首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 933 毫秒
1.
We constructed an expression plasmid (pMAMCRR51) that carried the entire protein-coding sequence of the rabbit cardiac ryanodine receptor cDNA, linked to the dexamethasone-inducible mouse mammary tumor virus promoter and Escherichia coli xanthine-guanine phosphoribosyltransferase (gpt). Chinese hamster ovary (CHO) cells were transfected with pMAMCRR51 and mycophenolic acid-resistant cells showing caffeine-induced intracellular Ca2+ transients were selected. Immunoprecipitation with a monoclonal antibody against the canine cardiac ryanodine receptor revealed that the cell clones thus selected exhibited Ca(2+)-dependent [3H]ryanodine binding activity, which was stimulated by 5 mM ATP or 1 M KCl. The apparent dissociation constant (Kd) for [3H]ryanodine was 6.6 nM in 1 M KCl, which was similar to the Kd obtained with cardiac microsomes. Immunoprecipitation also demonstrated that these cell clones expressed a protein indistinguishable in M(r) from the ryanodine receptor in canine cardiac microsomes. The ryanodine binding activity expressed in CHO cells increased significantly after dexamethasone induction. In saponin-skinned CHO cells transfected with pMAMCRR51, micromolar Ca2+ or millimolar caffeine evoked rapid Ca2+ release from the intracellular Ca2+ stores. In skinned control CHO cells, we did not observe such Ca2+ release activity. These results clearly demonstrate that the cardiac ryanodine receptor is stably expressed in internal membranes of CHO cells and functions as Ca(2+)-induced Ca2+ release channels.  相似文献   

2.
Caffeine alters intracellular calcium signalling patterns in lymphocytes which are important for the specific regulation of activation and effector function in lymphocytes. The effect of caffeine on calcium signalling is probably mediated via a ryanodine receptor type 3 dependent intracellular calcium store which releases calcium after exposure to caffeine. Also, caffeine decreases lymphocyte cytotoxicity against allogenic myocyte. Which cytotoxic mechanisms are actually altered by caffeine is unknown. In mouse splenocyte cultures containing about 87% lymphocytes we show that concanavalin A (ConA, 5 microg/ml) stimulated cells increase the expression of TNF-alpha, IL-2 and IFN-gamma (ELISA) significantly. Caffeine (3.75 mM) inhibits cytokine expression of ConA stimulated cells almost completely. Ryanodine (1 microM) specifically blocks ryanodine receptors and thereby prevents caffeine induced calcium release. In our experiments, however, ryanodine has no effect on ConA stimulated IL-2 and IFN-gamma expression and only suppresses TNF-alpha expression by 20%. Furthermore, ryanodine does not prevent the inhibitory effect of caffeine on TNF-alpha, IL-2 and IFN-gamma expression in stimulated effector cells. We postulate that caffeine suppresses cytokine expression and thereby contributes to decreased cytotoxicity of lymphocytes against allogenic myocytes. The ryanodine receptor dependent intracellular calcium store does not seem to play a significant role in this process. Possibly, the blockade of IP3 receptors by caffeine is more important for cytokine suppression.  相似文献   

3.
We have observed a disparity between the actions of caffeine and ryanodine, two agents known to affect the same site of intracellular calcium (Ca2+) release in muscle. The site of intracellular Ca2+ release, the ryanodine receptor (RyR), is established as the route of Ca2+ movement from the sarcoplasmic reticulum (SR) to the cytosol during excitation-contraction coupling. We measured Ca2+ release fluorimetrically in both saponin-permeabilized and intact L6 cells, in response to known modulators (i.e., caffeine and ryanodine), during differentiation in vitro. The undifferentiated L6 cells showed little response to caffeine. However, a substantial caffeine-induced calcium release (caffCR) was evident by Day 3 of differentiation, and was nearly maximal by Day 7 of differentiation. By contrast, ryanodine failed to stimulate Ca2+ release until Day 4, lagging behind the caffeine response. Ryanodine-stimulated Ca2+ release was also maximal by Day 7. Higher concentrations of ryanodine, known to inhibit Ca2+ release, only began to affect caffCR at Day 4, indicating that cells were insensitive to both ryanodine stimulation and ryanodine inhibition prior to this time. Most of the results could be obtained both in permeabilized and intact cells. Using intact cells, we measured the time course of K+ -dependent (i.e., depolarization-induced) Ca2+ release. This time course matched caffeine and not ryanodine-induced Ca2+ release suggesting the action of caffeine was not due to Ca2+ release unrelated to excitation-contraction coupling. These findings suggest that ryanodine binding sites on the RyR may not be functional at early stages of muscle development, that ryanodine sensitivity is a poor indicator of Ca2+ flux through the RyR, or that other proteins are involved in Ca2+ release under certain circumstances.  相似文献   

