首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eight coals used as carriers in legume inoculants promoted the survival of Rhizobium phaseoli on pinto bean seeds. Although peat was more protective, most coal-based inoculants provided >104 viable rhizobia per seed after 4 weeks.  相似文献   

2.
Recognition of Leguminous Hosts by a Promiscuous Rhizobium Strain   总被引:4,自引:2,他引:2       下载免费PDF全文
The lima bean (Phaseolus lunatus L.) and the pole bean (Phaseolus vulgaris L.) are nodulated by rhizobia of two different cross-inoculation groups. Rhizobium sp. 127E15, a cowpea-type Rhizobium, can induce effective nodules on the lima bean and partially effective nodules on the pole bean. Rhizobium phaseoli 127K14 can induce effective nodules on the pole bean but does not reciprocally nodulate the lima bean. Root hairs of the lima bean when inoculated with Rhizobium sp. 127E15 showed tip curling and swelling and infection thread formation as observed by light microscopy and scanning electron microscopy. When lima bean root hairs were inoculated with R. phaseoli 127K14, no host-specific responses were observed. Pole bean root hairs that had been inoculated with R. phaseoli 127K14 or Rhizobium sp. 127E15 also showed tip curling and swelling and infection thread formation. Colonization of lima bean root hairs by Rhizobium sp. 127E15 and pole bean root hairs by R. phaseoli 127K14 or Rhizobium sp. 127E15 appeared to involve the elaboration of microfibrils. This study showed that when Rhizobium sp. 127E15 nodulates a host of a different cross-inoculation group, it elicits the same specific host responses as it does from a host of the same cross-inoculation group.  相似文献   

3.
Experiments were undertaken to test whether peat-based legume seed inoculants, which are prepared with liquid cultures that have been deliberately diluted, can attain and sustain acceptable numbers of viable rhizobia. Liquid cultures of Rhizobium japonicum and Rhizobium phaseoli were diluted to give 108, 107, or 106 cells per ml, using either deionized water, quarter-strength yeast-mannitol broth, yeast-sucrose broth, or yeast-water. The variously diluted cultures were incorporated into gamma-irradiated peat, and the numbers of viable rhizobia were determined at intervals. In all of the inoculant formulations, the numbers of rhizobia reached similarly high ceiling values by 1 week after incorporation, irrespective not only of the number of cells added initially but also of the nature of the diluent. During week 1 of growth, similar multiplication patterns of the diluted liquid cultures were observed in two different peats. Numbers of rhizobia surviving in the various inoculant formulations were not markedly different after 6 months of storage at 28°C. The method of inoculant preparation did not affect the nitrogen fixation effectiveness of the Rhizobium strains.  相似文献   

4.
Mineral Soils as Carriers for Rhizobium Inoculants   总被引:5,自引:3,他引:2       下载免费PDF全文
Mineral soil-based inoculants of Rhizobium meliloti and Rhizobium phaseoli survived better at 4°C than at higher temperatures, but ca. 15% of the cells were viable at 37°C after 27 days. Soil-based inoculants of R. meliloti, R. phaseoli, Rhizobium japonicum, and a cowpea Rhizobium sp. applied to seeds of their host legumes also survived better at low temperatures, but the percent survival of such inoculants was higher than peat-based inoculants at 35°C. Survival of R. phaseoli, R. japonicum, and cowpea rhizobia was not markedly improved when the cells were suspended in sugar solutions before drying them in soil. Nodulation was abundant on Phaseolus vulgaris derived from seeds that had been coated with a soil-based inoculant and stored for 165 days at 25°C. The increase in yield and nitrogen content of Phaseolus angularis grown in the greenhouse was the same with soil-and peat-based inoculants. We suggest that certain mineral soils can be useful and readily available carriers for legume inoculants containing desiccation-resistant Rhizobium strains.  相似文献   

