首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Ali MB  Yu KW  Hahn EJ  Paek KY 《Plant cell reports》2006,25(6):613-620
The effects of methyl jasmonate (MJ) and salicylic acid (SA) on changes of the activities of major antioxidant enzymes, superoxide anion accumulation (O2 ), ascorbate, total glutathione (TG), malondialdehyde (MDA) content and ginsenoside accumulation were investigated in ginseng roots (Panax ginseng L.) in 4 l (working volume) air lift bioreactors. Single treatment of 200 μM MJ and SA to P. ginseng roots enhanced ginsenoside accumulation compared to the control and harvested 3, 5, 7 and 9 days after treatment. MJ and SA treatment induced an oxidative stress in P. ginseng roots, as shown by an increase in lipid peroxidation due to rise in O2 accumulation. Activity of superoxide dismutase (SOD) was inhibited in MJ-treated roots, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), SOD, guaiacol peroxidase (G-POD), glutathione peroxidase (GPx) and glutathione reductase (GR) were induced in SA-treated roots. A strong decrease in the activity of catalase (CAT) was obtained in both MJ- and SA-treated roots. Activities of ascorbate peroxidase (APX) and glutathione S transferase (GST) were higher in MJ than SA while the contents of reduced ascorbate (ASC), redox state (ASC/(ASC+DHA)) and TG were higher in SA- than MJ-treated roots while oxidized ascorbate (DHA) decreased in both cases. The result of these analyses suggests that roots are better protected against the O2 stress, thus mitigating MJ and SA stress. The information obtained in this work is useful for efficient large-scale production of ginsenoside by plant-root cultures.  相似文献   

2.
以‘津研四号’黄瓜为试材,以30 mmol·L-1NaHCO_3模拟盐碱环境,采用水培法研究了0.2μmol·L-1外源2,4表油菜素内酯(2,4-epibrassinolide,EBR)对盐碱胁迫下黄瓜幼苗生长和活性氧代谢的影响.结果表明:NaHCO_3胁迫显著诱导了叶片及根系中O2-·的产生和H_2O_2的积累,导致丙二醛含量和电解质渗透率提高.NaHCO_3胁迫下,超氧化物歧化酶、过氧化物酶、过氧化氢酶、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性及还原型抗坏血酸、还原型谷胱甘肽含量随胁迫时间延长呈现先升后降的趋势.外源EBR显著提高了NaHCO_3胁迫下黄瓜叶片和根系中抗氧化酶活性、抗氧化物质的含量以及As A/DHA(双脱氢抗坏血酸)和GSH/GSSG(氧化型谷胱甘肽)比值,维持了植株内的氧化还原平衡,降低了活性氧积累水平,缓解了膜脂过氧化,从而提高了黄瓜幼苗的盐碱耐受性.  相似文献   

3.
以‘津研四号’黄瓜为试材,以30 mmol·L-1 NaHCO3模拟盐碱环境,采用水培法研究了0.2 μmol·L-1外源2,4表油菜素内酯(2,4-epibrassinolide,EBR)对盐碱胁迫下黄瓜幼苗生长和活性氧代谢的影响.结果表明: NaHCO3胁迫显著诱导了叶片及根系中O2的产生和H2O2的积累,导致丙二醛含量和电解质渗透率提高.NaHCO3胁迫下,超氧化物歧化酶、过氧化物酶、过氧化氢酶、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性及还原型抗坏血酸、还原型谷胱甘肽含量随胁迫时间延长呈现先升后降的趋势.外源EBR显著提高了NaHCO3胁迫下黄瓜叶片和根系中抗氧化酶活性、抗氧化物质的含量以及AsA/DHA(双脱氢抗坏血酸)和GSH/GSSG(氧化型谷胱甘肽)比值,维持了植株内的氧化还原平衡,降低了活性氧积累水平,缓解了膜脂过氧化,从而提高了黄瓜幼苗的盐碱耐受性.  相似文献   