4.
Abstract: Extracellular amyloid β-peptide (Aβ) deposition is a pathological feature of Alzheimer's disease and the aging brain. Intracellular Aβ accumulation is observed in the human muscle disease, inclusion body myositis. Aβ has been reported to be toxic to neurons through disruption of normal calcium homeostasis. The pathogenic role of Aβ in inclusion body myositis is not as clear. Elevation of intracellular calcium following application of calcium ionophore increases the generation of Aβ from its precursor protein (βAPP). A receptor-based mechanism for the increase in Aβ production has not been reported to our knowledge. Here, we use caffeine to stimulate ryanodine receptor (RYR)-regulated intracellular calcium release channels and show that internal calcium stores also participate in the genesis of Aβ. In cultured HEK293 cells transfected with βAPP cDNA, caffeine (5–10 m M ) significantly increased the release of Aβ fourfold compared with control. These actions of caffeine were saturable, modulated by ryanodine, and inhibited by the RYR antagonists ruthenium red and procaine. The calcium reuptake inhibitors thapsigargin and cyclopiazonic acid potentiated caffeine-stimulated Aβ release. NH4Cl and monensin, agents that alter acidic gradients in intracellular vesicles, abolished both the caffeine and ionophore effects. Immunocytochemical studies showed some correspondence between the distribution patterns of RYR and cellular βAPP immunoreactivities. The relevance of these findings to Alzheimer's disease and inclusion body myositis is discussed.  相似文献   

5.
The sequence of 4968 (or 4976 with an insertion) amino acids composing the ryanodine receptor from rabbit cardiac sarcoplasmic reticulum has been deduced by cloning and sequencing the cDNA. This protein is homologous in amino acid sequence and shares characteristic structural features with the skeletal muscle ryanodine receptor. Xenopus oocytes injected with mRNA derived from the cardiac ryanodine receptor cDNA exhibit Ca2(+)-dependent Cl- current in response to caffeine, which indicates the formation of functional calcium release channels. RNA blot hybridization analysis with a probe specific for the cardiac ryanodine receptor mRNA shows that the stomach and brain contain a hybridizable RNA species with a size similar to that of the cardiac mRNA. This result, in conjunction with cloning and analysis of partial cDNA sequences, suggests that the brain contains a cardiac type of ryanodine receptor mRNA.  相似文献   

6.
To study the function and regulation of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel, we expressed the RyR2 proteins in a Chinese hamster ovary (CHO) cell line, and assayed its function by single channel current recording and confocal imaging of intracellular Ca(2+) ([Ca(2+)](i)). The 16-kb cDNA encoding the full-length RyR2 was introduced into CHO cells using lipofectAmine and electroporation methods. Incorporation of microsomal membrane vesicles isolated from these transfected cells into lipid bilayer membrane resulted in single Ca(2+) release channel activities similar to those of the native Ca(2+) release channels from rabbit cardiac muscle SR membranes, both in terms of gating kinetics, conductance, and ryanodine modification. The expressed RyR2 channels were found to exhibit more frequent transitions to subconductance states than the native RyR2 channels and RyR1 expressed in CHO cells. Caffeine, an exogenous activator of RyR, induced release of [Ca(2+)](i) from these cells. Confocal imaging of cells expressing RyR2 did not detect spontaneous or caffeine-induced local Ca(2+) release events (i.e., "Ca(2+) sparks") typically seen in cardiac muscle. Our data show that the RyR2 expressed in CHO cells forms functional Ca(2+) release channels. Furthermore, the lack of localized Ca(2+) release events in these cells suggests that Ca(2+) sparks observed in cardiac muscle may involve cooperative gating of a group of Ca(2+) release channels and/or their interaction with muscle-specific proteins.  相似文献   