5.
Summary APenicillium sp. previously shown to grow on lignite coals degraded an air-oxidized bituminous coal (Illinois #6) to a material that was more than 80% soluble in 0.5 N NaOH. Scanning electron microscopy of the oxidized Illinois #6 revealed colonization of the surface by thePenicillium sp., production of conidia, and erosion of the coal surface. The average molecular weight (MW) of Illinois #6 degraded by the fungus and base-solubilized was approximately 1000 Da. The average MW for base-solubilized Illinois #6 that was not exposed to the fungus was 6000 Da, suggesting solubilizing mechanisms other than base catalysis. A spectrophotometric assay to quantify the microbial conversion of biosolubilized coal was developed. Standard curves were constructed based on the absorbance at 450 nm of different quantities of microbe-solubilized coal. An acid precipitation step was necessary to remove medium and/or microbial metabolites from solubilized coal to prevent overestimation of the extent of coal biosolubilization. Furthermore, the absorption spectra for different coal products varied, necessitating construction of standard curves for individual coals.  相似文献   

6.
Fifty-seven strains of various Rhizobium species were analyzed by two-dimensional gel electrophoresis. Since the protein pattern on such gels is a reflection of the genetic background of the tested strains, similarities in pattern allowed us to estimate the relatedness between these strains. All group II rhizobia (slow growing) were closely related and were very distinct from group I rhizobia (fast growing). Rhizobium meliloti strains formed a distinct group. The collection of R. leguminosarum and R. trifolii strains together formed another distinct group. Although there were some similarities within the R. phaseoli, sesbania rhizobia, and lotus rhizobia, the members within these seemed much more diverse than the members of the above groups. The technique also is useful to determine whether two unknown strains are identical.  相似文献   

7.
Biodepolymerization of some of the lower rank Indian coals by Pleurotus djamor, Pleurotus citrinopileatus and Aspergillus species were studied in a batch system. The main disadvantage in burning low rank coals is the low calorific values. To get the maximum benefit from the low rank coals, the non fuel uses of coals needs to be explored. The liquefaction of coals is the preliminary processes for such approaches. The present study is undertaken specifically to investigate the optimization of bio depolymerization of neyveli lignite by P. djmor. The pH of the media reached a constant value of about 7.8 by microbial action. The effect of different carbon and nitrogen sources and influence of chelators and metal ions on depolymerization of lignite were also studied. Lignite was solubilized by P. djamor only to a limited extent without the addition of carbon and nitrogen sources. Sucrose was the best suitable carbon source for coal depolymerization by P. djamor and sodium nitrated followed by urea was the best nitrogen source. The Chelators like salicylic acid, TEA and metal ions Mg2+, Fe3+, Ca2+, Cu2+, Mn2+ has enhanced the lignite solubilization process. The finding of the study showed that, compared to sub-bituminous and bituminous coal, the lignite has higher rate of solubilization activity.  相似文献   

8.
The semienclosed tube culture technique of Gibson was modified to permit growth of common bean (Phaseolus vulgaris L.) roots in humid air, enabling enumeration of the homologous (nodule forming) symbiont, Rhizobium phaseoli, by the most-probable-number plant infection method. A bean genotype with improved nodulation characteristics was used as the plant host. This method of enumeration was accurate when tubes were scored 3 weeks after inoculation with several R. phaseoli strains diluted from aqueous suspensions, peat-based inoculants, or soil. A comparison of population sizes obtained by most-probable-number tube cultures and plate counts indicated that 1 to 3 viable cells of R. phaseoli were a sufficient inoculant to induce nodule formation.  相似文献   

9.
Summary The capability of seven basidiomycetes (Trametes versicolor, Poria placenta, Pleurotus florida, P. ostreatus, P. sajor-caju, P. eryngii, Stropharia sp.), one ascomycete (Chaetomium globosum) and five hyphomycetes and moulds (Humicola grisea, Trichoderma viride, Aspergillus terreus, Paecilomyces varioti, Papulaspora immersa) to solubilize medium and high volatile bituminous coals (types A and B) as well as four types of lignite B from Germany was tested in surface cultures. The intensity of bioliquefaction was determined by estimating the rate of droplet formation and by measuring the loss of weight of the coal granules gravimetrically. The bituminous coals with a relative high degree of coalification were only moderately converted by Trametes versicolor, Pleurotus florida, P. ostreatus and P. sajor-caju. The three species of Pleurotus caused the greatest rate of biosolubilization of lignite, yielding a loss of weight of the coal granules of more than 5.8% with a maximum of 7.6% with P. florida. The non-basidiomycetes proved to be less active with a liquefaction rate of up to 3.5% with Trichoderma viride. In general, the geologically younger lignite coals were more effectively solubilized than the older hard coals. The volatile matter and the oxygen content proved to be the principal factors influencing the intensity of bioconversion.  相似文献   

