首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
While screening for Sinorhizobium meliloti Pho regulatory mutants, a transposon mutant was isolated that constitutively expressed higher levels of acid and alkaline phosphatase enzymes. This mutant was also found to form pseudonodules on alfalfa that were delayed in appearance relative to those formed by the wild-type strain, it contained few bacteroids, and it did not fix nitrogen. Sequence analysis of the transposon insertion site revealed the affected gene to have high homology to Lon proteases from a number of organisms. In minimal succinate medium, the mutant strain was found to grow more slowly, reach lower maximal optical density, and produce more extracellular polysaccharide (EPS) than the wild-type strain. The mutant fluoresced brightly on minimal succinate agar containing calcofluor (which binds to EPSI, a constitutively expressed succinoglycan), and gas chromotographic analysis of purified total EPS showed that the glucose-to-galactose ratio in the lon mutant total EPS was 5.0 +/- 0.2 (mean +/- standard error), whereas the glucose-to-galactose ratio in the wild-type strain was 7.1 +/- 0.5. These data suggested that in addition to EPSI, the lon mutant also constitutively synthesized EPSII, a galactoglucan which is the second major EPS known to be produced by S. meliloti, but typically is expressed only under conditions of phosphate limitation. (13)C nuclear magnetic resonance analysis showed no major differences between EPS purified from the mutant and wild-type strains. Normal growth, EPS production, and the symbiotic phenotype were restored in the mutant strain when the wild-type lon gene was present in trans. The results of this study suggest that the S. meliloti Lon protease is important for controlling turnover of a constitutively expressed protein(s) that, when unregulated, disrupts normal nodule formation and normal growth.  相似文献   

2.
Sinorhizobium meliloti is a soil bacterium capable of invading and establishing a symbiotic relationship with alfalfa plants. This invasion process requires the synthesis, by S. meliloti, of at least one of the two symbiotically important exopolysaccharides, succinoglycan and EPS II. We have previously shown that the sinRI locus of S. meliloti encodes a quorum-sensing system that plays a role in the symbiotic process. Here we show that the sinRI locus exerts one level of control through regulation of EPS II synthesis. Disruption of the autoinducer synthase gene, sinI, abolished EPS II production as well as the expression of several genes in the exp operon that are responsible for EPS II synthesis. This phenotype was complemented by the addition of acyl homoserine lactone (AHL) extracts from the wild-type strain but not from a sinI mutant, indicating that the sinRI-specified AHLs are required for exp gene expression. This was further confirmed by the observation that synthetic palmitoleyl homoserine lactone (C(16:1)-HL), one of the previously identified sinRI-specified AHLs, specifically restored exp gene expression. Most importantly, the absence of symbiotically active EPS II in a sinI mutant was confirmed in plant nodulation assays, emphasizing the role of quorum sensing in symbiosis.  相似文献   

3.
Sinorhizobium meliloti is a gram-negative soil bacterium capable of forming a symbiotic nitrogen-fixing relationship with its plant host, Medicago sativa. Various bacterially produced factors are essential for successful nodulation. For example, at least one of two exopolysaccharides produced by S. meliloti (succinoglycan or EPS II) is required for nodule invasion. Both of these polymers are produced in high- and low-molecular-weight (HMW and LMW, respectively) fractions; however, only the LMW forms of either succinoglycan or EPS II are active in nodule invasion. The production of LMW succinoglycan can be generated by direct synthesis or through the depolymerization of HMW products by the action of two specific endoglycanases, ExsH and ExoK. Here, we show that the ExpR/Sin quorum-sensing system in S. meliloti is involved in the regulation of genes responsible for succinoglycan biosynthesis as well as in the production of LMW succinoglycan. Therefore, quorum sensing, which has been shown to regulate the production of EPS II, also plays an important role in succinoglycan biosynthesis.  相似文献   

4.
5.
We have recently obtained strong genetic evidence that the acidic Calcofluor-binding exopolysaccharide (EPS I) of Rhizobium meliloti Rm1021 is required for nodule invasion and possibly for later events in nodule development. Thirteen loci on the second megaplasmid have been identified that are required for, or affect, the synthesis of EPS I. Mutations in certain of these loci completely abolish the production of EPS I and result in mutants that form empty Fix- nodules. exoH mutants fail to succinylate their EPS I and form empty Fix- nodules. We have identified two unlinked regulatory loci, exoR and exoS, whose products play negative roles in the regulation of expression of the exo genes. We have recently discovered that R. meliloti has a latent capacity to synthesize a second exopolysaccharide (EPS II) that can substitute for the role(s) of EPS I in nodulation of alfalfa but not of other hosts. Possible roles for Rhizobium exopolysaccharides in nodulation are discussed.  相似文献   