7.
Calcium signaling mechanisms in the gastric parietal cell.   总被引:1,自引:0,他引:1  
Gastric hydrochloric acid (HCl) secretion is stimulated in vivo by histamine, acetylcholine, and gastrin. In vitro studies have shown that histamine acts mainly via a cAMP-dependent pathway, and acetylcholine acts via a calcium-dependent pathway. Histamine also elevates intracellular calcium ([Ca2+]i) in parietal cells. Both gastrin and acetylcholine release histamine from histamine-containing cells. In humans, rats, and rabbits, there is considerable controversy as to whether or not gastrin receptors are also present on the parietal cell. We utilized digitized video image analysis techniques in this study to demonstrate gastrin-induced changes in intracellular calcium in single parietal cells from rabbit in primary culture. Gastrin also stimulated a small increase in [14C]-aminopyrine (AP) accumulation, an index of acid secretory responsiveness in cultured parietal cells. In contrast to histamine and the cholinergic agonist, carbachol, stimulation of parietal cells with gastrin led to rapid loss of the calcium signaling response, an event that is presumed to be closely related to gastrin receptor activation. Moreover, different calcium signaling patterns were observed for histamine, carbachol, and gastrin, Previous observations coupled with present studies using manganese, caffeine, and ryanodine suggest that agonist-stimulated increases in calcium influx into parietal cells do not occur via voltage-sensitive calcium channels or nonspecific divalent cation channels. It also appears to be unlikely that release of intracellular calcium is mediated by a muscle or neuronal-type ryanodine receptor. We hypothesize that calcium influx may be mediated by either a calcium exchange mechanism or by an unidentified calcium channel subtype that possesses different molecular characteristics as compared to muscle, nerve, and certain secretory cell types such as, for example, the adrenal chromaffin cell. Release of intracellular calcium may be mediated via both InsP3-sensitive and -insensitive mechanisms. The InsP3-insensitive calcium pools, if present, do not appear, however, to possess ryanodine receptors capable of modulating calcium efflux from these storage sites.  相似文献   

8.
It has been known for many years that caffeine reduces or eliminates the G2-phase cell cycle delay normally seen in human HeLa cells or Chinese hamster ovary (CHO) cells after exposure to X or gamma rays. In light of our recent demonstration of a consistent difference between human normal and tumor cells in a G2-phase checkpoint response in the presence of microtubule-active drugs, we examined the effect of caffeine on the G2-phase delays after exposure to gamma rays for cells of three human normal cell lines (GM2149, GM4626, AG1522) and three human tumor cell lines (HeLa, MCF7, OVGI). The G2-phase delays after a dose of 1 Gy were similar for all six cell lines. In agreement with the above-mentioned reports for HeLa and CHO cells, we also observed that the G2-phase delays were eliminated by caffeine in the tumor cell lines. In sharp contrast, caffeine did not eliminate or even reduce the gamma-ray-induced G2-phase delays in any of the human normal cell lines. Since caffeine has several effects in cells, including the inhibition of cAMP and cGMP phosphodiesterases, as well as causing a release of Ca(++) from intracellular stores, we evaluated the effects of other drugs affecting these processes on radiation-induced G2-phase delays in the tumor cell lines. Drugs that inhibit cAMP or cGMP phosphodiesterases did not eliminate the radiation-induced G2-phase delay either separately or in combination. The ability of caffeine to eliminate radiation-induced G2-phase delay was, however, partially reduced by ryanodine and eliminated by thapsigargin, both of which can modulate intracellular calcium, but by different mechanisms. To determine if caffeine was acting through the release of calcium from intracellular stores, calcium was monitored in living cells using a fluorescent calcium indicator, furaII, before and after the addition of caffeine. No calcium release was seen after the addition of caffeine in either OVGI tumor cells or GM2149 normal cells, even though a large calcium release was measured in parallel experiments with ciliary neurons. Thus it is likely that caffeine is eliminating the radiation-induced G2-phase delay through a Ca(++)-independent mechanism, such as the inhibition of a cell cycle-regulating kinase.  相似文献   