4.
Zaharieva TB  Abadía J 《Protoplasma》2003,221(3-4):269-275
Summary.  The effects of Fe deficiency stress on the levels of ascorbate and glutathione, and on the activities of the enzymes ferric chelate reductase, glutathione reductase (EC 1.6.4.2), ascorbate free-radical reductase (EC 1.6.5.4) and ascorbate peroxidase (EC 1.11.1.11), have been investigated in sugar beet (Beta vulgaris L.) roots. Plasma membrane vesicles and cytosolic fractions were isolated from the roots of the plants grown in nutrient solutions in the absence or presence of Fe for two weeks. Plants responded to Fe deficiency not only with a 20-fold increase in root ferric chelate reductase activity, but also with moderately increased levels of the general reductants ascorbate (2-fold) and glutathione (1.6-fold). The enzymes of the ascorbate-glutathione cycle in roots were also affected by Fe deficiency. Glutathione reductase activity was enhanced 1.4-fold with Fe deficiency, associated to an increased ratio of reduced to oxidized glutathione, from 3.1 to 5.2. The plasma membrane fraction from iron-deficient roots showed 1.7-fold higher ascorbate free-radical reductase activity, whereas in the cytosolic fraction the enzyme activity was not affected by Fe deficiency. The activity of the cytosolic hemoprotein ascorbate peroxidase decreased approximately by 50% with Fe deprivation. These results show that sugar beet responds to Fe deficiency with metabolic changes affecting components of the ascorbate-glutathione cycle in root cells. This suggests that the ascorbate-glutathione cycle would play certain roles in the general Fe deficiency stress responses in strategy I plants. Received November 19, 2001; accepted September 30, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, CSIC, Apartado 202, 50080 Zaragoza, Spain.  相似文献   

5.
The effects of salt stress on antioxidative activities were investigated in a coastal halophyte, Cakile maritima . Two Tunisian accessions, Jerba and Tabarka, were compared. Plants were subjected to 100, 200, or 400 m M NaCl for 20 days. Parameters of oxidative stress [malondialdehyde (MDA), electrolyte leakage (EL), and hydrogen peroxide (H2O2) concentration], activities of several enzymes [superoxide dismutase (SOD), catalase (CAT), peroxydase (POD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR)], and antioxidant molecules (ascorbate, ASC, and glutathione, GSH) were determined. Growth of Jerba plants was improved at 100 m M NaCl as compared to that of control. Tabarka growth was inhibited by salt at all NaCl concentrations. The relative salt tolerance of Jerba was associated with high antioxidant enzyme activities and glutathione content, together with low MDA content, EL, and H2O2 concentration. Lower antioxidant activities and higher MDA content, EL, and H2O2 concentration were found in Tabarka. As a whole, these data suggest that the capacity to limit oxidative damage is important for salt tolerance of C. maritima .  相似文献   

6.
Legume root nodules use the ascorbate-glutathione pathway to remove harmful H2O2. In the present study. effective and ineffective nodules from soybean and alfalfa were compared with regard to this pathway. Effective nodules had higher activity of all 4 enzymes (ascorbate peroxidase, EC 1. 11. 1. 11: monodehydroascorbate reductase, EC 1. 6. 5. 4: dehydroascorbate reductase, EC 1. 8. 5. 1: and glutathione reductase, EC 1. 6. 4. 2). The concentration of thiol tripeptides (primarily homoglutathione) was about 1 m M in effective nodules – a level 3–4-fold higher than in ineffective nodules. Effective nodules contained higher levels of NAD+. NADP+ and NADPH. but not of NADH or ascorbate. The increased capacity for peroxide scavenging in effective nodules as compared to ineffective nodules emphasizes the important protective role that this pathway may play in processes related to nitrogen fixation.  相似文献   