6.
Planktonic cells of Sinorhizobium meliloti, a Gram-negative symbiotic bacterium, display autoaggregation under static conditions. ExpR is a LuxR-type regulator that controls many functions in S. meliloti, including synthesis of two exopolysaccharides, EPS I (succinoglycan) and EPS II (galactoglucan). Since exopolysaccharides are important for bacterial attachment, we studied the involvement of EPS I and II in autoaggregation of S. meliloti. Presence of an intact copy of the expR locus was shown to be necessary for autoaggregation. A mutant incapable of producing EPS I displayed autoaggregation percentage similar to that of parental strain, whereas autoaggregation was significantly lower for a mutant defective in biosynthesis of EPS II. Our findings clearly indicate that EPS II is the essential component involved in autoaggregation of planktonic S. meliloti cells, and that EPS I plays no role in such aggregation.  相似文献   

7.
Genetic experiments have indicated that succinoglycan (EPS I), the acidic Calcofluor-binding exopolysaccharide, of the nitrogen-fixing bacterium Rhizobium meliloti strain Rm1021 is required for nodule invasion and possibly for later events in nodule development on alfalfa and other hosts. Fourteen exo loci on the second megaplasmid have been identified that are required for, or affect, the synthesis of EPS I. Mutations in certain of these loci completely abolish the production of EPS I and result in mutants that form empty Fix- nodules. We have identified two loci, exoR and exoS, that are involved in the regulation of EPS I synthesis in the free-living state. Certain exo mutations which completely abolish EPS I production are lethal in an exoR95 or exoS96 background. Histochemical analyses of the expression of exo genes during nodulation using exo::TnphoA fusions have indicated that the exo genes are expressed most strongly in the invasion zone. In addition, we have discovered that R. meliloti has a latent capacity to synthesize a second exopolysaccharide (EPS II) that can substitute for the role(s) of EPS I in nodulation of alfalfa but not of other hosts. Possible roles for exopolysaccharides in symbiosis are discussed.  相似文献   

8.
9.
Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.  相似文献   

10.
Sinorhizobium meliloti is a gram-negative soil bacterium, capable of establishing a nitrogen-fixing symbiosis with its legume host, alfalfa (Medicago sativa). Quorum sensing plays a crucial role in this symbiosis, where it influences the nodulation process and the synthesis of the symbiotically important exopolysaccharide II (EPS II). S. meliloti has three quorum-sensing systems (Sin, Tra, and Mel) that use N-acyl homoserine lactones as their quorum-sensing signal molecule. Increasing evidence indicates that certain eukaryotic hosts involved in symbiotic or pathogenic relationships with gram-negative bacteria produce quorum-sensing-interfering (QSI) compounds that can cross-communicate with the bacterial quorum-sensing system. Our studies of alfalfa seed exudates suggested the presence of multiple signal molecules capable of interfering with quorum-sensing-regulated gene expression in different bacterial strains. In this work, we choose one of these QSI molecules (SWI) for further characterization. SWI inhibited violacein production, a phenotype that is regulated by quorum sensing in Chromobacterium violaceum. In addition, this signal molecule also inhibits the expression of the S. meliloti exp genes, responsible for the production of EPS II, a quorum-sensing-regulated phenotype. We identified this molecule as l-canavanine, an arginine analog, produced in large quantities by alfalfa and other legumes.  相似文献   

11.
12.
13.
14.
15.
Exopolysaccharide production by Sinorhizobium meliloti is required for invasion of root nodules on alfalfa and successful establishment of a nitrogen-fixing symbiosis between the two partners. S. meliloti wild-type strain Rm1021 requires production of either succinoglycan, a polymer of repeating octasaccharide subunits, or EPS II, an exopolysaccharide of repeating dimer subunits. The reason for the production of two functional exopolysaccharides is not clear. Earlier reports suggested that low-phosphate conditions stimulate the production of EPS II in Rm1021. We found that phosphate concentrations determine which exopolysaccharide is produced by S. meliloti. The low-phosphate conditions normally found in the soil (1 to 10 microM) stimulate EPS II production, while the high-phosphate conditions inside the nodule (20 to 100 mM) block EPS II synthesis and induce the production of succinoglycan. Interestingly, the EPS II produced by S. meliloti in low-phosphate conditions does not allow the invasion of alfalfa nodules. We propose that this invasion phenotype is due to the lack of the active molecular weight fraction of EPS II required for nodule invasion. An analysis of the function of PhoB in this differential exopolysaccharide production is presented.  相似文献   