9.
Calcium-mediated microneme secretion in Toxoplasma gondii is stimulated by contact with host cells, resulting in the discharge of adhesins that mediate attachment. The intracellular source of calcium and the signaling pathway(s) triggering release have not been characterized, prompting our search for mediators of calcium signaling and microneme secretion in T. gondii. We identified two stimuli of microneme secretion, ryanodine and caffeine, which enhanced release of calcium from parasite intracellular stores. Ethanol, a previously characterized trigger of microneme secretion, stimulated an increase in parasite inositol 1,4,5-triphosphate, implying that this second messenger may mediate intracellular calcium release. Consistent with this observation, xestospongin C, an inositol 1,4,5-triphosphate receptor antagonist, inhibited microneme secretion and blocked parasite attachment and invasion of host cells. Collectively, these results suggest that T. gondii possess an intracellular calcium release channel with properties of the inositol 1,4,5-triphosphate/ryanodine receptor superfamily. Intracellular calcium channels, previously studied almost exclusively in multicellular animals, appear to also be critical to the control of parasite calcium during the initial steps of host cell entry.  相似文献   

10.
Capacitative Ca(2+) entry is essential for refilling intracellular Ca(2+) stores and is thought to be regulated primarily by inositol 1, 4,5-trisphosphate (IP(3))-sensitive stores in nonexcitable cells. In nonexcitable A549 cells, the application of caffeine or ryanodine induces Ca(2+) release in the absence of extracellular Ca(2+) similar to that induced by thapsigargin (Tg), and Ca(2+) entry occurs upon the readdition of extracellular Ca(2+). The channels thus activated are also permeable to Mn(2+). The channels responsible for this effect appear to be activated by the depletion of caffeine/ryanodine-sensitive stores per se, as evidenced by the activation even in the absence of increased intracellular Ca(2+) concentration. Tg pretreatment abrogates the response to caffeine/ryanodine, whereas Tg application subsequent to caffeine/ryanodine treatment induces further Ca(2+) release. The response to caffeine/ryanodine is also abolished by initial ATP application, whereas ATP added subsequent to caffeine/ryanodine induces additional Ca(2+) release. RT-PCR analyses showed the expression of a type 1 ryanodine receptor, two human homologues of transient receptor potential protein (hTrp1 and hTrp6), as well as all three types of the IP(3) receptor. These results suggest that in A549 cells, (i) capacitative Ca(2+) entry can also be regulated by caffeine/ryanodine-sensitive stores, and (ii) the RyR-gated stores interact functionally with those sensitive to IP(3), probably via Ca(2+)-induced Ca(2+) release.  相似文献   

11.
The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation–contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the full length RyR channels in a concentration-dependent manner, but it had no effect on the carboxyl-terminal RyR channels. CHO cells expressing the carboxyl-terminal RyR proteins displayed spontaneous changes of intracellular [Ca2+]. Unlike the native RyR channels in muscle cells, which display localized Ca2+ release events (i.e., “Ca2+ sparks” in cardiac muscle and “local release events” in skeletal muscle), CHO cells expressing the full length RyR proteins did not exhibit detectable spontaneous or caffeine-induced local Ca2+ release events. Our data suggest that the binding site for caffeine is likely to reside within the amino-terminal portion of RyR, and the localized Ca2+ release events observed in muscle cells may involve gating of a group of Ca2+ release channels and/or interaction of RyR with muscle-specific proteins.  相似文献   