7.
We evaluated the involvement of nitric oxide (NO) in salicylic acid (SA)-induced accumulation of ginsenoside in adventitious roots of Panax ginseng and its mediation by reactive oxygen species (ROS). Related effects of SA on components of the antioxidant system were also sought. Adventitious roots of P. ginseng were grown in suspension culture for 3 weeks in MS medium and treated over 5 days with SA (100 μM) alone, SA in combination with the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), or PTIO alone. Nitric oxide, the superoxide anion (O2·−), H2O2, nitrite, nonprotein thiol, and ascorbate were monitored together with ginsenoside, NADPH oxidase activity, and several antioxidant enzymes. Salicylic acid did not inhibit root growth but induced accumulation of ginsenoside, lipid peroxidation, and generation of NO and O2·−. It also enhanced activities of NADPH oxidase, superoxide dismutase, catalase, and peroxidase, including ascorbate peroxidase. These effects were suppressed by PTIO. Salicylic acid also decreased glutathione reductase activity. Inclusion of PTIO with SA decreased the activity of glutathione reductase further. Treatment with SA plus PTIO also decreased nonprotein thiol and ascorbate contents but caused nitrite to overaccumulate. Salicylic acid applied to adventitious roots in culture induced accumulation of ginsenoside in an NO-dependent manner that was mediated by the associated increases in O2·−, which gave other antioxidant responses that were dependent on NO.  相似文献   

8.
The relationship between potassium deficiency and the antioxidative defense system has received little study. The aim of this work was to study the induction of oxidative stress in response to K(+) deficiency and the putative role of antioxidants. The tomato plants were grown in hydroponic systems to determine the role of reactive oxygen species (ROS) in the root response to potassium deprivation. Parameters of oxidative stress (malondialdehyde and hydrogen peroxide (H(2)O(2)) concentration), activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)) and antioxidant molecules (ascorbate (ASC) and glutathione) were investigated. H(2)O(2) was subcellularly located by laser confocal microscopy after potassium starvation in roots. During the first 24h, H(2)O(2) induced the cascade of the cellular response to low potassium, and ROS accumulation was located mainly in epidermal cells in the elongation zone and meristematic cells of the root tip and the epidermal cells of the mature zones of potassium starved roots. The activity of the antioxidative enzymes SOD, peroxidase and APX in potassium deprivation significantly increased, whereas CAT and DHAR activity was significantly depressed in the potassium starvation treatment compared to controls. GR did not show significant differences between control and potassium starvation treatments. Based on these results, we put forward the hypothesis that antioxidant molecule accumulations probably scavenge H(2)O(2) and might be regenerated by the ASC-glutathione cycle enzymes, such as DHAR and GR.  相似文献   

9.
The effect of plum pox virus (PPV) infection on the response of some antioxidant enzymes was studied in two apricot cultivars, which behaved differently against PPV infection: cultivar Real Fino (susceptible) and cultivar Stark Early Orange (cv. SEO, resistant). In the susceptible cultivar, PPV produced a decrease in Φ PSII, F 'v/ F 'm and Q p. PPV infection produced a drop in p -hydroxy mercury benzoic acid (pHMB)-sensitive ascorbate peroxidase, dehydroascorbate reductase and peroxidase in the soluble fraction from susceptible plants, whereas in the resistant apricot cultivar, pHMB-insensitive ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase and superoxide dismutase increased. However, catalase decreased in the soluble fractions from both infected cultivars. Long-term PPV infection also produced a decrease in the chloroplastic ascorbate–glutathione cycle enzymes only in the susceptible plants. As a consequence of PPV infection, an oxidative stress, indicated by an increase in lipid peroxidation and in protein oxidation, was produced only in the leaves from the susceptible cultivar which was also monitored by the diaminobenzidine peroxidase-coupled H2O2 probe. The loss of Φ PSII, indicative of activated oxygen species production, and the decrease in the levels of antioxidant enzymes in chloroplasts from susceptible plants could be responsible for the chlorosis symptoms observed. The results suggest that the higher antioxidant capacity showed by cv. SEO could be a consequence of a systemic acquired resistance induced by PPV penetration in stem tissue at the graft site and could be related, among other factors, to their resistance to PPV.  相似文献   