16.
We report the identification and characterization of the eps gene cluster of Streptococcus thermophilus Sfi6 required for exopolysaccharide (EPS) synthesis. This report is the first genetic work concerning EPS production in a food microorganism. The EPS secreted by this strain consists of the following tetrasaccharide repeating unit:-->3)-beta-D-Galp-(1-->3)-[alpha-D-Galp-(1-->6)]-beta-D- D-Galp-(1-->3)-alpha-D-Galp-D-GalpNAc-(1-->. The genetic locus The genetic locus was identified by Tn916 mutagenesis in combination with a plate assay to identify Eps mutants. Sequence analysis of the gene region, which was obtained from subclones of a genomic library of Sfi6, revealed a 15.25-kb region encoding 15 open reading frames. EPS expression in the non-EPS-producing heterologous host, Lactococcus lactis MG1363, showed that within the 15.25-kb region, a region with a size of 14.52 kb encoding the 13 genes epsA to epsM was capable of directing EPS synthesis and secretion in this host. Homology searches of the predicted proteins in the Swiss-Prot database revealed high homology (40 to 68% identity) for epsA, B, C, D, and E and the genes involved in capsule synthesis in Streptococcus pneumoniae and Streptococcus agalactiae. Moderate to low homology (37 to 18% identity) was detected for epsB, D, F, and H and the genes involved in capsule synthesis in Staphylococcus aureus for epsC, D, and E and the genes involved in exopolysaccharide I (EPSI) synthesis in Rhizobium meliloti for epsC to epsJ and the genes involved in lipopolysaccharide synthesis in members of the Enterobacteriaceae, and finally for eps K and lipB of Neisseria meningitidis. Genes (epsJ, epsL, and epsM) for which the predicted proteins showed little or no homology with proteins in the Swiss-Prot database were shown to be involved in EPS synthesis by single-crossover gene disruption experiments.  相似文献   

17.
Jones KM 《Journal of bacteriology》2012,194(16):4322-4331
The nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 produces acidic symbiotic exopolysaccharides that enable it to initiate and maintain infection thread formation on host legume plants. The exopolysaccharide that is most efficient in mediating this process is succinoglycan (exopolysaccharide I [EPSI]), a polysaccharide composed of octasaccharide repeating units of 1 galactose and 7 glucose residues, modified with succinyl, acetyl, and pyruvyl substituents. Previous studies had shown that S. meliloti 1021 mutants that produce increased levels of succinoglycan, such as exoR mutants, are defective in symbiosis with host plants, leading to the hypothesis that high levels of succinoglycan production might be detrimental to symbiotic development. This study demonstrates that increased succinoglycan production itself is not detrimental to symbiotic development and, in fact, enhances the symbiotic productivity of S. meliloti 1021 with the host plant Medicago truncatula cv. Jemalong A17. Increased succinoglycan production was engineered by overexpression of the exoY gene, which encodes the enzyme responsible for the first step in succinoglycan biosynthesis. These results suggest that the level of symbiotic exopolysaccharide produced by a rhizobial species is one of the factors involved in optimizing the interaction with plant hosts.  相似文献   

18.
The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharides (KPS) production, was isolated and sequenced. The organization of the S. fredii genes identified, rkpUAGHIJ and kpsF3, was identical to that described for S. meliloti 1021 but different from that of S. meliloti AK631. The long rkpA gene (7.5 kb) of S. fredii HH103 and S. meliloti 1021 appears as a fusion of six clustered AK631 genes, rkpABCDEF. S. fredii HH103-Rif(r) mutants affected in rkpH or rkpG were constructed. An exoA mutant unable to produce exopolysaccharide (EPS) and a double mutant exoA rkpH also were obtained. Glycine max (soybean) and Cajanus cajan (pigeon pea) plants inoculated with the rkpH, rkpG, and rkpH exoA derivatives of S. fredii HH103 showed reduced nodulation and severe symptoms of nitrogen starvation. The symbiotic capacity of the exoA mutant was not significantly altered. All these results indicate that KPS, but not EPS, is of crucial importance for the symbiotic capacity of S. fredii HH103-Rif(r). S. meliloti strains that produce only EPS or KPS are still effective with alfalfa. In S. fredii HH103, however, EPS and KPS are not equivalent, because mutants in rkp genes are symbiotically impaired regardless of whether or not EPS is produced.  相似文献   

19.
20.
The exo loci of Rhizobium meliloti are necessary for the production of an acidic exopolysaccharide, EPS I, that is needed for alfalfa nodule invasion by strain Rm1021. We have isolated and characterized alkaline phosphatase fusions made with TnphoA in several exo loci of R. meliloti and used these fusions to examine the subcellular localization of exo gene products and the regulation of exo genes in free-living cells and in planta. In the course of this work, we isolated a new exo locus, exoT. We have obtained evidence that several of the exo loci may encode membrane proteins. The activity of TnphoA fusions in several exo loci is increased two- to fivefold in the presence of the regulatory mutations exoR95 and exoS96. While examining the regulation of the exo gens by exoR95 and exoS96, we found that certain classes of exo mutations are lethal in an exoR95 or exoS96 background unless a plasmid complementing the exo mutation is present. This result has possible implications for the role of these exo loci in EPS I biosynthesis. We have developed a method for staining nodules specifically for the alkaline phosphatase activity present in the inducing bacteria and used this method to show that an exoF::TnphoA fusion is expressed mainly in the invasion zone of the nodule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号