12.
Channel activity of the calcium release channel from skeletal muscle, ryanodine receptor type 1, was measured in the presence and absence of protamine sulfate on the cytoplasmic side of the channel. Single-channel activity was measured after incorporating channels into planar lipid bilayers. Optimally and suboptimally calcium-activated calcium release channels were inactivated by the application of protamine to the cytoplasmic side of the channel. Recovery of channel activity was not observed while protamine was present. The addition of protamine bound to agarose beads did not change channel activity, implying that the mechanism of action involves an interaction with the ryanodine receptor rather than changes in the bulk calcium concentration of the medium. The block of channel activity by protamine could be reversed either by removal by perfusion with buffer or by the addition of heparin to the cytoplasmic side of the channel. Microinjection of protamine into differentiated C(2)C(12) mouse muscle cells prevented caffeine-induced intracellular calcium release. The results suggest that protamine acts on the ryanodine receptor in a similar but opposite manner from heparin and that protamine can be used as a potent, reversible inhibitor of ryanodine receptor activity.  相似文献   

13.
Yeung PK  Lam CM  Ma ZY  Wong YH  Wong JT 《Cell calcium》2006,39(3):259-274
Mechanical loads can profoundly alter cell growth and cell proliferation. The dinoflagellates are especially sensitive to mechanical stimulation. Many species will be arrested in cell cycle in response to turbulence or shear stress. We demonstrate here that mechanical shaking and caffeine, the ryanodine-receptor agonist, induced an elevation of cytosolic calcium in the dinoflagellate Crypthecodinium cohnii. Dantrolene, a ryanodine-receptor antagonist, dose-dependently inhibited both shaking-induced and caffeine-induced calcium release. Similar to the effect of mechanical shaking, caffeine alone dose-dependently and reversibly induced cell cycle arrest in dinoflagellates. Prolonged shaking substantially abolished the magnitude of caffeine-induced calcium release and vice-versa, suggesting that both agents released calcium from similar stores through ryanodine receptors. Fluorescence-conjugated ryanodine gave positive labeling, which could be blocked by ryanodine, in the cortice of C. cohnii cells. In addition, caffeine or shaking mobilized intracellular chlortetracycline (CTC)-positive membrane-bound calcium, which could be similarly depleted by t-BuBHQ, a SERCA pump inhibitor. Prior treatment with shaking or caffeine also inhibited the ability of the other agent in mobilizing CTC-positive calcium. CTC-positive microsomal fractions could also be induced to release calcium by caffeine and cADPR, the ryanodinee receptor modulator. t-BuBHQ, but not calcium ionophores, induced cell cycle arrest, and the calcium chelator BAPTA-AM was unable to rescue caffeine-induced cell cycle arrest. These data culminate to suggest that mobilization or depletion of caffeine-sensitive calcium stores, but not calcium elevation per se, is involved in the induction of cell cycle arrest by mechanical stimulation. The present study establishes the role of caffeine-sensitive calcium stores in the regulation of cell cycle progression.  相似文献   

14.
The relative scarcity of inclusion-affected muscle cells or markers of cell death in inclusion body myositis (IBM) is in distinction to the specific and early intracellular deposition of several Alzheimer's Disease (AD)-related proteins. The current study examined the possible correlation between myotube beta-amyloid and/or Tau accumulations and a widespread mishandling of intracellular muscle calcium concentration that could potentially account for the unrelenting weakness in affected patients. Cultured myogenic cells (C(2)C(12)) expressed beta-amyloid-42 (Abeta(42)) and fetal Tau peptides, as human transgenes encoded by herpes simplex virus, either individually or concurrently. Co-expression of Abeta(42) in C(2)C(12) myotubes resulted in hyperphosphorylation of Tau protein that was not observed when Tau was expressed alone. Resting calcium concentration and agonist-induced RyR-mediated Ca(2+) release were examined using calcium-specific microelectrodes and Fluo-4 epifluorescence, respectively. Co-expression of Abeta(42) and Tau cooperatively elevated basal levels of myoplasmic-free calcium, an effect that was accompanied by depolarization of the plasma membrane. Sarcoplasmic reticulum (SR) calcium release, induced by KCl depolarization, was not affected by Abeta(42) or Tau. In contrast, expression of Abeta(42), Tau, or Abeta(42) together with Tau resulted in enhanced sensitivity of ryanodine receptors to activation by caffeine. Notably, expression of beta-amyloid, alone, was sufficient to result in an increased sensitivity to direct activation by caffeine. Current results indicate that amyloid proteins cooperate to raise resting calcium levels and that these effects are associated with a passive SR Ca(2+) leak and Tau hyperphosphorylation in skeletal muscle.  相似文献   