10.
《Plant science》2005,169(5):833-841
Roots of mountain ginseng (Panax ginseng) were exposed to various levels of oxygen (O2) (30, 40 and 50%) for 15, 30 and 45 days in 5 L (working volume 4 L) airlift bioreactors. Ginsenoside accumulation and dry weight was enhanced up to 40% O2; but thereafter declined ginsenoside and dry weight of the roots by increasing level of O2. Gradual increase in H2O2 content and lipoxygenase activity (LOX), resulting in cellular damage and oxidative stress as indicated by increased malondialdehyde (MDA) content after 30 and 45 days at all O2 levels was shown. Increased levels of O2 (above ambient) resulted in increases in non-protein thiol (NP-SH) and cysteine content. Higher activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), catalase (CAT), guaiacol peroxidase (G-POD), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S transferase (GST) activities indicated that antioxidant enzymes played an important role in protecting the roots from O2 up to 45 days, except at 50% O2 where GR, GST and GPx decreased compared to the control. However, after 45 days, SOD activity decreased significantly compared to the control in the O2-treated roots. This reflects the sensitivity of enzymes to O2 toxicity. In stress related experiment, roots showed increased synthesis of ginsenosides when 25 and 50 μM H2O2 was applied. However, higher dose and increasing treatment inhibited ginsenoside synthesis. The results indicate that plant roots could grow and protect themselves from O2 stress by coordinated induction of various antioxidant enzymes and metabolite contents. These results suggest that O2 supplementation is useful for ginsenoside accumulation using 5-L bioreactors.  相似文献   

11.
Seven-day-old seedlings of winter wheat (Triticum aestivum L.) in a growth chamber were exposed to ultraviolet-B (UV-B) irradiation for 20 days with daily biologically effective (BE) UV-B irradiation (UV-BBE) at low (4.2 kJ m−2 day−1, LUVB) and high (7.0 kJ m−2 day−1, HUVB) levels. The UV-B irradiated seedlings and the control without UV-B irradiation were then subjected to freezing stress at −6 °C for 6 h and recovered to 20 °C with gradually increased temperature, to investigate the effects of UV-B irradiation on freezing tolerance. During the UV-B exposure, both LUVB and HUVB irradiated seedlings had lower half lethal temperature (LT50) values in comparison with the control, and LUVB more effectively decreased the LT50 values than HUVB. Moreover, foliar concentrations of thiobarbituric acid reactive substances (TBARS) in the UV-B irradiated seedlings were lower than that of control after recovery from freezing stress. Hydrogen peroxide (H2O2) rapidly increased after UV-B exposure, as did activity of superoxide dismutase (SOD). After recovery from freezing stress, activities of catalase (CAT), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased in both LUVB and HUVB leaves, whereas activities of ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) significantly increased only in the LUVB leaves. Furthermore, the ascorbic acid (AsA) concentration and reduced-to-oxidized ascorbate ratio (AsA/DHA) increased in the LUVB leaves both at the end of UV-B exposure and after recovery from freezing stress. However, the reduced glutathione (GSH) concentration, together with reduced-to-oxidized glutathione ratio (GSH/GSSG) increased in both LUVB and HUVB leaves after recovery from freezing stress. UV-B irradiation increased freezing tolerance in winter wheat seedlings, and this response appears to involve the scavenging enzymes and compounds in the antioxidant defense systems, particularly the ascorbate–glutathione cycle.  相似文献   