10.
Fully grown broth cultures of various fast- and slow-growing rhizobia were deliberately diluted with various diluents before their aseptic incorporation into autoclaved peat in polypropylene bags (aseptic method) or mixed with the peat autoclaved in trays (tray method). In a factorial experiment with the aseptic method, autoclaved and irradiated peat samples from five countries were used to prepare inoculants with water-diluted cultures of three Rhizobium spp. When distilled water was used as the diluent, the multiplication and survival of rhizobia in the peat was similar to that with diluents having a high nutrient status when the aseptic method was used. In the factorial experiment, the mean viable counts per gram of inoculant were log 9.23 (strain TAL 102) > log 8.92 (strain TAL 82) > log 7.89 (strain TAL 182) after 24 weeks of storage at 28°C. The peat from Argentina was the most superior for the three Rhizobium spp., with a mean viable count of log 9.0 per g at the end of the storage period. The quality of inoculants produced with diluted cultures was significantly (P = 0.05) better with irradiated than with autoclaved peat, as shown from the factorial experiment. With the tray method, rhizobia in cultures diluted 1,000-fold or less multiplied and stored satisfactorily in the presence of postinoculation contaminants, as determined by plate counts, membrane filter immunofluorescence, and plant infection procedures. All strains of rhizobia used in both the methods showed various degrees of population decline in the inoculants when stored at 28°C. Fast- and slow-growing rhizobia in matured inoculants produced by the two methods showed significant (P < 0.01) decline in viability when stored at 4°C, whereas the viability of some strains increased significantly (P < 0.01) at the same temperature. The plant effectiveness of inoculants produced with diluted cultures and autoclaved peat did not differ significantly from that of inoculants produced with undiluted cultures and gamma-irradiated peat.  相似文献   

11.
Sixty-one rhizobial strains from Lathyrus japonicus nodules growing on the seashore in Japan were characterized and compared to two strains from Canada. The PCR-based method was used to identify test strains with novel taxonomic markers that were designed to discriminate between all known Lathyrus rhizobia. Three genomic groups (I, II, and III) were finally identified using RAPD, RFLP, and phylogenetic analyses. Strains in genomic group I (related to Rhizobium leguminosarum) were divided into two subgroups (Ia and Ib) and subgroup Ia was related to biovar viciae. Strains in subgroup Ib, which were all isolated from Japanese sea pea, belonged to a distinct group from other rhizobial groups in the recA phylogeny and PCR-based grouping, and were more tolerant to salt than the isolate from an inland legume. Test strains in genomic groups II and III belonged to a single clade with the reference strains of R. pisi, R. etli, and R. phaseoli in the 16S rRNA phylogeny. The PCR-based method and phylogenetic analysis of recA revealed that genomic group II was related to R. pisi. The analyses also showed that genomic group III harbored a mixed chromosomal sequence of different genomic groups, suggesting a recent horizontal gene transfer between diverse rhizobia. Although two Canadian strains belonged to subgroup Ia, molecular and physiological analyses showed the divergence between Canadian and Japanese strains. Phylogenetic analysis of nod genes divided the rhizobial strains into several groups that reflected the host range of rhizobia. Symbiosis between dispersing legumes and rhizobia at seashore is discussed.  相似文献   

12.
The presence of the plasmid RP1 in the cells of Rhizobium leguminosarum strains Rld1, 300, and 248, R. phaseoli 1233, R. trifolii strains T1 and 6661, and R. meliloti 4013 was found to appreciably increase bacterial resistance toward kanamycin and tetracycline but not toward ampicillin. The presence of 16 other R-plasmids in R. leguminosarum was also found to either not increase or only marginally increase bacterial resistance toward ampicillin. It appears now that underexpression of the plasmid-specified ampicillin function is common to most fast- and slow-growing rhizobia.  相似文献   

13.
Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. tropici, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops. Knowledge on bean symbiosis is still incipient but could help to improve bean biological nitrogen fixation.  相似文献   

14.