15.
To study developmental changes in intracellular calcium handling in pulmonary artery smooth muscle cells (PASMCs), cells were isolated from distal and proximal pulmonary arteries from rabbits at different developmental stages: juvenile (4-6 wk old), newborn (<48 h), and full-term fetal. Isolated PASMCs were studied using the calcium-sensitive dye fura 2. Cells from each age group responded to caffeine with an increase in calcium; however, ryanodine (50 microM) only increased calcium in fetal distal PASMCs. The ryanodine-induced increase was due to influx of extracellular calcium because it was blocked by removal of extracellular calcium or by diltiazem. The calcium-sensitive potassium (K(Ca)) channel blocker iberiotoxin produced a transient increase in calcium in the fetal distal PASMCs, which could be inhibited by prior application of ryanodine. Conversely, the ryanodine response was inhibited if iberiotoxin was given first. With the use of electrophysiology and confocal microscopy, fetal PASMCs were shown to exhibit spontaneous transient outward currents and calcium sparks, respectively. These observations suggest that ryanodine-sensitive release of calcium from the sarcoplasmic reticulum and K(Ca) channels act together to control intracellular calcium only in fetal distal PASMCs.  相似文献   

16.
Flubendiamide represents a novel chemical family of substituted phthalic acid diamides with potent insecticidal activity. So far, the molecular target and the mechanism of action were not known. Here we present for the first time evidence that phthalic acid diamides activate ryanodine-sensitive intracellular calcium release channels (ryanodine receptors, RyR) in insects. With Ca(2+) measurements, we showed that flubendiamide and related compounds induced ryanodine-sensitive cytosolic calcium transients that were independent of the extracellular calcium concentration in isolated neurons from the pest insect Heliothis virescens as well as in transfected CHO cells expressing the ryanodine receptor from Drosophila melanogaster. Binding studies on microsomal membranes from Heliothis flight muscles revealed that flubendiamide and related compounds interacted with a site distinct from the ryanodine binding site and disrupted the calcium regulation of ryanodine binding by an allosteric mechanism. This novel insecticide mode of action seems to be restricted to specific RyR subtypes because the phthalic acid diamides reported here had almost no effect on mammalian type 1 ryanodine receptors.  相似文献   

17.
In this study, we report that sphingosine is a potent inhibitor of sarcoplasmic reticulum (SR) calcium release. Evidence is presented demonstrating a direct effect of sphingosine on the SR ryanodine receptor. Calcium release from "skinned" rabbit skeletal muscle fibers and isolated junctional SR derived from the terminal cisternae (TC) was measured in response to caffeine, doxorubicin, 5'-adenylyl-beta,gamma-imidodiphosphate or calcium. Sphingosine inhibited caffeine-induced release in a dose-dependent manner with an IC50 of 0.1 microM for the single muscle fibers and 0.5 microM for the isolated TC vesicles. Near complete blockage of TC calcium release rate was observed with 3 microM sphingosine. Neither sphingomyelin nor sphingosylphosphorylcholine had any effect at the 3 microM level, suggesting that the sphingosine effect was specific. Doxorubicin-induced calcium release and spontaneous calcium release were also blocked by sphingosine. Sphingosine was also capable of stimulating calcium transport in the isolated TC vesicles without an effect on Ca-ATPase activity. Ruthenium red was not capable of substantial additional stimulation of calcium transport nor inhibition of calcium release beyond the action of sphingosine. Sphingosine's blockage of calcium release was not reversed by the protein kinase inhibitor, 1-(5-isoquinolinesulfonyl)-2- methylpiperazine dihydrochloride, suggesting that the action of sphingosine on calcium release was not dependent on ryanodine receptor phosphorylation. Sphingosine significantly increased (8-fold) the Kd for specific [3H]ryanodine binding to TC membranes and decreased the Bmax with a dose dependence similar to the inhibition of calcium release, but sphingosine did not affect the pCa tension relationship of skinned skeletal muscle fibers. These data are consistent with a direct effect of submicromolar sphingosine on the ryanodine receptor. Substantially higher concentrations of sphingosine (30-50 microM) or sphingosylphosphorylcholine (10-20 microM) were capable of inducing calcium release by themselves. Preliminary data indicate that the transverse tubule and not the SR contain substantial sphingomyelinase activity consistent with a transverse tubule source of sphingosine production. Considering that sphingosine is found in micromolar concentrations in some cells, our data indicate that sphingosine generated by the transverse tubule membranes may be a physiologically relevant mechanism for modulating SR calcium release.  相似文献   