12.
The response of the enzymes and metabolites of the ascorbate-glutathione pathway to oxidative stress caused by re-aeration following hypoxia was studied in roots of hydroponically grown lupine (Lupinus luteus L. cv. Juno) seedlings. Lupine roots were deprived of oxygen by subjecting them to hypoxia for 48 and 72 h and then re-aerated for up to 4 h. An increased content of total ascorbate was observed in lupine roots immediately after hypoxia, whereas total glutathione level decreased. However, a significant increase in the reduced forms of both metabolites was found directly after hypoxia. Re-admission of oxygen caused the decrease of the ratios of reduced to oxidized forms of ascorbate and glutathione, indicating oxidative stress. While monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) activity remained unaltered during re-aeration the increase in activities of ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) was observed 30 min after transfer from hypoxic condition. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) activity approached the control level during a whole re-aeration period. Native gel electrophoresis combined with specific activity staining revealed seven isoforms of APX, five isoforms of GR and three different proteins with DHA reductase activity in roots extracts. However, immediately after hypoxic treatment APX-5 isoform and GR-1 isoform were not observed in roots. This experimental system was also used to investigate superoxide anion level in roots utilizing the superoxide anion-specific indicator dihydroethidium (DHE). Intense DHE-derived fluorescence was found in re-aerated root tips as compared to control roots, indicating that re-aeration induced superoxide anion production in hypoxically pretreated roots.  相似文献   

13.
Changes in antioxidant metabolism because of the effect of salinity stress (0, 80, 160 or 240 m M NaCl) on protective enzyme activities under ambient (350 μmol mol−1) and elevated (700 μmol mol−1) CO2 concentrations were investigated in two barley cultivars ( Hordeum vulgare L., cvs Alpha and Iranis). Electrolyte leakage, peroxidation, antioxidant enzyme activities [superoxide dismutase (SOD), EC 1.15.1.1; ascorbate peroxidase (APX), EC 1.11.1.11; catalase (CAT), EC 1.11.1.6; dehydroascorbate reductase (DHAR), EC 1.8.5.1; monodehydroascorbate reductase (MDHAR), EC 1.6.5.4; glutathione reductase (GR), EC 1.6.4.2] and their isoenzymatic profiles were determined. Under salinity and ambient CO2, upregulation of antioxidant enzymes such as SOD, APX, CAT, DHAR and GR occurred. However, this upregulation was not enough to counteract all ROS formation as both ion leakage and lipid peroxidation came into play. The higher constitutive SOD and CAT activities together with a higher contribution of Cu,Zn-SOD 1 detected in Iranis might possibly contribute and make this cultivar more salt-tolerant than Alpha. Elevated CO2 alone had no effect on the constitutive levels of antioxidant enzymes in Iranis, whereas in Alpha it induced an increase in SOD, CAT and MDHAR together with a decrease of DHAR and GR. Under combined conditions of elevated CO2 and salinity the oxidative damage recorded was lower, above all in Alpha, together with a lower upregulation of the antioxidant system. So it can be concluded that elevated CO2 mitigates the oxidative stress caused by salinity, involving lower ROS generation and a better maintenance of redox homeostasis as a consequence of higher assimilation rates and lower photorespiration, being the response dependent on the cultivar analysed.  相似文献   

14.
Plant glutathione peroxidases   总被引:22,自引:0,他引:22  
Oxidative stress in plants causes the induction of several enzymes, including superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2). The first two are responsible for converting superoxide to H2O2 and its subsequent reduction to H2O, and the third is involved in recycling of ascorbate. Glutathione peroxidases (GPXs, EC 1.11.1.9) are a family of key enzymes involved in scavenging oxyradicals in animals. Only recently, indications for the existence of this enzyme in plants were reported. Genes with significant sequence homology to one member of the animal GPX family, namely phospholipid hydroperoxide glutathione peroxidase (PHGPX), were isolated from several plants. Cit-SAP, the protein product encoded by the citrus csa gene, which is induced by salt-stress, is so far the only plant PHGPX that has been isolated and characterized. This protein differs from the animal PHGPX in its rate of enzymatic activity and in containing a Cys instead of selenocysteine (Sec) as its presumed catalytic residue. The physiological role of Cit-SAP and its homologs in other plants is not yet known.  相似文献   