Background and aims

Inoculation of legumes at sowing with rhizobia has arguably been one of the most cost-effective practices in modern agriculture. Critical aspects of inoculant quality are rhizobial counts at manufacture/registration and shelf (product) life.

Methods

In order to re-evaluate the Australian standards for peat-based inoculants, we assessed numbers of rhizobia (rhizobial counts) and presence of contaminants in 1,234 individual packets of peat–based inoculants from 13 different inoculant groups that were either freshly manufactured or had been stored at 4 °C for up to 38 months to determine (a) rates of decline of rhizobial populations, and (b) effects of presence of contaminants on rhizobial populations. We also assessed effects of inoculant age on survival of the rhizobia during and immediately after inoculation of polyethylene beads.

Results

Rhizobial populations in the peat inoculants at manufacture and decline rates varied substantially amongst the 13 inoculant groups. The most stable were Sinorhizobium, Bradyrhizobium and Mesorhizobium with Rhizobium, particularly R. leguminosarum bv. trifolii the least stable. The presence of contaminants at the 10?6 level of dilution, i.e. >log 6.7 g?1 peat, reduced rhizobial numbers in the stored inoculants by an average of 37 %. Survival on beads following inoculation improved 2–3 fold with increasing age of inoculant.

Conclusions

We concluded that the Australian standards for peat-based rhizobial inoculants should be reassessed to account for the large differences amongst the groups in counts at manufacture and survival rates during storage. Key recommendations are to increase expiry counts from log 8.0 to log 8.7 rhizobia g?1 peat and to have four levels of inoculant shelf life ranging from 12 months to 3 years.  相似文献   

15.
Rhizobial bacteria are commonly found in soil but also establish symbiotic relationships with legumes, inhabiting the root nodules, where they fix nitrogen. Endophytic rhizobia have also been reported in the roots and stems of legumes and other plants. We isolated several rhizobial strains from the nodules of noninoculated bean plants and looked for their provenance in the interiors of the seeds. Nine isolates were obtained, covering most known bean symbiont species, which belong to the Rhizobium and Sinorhizobium groups. The strains showed several large plasmids, except for a Sinorhizobium americanum isolate. Two strains, one Rhizobium phaseoli and one S. americanum strain, were thoroughly characterized. Optimal symbiotic performance was observed for both of these strains. The S. americanum strain showed biotin prototrophy when subcultured, as well as high pyruvate dehydrogenase (PDH) activity, both of which are key factors in maintaining optimal growth. The R. phaseoli strain was a biotin auxotroph, did not grow when subcultured, accumulated a large amount of poly-β-hydroxybutyrate, and exhibited low PDH activity. The physiology and genomes of these strains showed features that may have resulted from their lifestyle inside the seeds: stress sensitivity, a ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) complex, a homocitrate synthase (usually present only in free-living diazotrophs), a hydrogenase uptake cluster, and the presence of prophages. We propose that colonization by rhizobia and their presence in Phaseolus seeds may be part of a persistence mechanism that helps to retain and disperse rhizobial strains.  相似文献   

16.
The successful nodulation of legumes by a Rhizobium strain is determined by the competitive ability of that strain against the mixture of other native and inoculant rhizobia. Competition among six Leucaena rhizobial strains in single and multistrain inoculants were studied. Field inoculation trials were conducted in an oxisol and a mollisol soil, both of which contained indigenous Leucaena-nodulating rhizobia. Strain-specific fluorescent antibodies were used for the identification of the strains in Leucaena nodules. Mixtures of three recommended inoculum strains for Leucaena spp. (TAL82, TAL582, and TAL1145) were used in peat-based inocula either alone or with one of the three other strains isolated from the sites, B213, B214, and B215. Each of these latter three strains was also used as single-strain inocula to study their competition with the native rhizobia in the two soil systems. In the oxisol soil, strains B213 and B215, when used as single-strain inocula, outcompeted the native rhizobia and formed 92 and 62% of the nodules, respectively. Strain B214 was the least competitive in oxisol soil, where it formed 30% of the nodules, and the best in mollisol soil, where it formed 70% of the nodules. The most successful competitor for nodulation in multistrain inocula was strain TAL1145, which outcompeted native and other inoculum Leucaena rhizobia in both soils. None of the strains in single or multistrain inoculants was capable of completely overcoming the resident rhizobia, which formed 4 to 70% of the total nodules in oxisol soil and 12 to 72% in mollisol soil. No strong relationship was detected between the size of the rhizosphere population of a strain and its successful occupation of nodules.  相似文献   