18.
Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia   总被引:17,自引:0,他引:17  
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle.  相似文献   

19.
Liu PS  Watanabe S  Kirino Y 《Zoological science》2007,24(12):1247-1250
Calcium release from intracellular stores has various actions in neurons, but its effects on network oscillation have not been well understood. The olfactory center (procerebrum, PC) of the terrestrial slug Limax valentianus shows a regular oscillation in the local field potential (LFP). Here we report that caffeine, which is an agonist for ryanodine receptors and triggers calcium release from intra-cellular stores, has strong modulatory effects on the PC. In isolated PC neurons, caffeine enhanced the cytoplasmic calcium concentration, and this was blocked by ryanodine. Caffeine elevated the frequency and amplitude of the LFP oscillation, which was also blocked by ryanodine. The time lag between the frequency and amplitude effects suggests distinct mechanisms for the modulation of these two parameters. These results suggest that calcium release from intracellular stores through ryanodine receptors activates network activity in the PC.  相似文献   

20.
We have investigated the biochemical properties of the rabbit ryanodine receptor type 1 (RyR1) from skeletal muscle functionally expressed in insect sf 21 cells infected with recombinant baculovirus. Equilibrium [3H]ryanodine binding assays applied to total membrane fractions from sf 21 cells expressing recombinant RyR1 showed a non-hyperbolic saturation curve (Hill coefficient = 2.1). The [3H]ryanodine binding was enhanced by 1 mM AMP-PCP and 10 mM caffeine, whereas 10 mM Mg(2+) and 5 microM ruthenium red reduced the specific binding. The dependence of [3H]ryanodine binding on ionic strength showed positive cooperativity (Hill coefficient = 2.2) with a plateau at 1 M KCl. The recombinant RyR1 showed a bell-shaped [3H]ryanodine binding curve when free [Ca(2+)] was increased, with an optimal concentration around 100 microM.Confocal microscopy studies using the Ca(2+) ATPase selective inhibitor, thapsigargin coupled to fluorescein and ryanodine coupled to Texas red demonstrated that the recombinant RyR1 and the Ca(2+) ATPase co-localize to the same intracellular membrane. No significant RyR1 fluorescence was observed at the plasma membrane.Fluo-4-loaded sf 21 cells expressing recombinant RyR1 responded to activating-low ryanodine concentrations (100 nM) or caffeine (10 mM) with a sharp rise in intracellular Ca2 followed by a sustained phase, in contrast, sf 21 cells expressing the human bradykinin type 2 receptor did not respond to ryanodine or caffeine.These results demonstrate the expression of recombinant RyR1 in sf 21 cells with functional properties similar to what has been previously reported for native RyR1 in mammalian tissues, however, some differences were observed in [3H]ryanodine binding assays compared to native rabbit RyR1. Hence, the baculovirus expression system provides a generous source of protein to accomplish structure-function studies and an excellent model to assess functional properties of wild type and mutant RyR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号