15.
Rice ( Oryza sativa L.) cv. Tulsi is recommended for Eastern India, for upland ecological cultivation systems where a crop experiences natural cycles of water deficit and water sufficiency, depending upon the monsoon rains. In this experiment, this cultivar was subjected to three cycles of water stress of increasing stress intensity. Each stress cycle was terminated by rewatering the plants for a 48-h period. The level of stress was measured by quantification of H2O2. The response of antioxidant metabolites such as ascorbate and glutathione, and enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2) and guaiacol peroxidase (POX, EC 1.11.1.7) was analysed in terms of activity and isozyme pattern for each cycle of stress and recovery. The differential response of the antioxidant enzymes with increasing stress intensity followed by recovery, highlight the different role of each in the drought acclimation process of upland rice. SOD and POX activity in stressed plants was higher than the controls in all the three cycles. The second level of stress saw an increase in all the enzymes with APX and GR showing its maximum activity and there was a better management of H2O2 levels. There was an induction of a new CAT isoform in stressed plants in the third cycle of water stress. The co-ordinated defense helped the plants to recover in terms of growth on rewatering after stress cycles.  相似文献   

16.
外源一氧化氮对镉胁迫下绿豆幼苗根尖抗氧化酶的影响   总被引:3,自引:0,他引:3  
采用水培法研究外源一氧化氮对镉(Cd)胁迫下绿豆幼苗根尖抗氧化酶活性的影响。结果表明:0.01mmol/L和0.1mmol/L一氧化氮供体硝普钠(sodium nitroprusside,SNP)显著促进上胚轴生长,1mmol/LSNP则抑制绿豆幼苗生长。Cd单独处理抑制根尖抗坏血酸过氧化物酶(ascorbate peroxidase,APX)和超氧化物歧化酶(superoxide dismutase,SOD)活性而刺激脂氧合酶(lipoxygenase,LOX)、谷胱甘肽转硫酶(glutathione S-transferase,GST)、谷胱甘肽还原酶(glutathione reductase,GR)和过氧化物酶(guaiacol peroxidase,POD)活性上升。0.1mmol/LSNP预处理能够明显缓解Cd对根生长的抑制,降低根尖中MDA含量,提高根尖APX和SOD活性,降低LOX和POD活性,但不影响GST和GR活性。  相似文献   

17.
盐碱胁迫是植物遭受的常见非生物胁迫之一,气体信号硫化氢(H2S)在植物响应盐碱胁迫中发挥着重要作用。为探讨H2S对盐碱胁迫下裸燕麦抗坏血酸(AsA)-谷胱甘肽(GSH)循环的调控效应,以品种‘定莜9号’为材料,研究了喷施H2S供体硫氢化钠(NaHS)或H2S合成抑制剂羟胺(HA)对盐碱混合胁迫下植株生长、叶片活性氧、膜脂过氧化和AsA-GSH循环中抗氧化物质和关键酶的影响。结果表明: 喷施50 μmol·L-1 NaHS可缓解50 mmol·L-1盐碱混合胁迫对裸燕麦生长的抑制,降低超氧阴离子、H2O2、丙二醛、氧化型抗坏血酸(DHA)、还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量,提高AsA/DHA和GSH/GSSG,而对还原型抗坏血酸(AsA)含量无显著影响。喷施NaHS还提高了盐碱混合胁迫下裸燕麦叶片AsA合成关键酶L-半乳糖脱氢酶(GalDH)和L-半乳糖-1,4-内酯脱氢酶(GalLDH)及AsA-GSH循环中单脱氢抗坏血酸还原酶(MDHAR)活性,降低了抗坏血酸过氧化物酶(APX)和脱氢抗坏血酸还原酶(DHAR)活性,而对抗坏血酸氧化酶(AO)和谷胱甘肽还原酶(GR)活性的影响不大。增添HA后部分或完全解除了喷施NaHS的上述作用。这说明H2S可通过促进AsA合成和增强MDHAR活性提高AsA-GSH循环效率,降低盐碱胁迫对裸燕麦的氧化伤害。  相似文献   

