Experiments with four precise phoR deletion mutants supported this hypothesis and suggested that this activity resides within the histidine phosphorylation domain. This biochemical activity was confirmed by using a separately expressed histidine phosphorylation domain.  相似文献   

11.
Two-component signal transduction systems, composed of histidine kinases (HK) and response regulators (RR), allow bacteria to respond to diverse environmental stimuli. The HK can control both phosphorylation and subsequent dephosphorylation of its cognate RR. The majority of HKs utilize the HisKA subfamily of dimerization and histidine phosphotransfer (DHp) domains, which contain the phospho-accepting histidine and directly contact the RR. Extensive genetics, biochemistry, and structural biology on several prototypical TCS systems including NtrB-NtrC and EnvZ-OmpR have provided a solid basis for understanding the function of HK–RR signaling. Recently, work on NarX, a HisKA_3 subfamily protein, indicated that two residues in the highly conserved region of the DHp domain are responsible for phosphatase activity. In this study we have carried out both genetic and biochemical analyses on Myxococcus xanthus CrdS, a member of the HisKA subfamily of bacterial HKs. CrdS is required for the regulation of spore formation in response to environmental stress. Following alanine-scanning mutagenesis of the α1 helix of the DHp domain of CrdS, we determined the role for each mutant protein for both kinase and phosphatase activity. Our results indicate that the conserved acidic residue (E372) immediately adjacent to the site of autophosphorylation (H371) is specifically required for kinase activity but not for phosphatase activity. Conversely, we found that the conserved Thr/Asn residue (N375) was required for phosphatase activity but not for kinase activity. We extended our biochemical analyses to two CrdS homologs from M. xanthus, HK1190 and HK4262, as well as Thermotoga maritima HK853. The results were similar for each HisKA family protein where the conserved acidic residue is required for kinase activity while the conserved Thr/Asn residue is required for phosphatase activity. These data are consistent with conserved mechanisms for kinase and phosphatase activities in the broadly occurring HisKA family of sensor kinases in bacteria.  相似文献   

12.
Mutant forms of Escherichia coli NRII (NtrB) were isolated that retained wild-type NRII kinase activity but were defective in the PII-activated phosphatase activity of NRII. Mutant strains were selected as mimicking the phenotype of a strain (strain BK) that lacks both of the related PII and GlnK signal transduction proteins and thus has no mechanism for activation of the NRII phosphatase activity. The selection and screening procedure resulted in the isolation of numerous mutants that phenotypically resembled strain BK to various extents. Mutations mapped to the glnL (ntrB) gene encoding NRII and were obtained in all three domains of NRII. Two distinct regions of the C-terminal, ATP-binding domain were identified by clusters of mutations. One cluster, including the Y302N mutation, altered a lid that sits over the ATP-binding site of NRII. The other cluster, including the S227R mutation, defined a small surface on the "back" or opposite side of this domain. The S227R and Y302N proteins were purified, along with the A129T (NRII2302) protein, which has reduced phosphatase activity due to a mutation in the central domain of NRII, and the L16R protein, which has a mutation in the N-terminal domain of NRII. The S227R, Y302N, and L16R proteins were specifically defective in the PII-activated phosphatase activity of NRII. Wild-type NRII, Y302N, A129T, and L16R proteins bound to PII, while the S227R protein was defective in binding PII. This suggests that the PII-binding site maps to the "back" of the C-terminal domain and that mutation of the ATP-lid, central domain, and N-terminal domain altered functions necessary for the phosphatase activity after PII binding.  相似文献   

13.
14.
Scaffolding proteins can customize the response of signaling networks to support cell development and behaviors. PleC is a bifunctional histidine kinase whose signaling activity coordinates asymmetric cell division to yield a motile swarmer cell and a stalked cell in the gram-negative bacterium Caulobacter crescentus. Past studies have shown that PleC’s switch in activity from kinase to phosphatase correlates with a change in its subcellular localization pattern from diffuse to localized at the new cell pole. Here we investigated how the bacterial scaffolding protein PodJ regulates the subcellular positioning and activity of PleC. We reconstituted the PleC-PodJ signaling complex through both heterologous expressions in Escherichia coli and in vitro studies. In vitro, PodJ phase separates as a biomolecular condensate that recruits PleC and inhibits its kinase activity. We also constructed an in vivo PleC-CcaS chimeric histidine kinase reporter assay and demonstrated using this method that PodJ leverages its intrinsically disordered region to bind to PleC’s PAS sensory domain and regulate PleC-CcaS signaling. Regulation of the PleC-CcaS was most robust when PodJ was concentrated at the cell poles and was dependent on the allosteric coupling between PleC-CcaS’s PAS sensory domain and its downstream histidine kinase domain. In conclusion, our in vitro biochemical studies suggest that PodJ phase separation may be coupled to changes in PleC enzymatic function. We propose that this coupling of phase separation and allosteric regulation may be a generalizable phenomenon among enzymes associated with biomolecular condensates.  相似文献   