17.
Kavimandan  S. K. 《Plant and Soil》1986,96(1):133-135
Summary Inoculation with root-nodule bacteria had favourable influence on N-uptake and yield of wheat. Since waterlogged root region of rice permits higher nitrogenase activity a pot culture experiment was conducted using same nine strains of rhizobia,Azotobacter chroococcum and bluegreen algae as inoculants.R. leguminosarum in combination with 50 kg N ha−1;R. japonicum and a strain of rhizobium isolated from moong bean increased the yield of paddy cv. Pusa-33. On the other hand an adverse effect of bacterial inoculation and of applied N was observed in case of Azotobacter, and rhizobia isolated from green gram, cicer, soyabean and clover. The importance of plant type, growth conditions and application of inorganic N in determining the success of plant-rhizobial associations is emphasised.  相似文献   

18.
A. A. Holland 《Plant and Soil》1970,32(1-3):293-302
Summary Native rhizobia associated withTrifolium albopurpureum, T. bifidum, T. ciliolatum, T. depauperatum, T. dichotomum, T. flavulum, T. melanthum, T. microcephalum, T. microdon, T. oliganthum andT. tridentatum were found in Northern California range soils. These rhizobia nodulate subterranean clover but are ineffective in nitrogen fixation with this host. Native rhizobia compet with those in commercial inoculants to form nodules. To ensure effective nodulation by nitrogen fixing rhizobia, commercial inoculants should be applied at rates greater than those recommended by the manufacturerse Effective nodulation was achieved by an application of 7.5×104 rhizobia per seed, four times the recommended rate.  相似文献   

19.
Microbial biodegradation of coal into low-molecular-weight compounds such as methane has been extensively researched in the last two decades because of the underlying environmental and industrial applications of this technique as compared to the chemical and physical methods of coal conversions. However, the irregular structure of coal and the need for complex microbial consortia under specific culture conditions do not make this biotransformation an ideal process for the development of anaerobic bioreactors. The most abundant species in a methanogenic culture are acetoclastic and hydrogenotrophic methanogens which utilize acetate and H2+CO2, respectively. Medium- to low-rank coals such as high-volatile bituminous, sub-bituminous and lignite are more promising in this bioconversion as compared to semi- and meta-anthracite coals. While covering the details of the ideal culture conditions, this review enlightens the need of research setups to explore the complex microbial consortia and culture conditions for maximum methane production through coal methanogenesis.  相似文献   

20.
Phaseolus vulgaris (common bean) was introduced to Kenya several centuries ago but the rhizobia that nodulate it in the country remain poorly characterised. To address this gap in knowledge, 178 isolates recovered from the root nodules of P. vulgaris cultivated in Kenya were genotyped stepwise by the analysis of genomic DNA fingerprints, PCR-RFLP and 16S rRNA, atpD, recA and nodC gene sequences. Results indicated that P. vulgaris in Kenya is nodulated by at least six Rhizobium genospecies, with most of the isolates belonging to Rhizobium phaseoli and a possibly novel Rhizobium species. Infrequently, isolates belonged to Rhizobium paranaense, Rhizobium leucaenae, Rhizobium sophoriradicis and Rhizobium aegyptiacum. Despite considerable core-gene heterogeneity among the isolates, only four nodC gene alleles were observed indicating conservation within this gene. Testing of the capacity of the isolates to fix nitrogen (N2) in symbiosis with P. vulgaris revealed wide variations in effectiveness, with ten isolates comparable to Rhizobium tropici CIAT 899, a commercial inoculant strain for P. vulgaris. In addition to unveiling effective native rhizobial strains with potential as inoculants in Kenya, this study demonstrated that Kenyan soils harbour diverse P. vulgaris-nodulating rhizobia, some of which formed phylogenetic clusters distinct from known lineages. The native rhizobia differed by site, suggesting that field inoculation of P. vulgaris may need to be locally optimised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号