18.
采用气雾法栽培系统,研究了根际低氧(10% O2和5% O2)胁迫对网纹甜瓜果实发育期间植株生长、根呼吸代谢及抗氧化酶活性的影响.结果表明:与对照相比,低氧胁迫下,网纹甜瓜株高、根长降低,植株鲜、干物质量显著下降;根呼吸速率极显著低于对照(21% O2),且5% O2处理下降幅度大于10% O2处理;乳酸脱氢酶(LDH)、乙醇脱氢酶(ADH)和丙酮酸脱羧酶(PDC)活性较对照显著升高,而苹果酸脱氢酶(MDH)活性显著降低;根系中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量显著高于对照,其中10% O2处理抗氧化酶活性升高幅度显著大于5% O2处理,而MDA含量5% O2处理高于10% O2处理.说明网纹甜瓜果实发育期间根际氧浓度降到10%及其以下时,根系有氧呼吸明显受阻,无氧呼吸代谢被促进,同时根系抗氧化酶发生应激反应,但随低氧胁迫时间的延长,根细胞质膜过氧化程度加剧,根系受到伤害,植株生长受到抑制,最终导致果实产量和品质下降.  相似文献   

19.
Sequestration of Pb by synthetic chelates has been reported to increase bioavailability, uptake, and translocation of this metal in plants. In this work the potential phytotoxic effects of Pb-EDTA were investigated in Phaseolus vulgaris L. cv. Limburgse vroege plants grown on hydroponics. Addition of 50 µ M Pb-EDTA to the nutrient solution caused a significant induction of syringaldazine peroxidase (SPOD; EC 1.11.1.7) in roots and primary leaves and guaiacol peroxidase (GPOD; EC 1.11.1.7) in leaves. Addition of 100 µ M Pb-EDTA further exacerbated ascorbate peroxidase (APOD; EC 1.11.1.11), GPOD, dehydroascorbate reductase (DHAR; EC 1.8.5.1), glutathione reductase (GR; EC 1.6.4.2) and malic enzyme (ME; EC 1.1.1.40) in roots and APOD and ME in primary leaves. Addition of 200 µ M Pb-EDTA also induced DHAR in leaves. This induction of peroxidases (SPOD, GPOD, APOD), enzymes of the ascorbate-glutathione cycle (DHAR, GR in roots) and of an NADP+ reducing enzyme in roots and primary leaves indicates that oxidative stress has been initiated. At 200 µ M Pb-EDTA, chlorophyll a and b content in leaves was significantly reduced while visible effects on root morphology and shoot length were observed, while no significant morphological effects were found in the leaves, confirming the sensitive character of the measured enzymes as plant stress indicators. Elevation of the Pb-EDTA concentration in the growth medium significantly reduced the content of Ca, Fe, Mn and Zn taken up by plants, probably due to ion leakage as a result of observed toxicity. Addition of up to 200 µ M EDTA increased chelation of divalent cations in nutrient solution resulting in reduced plant uptake of Zn, Cu, Fe and Mn. This did not result in phytotoxicity.  相似文献   

20.
The root endophytic basidiomycete Piriformospora indica has been shown to increase resistance against biotic stress and tolerance to abiotic stress in many plants. Biochemical mechanisms underlying P. indica-mediated salt tolerance were studied in barley (Hordeum vulgare) with special focus on antioxidants. Physiological markers for salt stress, such as metabolic activity, fatty acid composition, lipid peroxidation, ascorbate concentration and activities of catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase and glutathione reductase enzymes were assessed. Root colonization by P. indica increased plant growth and attenuated the NaCl-induced lipid peroxidation, metabolic heat efflux and fatty acid desaturation in leaves of the salt-sensitive barley cultivar Ingrid. The endophyte significantly elevated the amount of ascorbic acid and increased the activities of antioxidant enzymes in barley roots under salt stress conditions. Likewise, a sustained up-regulation of the antioxidative system was demonstrated in NaCl-treated roots of the salt-tolerant barley cultivar California Mariout, irrespective of plant colonization by P. indica. These findings suggest that antioxidants might play a role in both inherited and endophyte-mediated plant tolerance to salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号