15.
16.
The signal-transducing kinase/phosphatase nitrogen regulator II (NRII or NtrB) is required for the efficient positive and negative regulation of glnA, encoding glutamine synthetase, and the Ntr regulon in response to the availability of ammonia. Alteration of highly conserved residues within the kinase/phosphatase domain of NRII revealed that the positive and negative regulatory functions of NRII could be genetically separated and that negative regulation by NRII did not require the highly conserved His-139, Glu-140, Asn-248, Asp-287, Gly-289, Gly-291, Gly-313, or Gly-315 residue. These mutations affected the positive regulatory function of NRII to various extents. Certain substitutions at codons 139 and 140 resulted in mutant NRII proteins that were transdominant negative regulators of glnA and the Ntr regulon even in the absence of nitrogen limitation. In addition, we examined three small deletions near the 3' end of the gene encoding NRII; these resulted in altered proteins that retained the negative regulatory function but were defective to various extents in the positive regulatory function. A truncated NRII protein missing the C-terminal 59 codons because of a nonsense mutation at codon 291 lacked entirely the positive regulatory function but was a negative regulator of glnA even in the absence of nitrogen limitation. Thus, we have identified both point and deletion mutations that convert NRII into a negative regulator of glnA and the Ntr regulon irrespective of the nitrogen status of the cell.  相似文献   

17.
Entry to sporulation in bacilli is governed by a histidine kinase phosphorelay, a variation of the predominant signal transduction mechanism in prokaryotes. Sda directly inhibits sporulation histidine kinases in response to DNA damage and replication defects. We determined a 2.0-Å-resolution X-ray crystal structure of the intact cytoplasmic catalytic core [comprising the dimerization and histidine phosphotransfer domain (DHp domain), connected to the ATP binding catalytic domain] of the Geobacillus stearothermophilus sporulation kinase KinB complexed with Sda. Structural and biochemical analyses reveal that Sda binds to the base of the DHp domain and prevents molecular transactions with the DHp domain to which it is bound by acting as a simple molecular barricade. Sda acts to sterically block communication between the catalytic domain and the DHp domain, which is required for autophosphorylation, as well as to sterically block communication between the response regulator Spo0F and the DHp domain, which is required for phosphotransfer and phosphatase activities.  相似文献   

18.
Negative control in two‐component signal transduction results from sensor transmitter phosphatase activity for phospho‐receiver dephosphorylation. A hypothetical mechanism for this reaction involves a catalytic residue in the H‐box active‐site region. However, a complete understanding of transmitter phosphatase regulation is hampered by the abundance of kinase‐competent, phosphatase‐defective missense substitutions (K+ P phenotype) outside of the active‐site region. For the Escherichia coli NarX sensor, a model for the HisKA_3 sequence family, DHp domain K+ P mutants defined two classes. Interaction mutants mapped to the active site‐distal base of the DHp helix 1, whereas conformation mutants were affected in the X‐box region of helix 2. Thus, different types of perturbations can influence transmitter phosphatase activity indirectly. By comparison, K+ P substitutions in the HisKA sensors EnvZ and NtrB additionally map to a third region, at the active site‐proximal top of the DHp helix 1, independently identified as important for DHp‐CA domain interaction in this sensor class. Moreover, the NarX transmitter phosphatase activity was independent of nucleotides, in contrast to the activity for many HisKA family sensors. Therefore, distinctions involving both the DHp and the CA domains suggest functional diversity in the regulation of HisKA and HisKA_3 transmitter phosphatase activities.  相似文献   

19.
20.
Histidine kinases function as dimers. The kinase domain of the osmosensing histidine kinase EnvZ of Escherichia coli consists of two domains: domain A (67 residues) responsible for histidine phosphotransfer and dimerization, and domain B (161 residues) responsible for the catalytic and ATP-binding function. The individual structures of these two domains have been recently solved by NMR spectroscopy. Here, we demonstrate that an enzymatically functional monomeric histidine kinase can be constructed by fusing in tandem two domains A and one domain B to produce a single polypeptide (A-A-B). We show that this protein, EnvZc[AAB], is soluble and exists as a stable monomer. The autophosphorylation and OmpR kinase activities of the monomeric EnvZc[AAB] are similar to that of the wild-type EnvZ, while OmpR-binding and phosphatase functions are reduced. V8 protease digestion and mutational analyses indicate that His-243 of only the amino proximal domain A is phosphorylated. Based on these results, molecular models are proposed for the structures of EnvZc[AAB] and the kinase domain of EnvZ. The present results demonstrate for the first time the construction of a functional, monomeric histidine kinase, further structural studies of which may provide important insights into the structure-function relationships of histidine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号