首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The 421-residue protein TolA is required for the translocation of group A colicins (colicins E1, E2, E3, A, K, and N) across the cell envelope of Escherichia coli. Mutations in TolA can render cells tolerant to these colicins and cause hypersensitivity to detergents and certain antibiotics, as well as a tendency to leak periplasmic proteins. TolA contains a long alpha-helical domain which connects a membrane anchor to the C-terminal domain, which is required for colicin sensitivity. The functional role of the alpha-helical domain was tested by deletion of residues 56 to 169 (TolA delta1), 166 to 287 (TolA delta2), or 54 to 287 (TolA delta3) of the alpha-helical domain of TolA, which removed the N-terminal half, the C-terminal half, or nearly the entire alpha-helical domain of TolA, respectively. TolA and TolA deletion mutants were expressed from a plasmid in an E. coli strain producing no chromosomally encoded TolA. Cellular sensitivity to the detergent deoxycholate was increased for each deletion mutant, implying that more than half of the TolA alpha-helical domain is necessary for cell envelope stability. Removal of either the N- or C-terminal half of the alpha-helical domain resulted in a slight (ca. 5-fold) decrease in cytotoxicity of the TolA-dependent colicins A, E1, E3, and N compared to cells producing wild-type TolA when these mutants were expressed alone or with TolQ, -R, and -B. In cells containing TolA delta3, the cytotoxicity of colicins A and E3 was decreased by a factor of >3,000, and K+ efflux induced by colicins A and N was not detectable. In contrast, for colicin E1 action on TolA delta3 cells, there was little decrease in the cytotoxic activity (<5-fold) or the rate of K+ efflux, which was similar to that from wild-type cells. It was concluded that the mechanism(s) by which cellular uptake of colicin E1 is mediated by the TolA protein differs from that for colicins A, E3, and N. Possible explanations for the distinct interaction and unique translocation mechanism of colicin E1 are discussed.  相似文献   

2.
3.
The electrochemical gradient of hydrogen ions, or proton motive force (PMF), was measured in growing Escherichia coli and Klebsiella pneumoniae in batch culture. The electrical component of the PMF (delta psi) and the chemical component (delta pH) were calculated from the cellular accumulation of radiolabeled tetraphenylphosphonium, thiocyanate, and benzoate ions. In both species, the PMF was constant during exponential phase and decreased as the cells entered stationary phase. Altering the growth rate with different energy substrates had no effect on the PMF. The delta pH (alkaline inside) varied with the pH of the culture medium, resulting in a constant internal pH. During aerobic growth in media at pH 6 to 7, the delta psi was constant at 160 mV (negative inside). The PMF, therefore, was 255 mV in cells growing at pH 6.3, and decreased progressively to 210 mV in pH 7.1 cultures. K. pneumoniae cells and two E. coli strains (K-12 and ML), including a mutant deficient in the H+-translocating ATPase and a pleiotropically energy-uncoupled mutant with a normal ATPase, had the same PMF during aerobic exponential phase. During anaerobic growth, however, both species had delta psi values equal to 0. Therefore, the PMF in anaerobic cells consisted only of the delta pH component, which was 75 mV or less in cells growing at pH 6.2 or greater. These data thus met the expectation that cells deriving metabolic energy from respiration have a PMF above a threshold value of about 200 mV when the ATPase functions in the direction of H+ influx and ATP synthesis; in fermenting cells, a PMF below a threshold value was expected since the enzyme functions in the direction of H+ extrusion and ATP hydrolysis. K. pneumoniae cells growing anaerobically had no delta psi whether the N source added was N2, NH+4 or one of several amino acids; the delta pH was unaffected. Therefore, any energy cost incurred by the process of nitrogen fixation could not be detected as an alteration of the proton gradient.  相似文献   

4.
Some lipopolysaccharide-defective mutants of Escherichia coli showed, without ethylenediaminetetraacetic acid treatment, a quick and high uptake of lipophilic cations such as triphenylmethylphosphonium and tetraphenylphosphonium. The rate and amount of uptake were comparable to those of an ethylenediaminetetraacetic acid-treated wild type. Transmembrane electrical potential, which was calculated from the distribution of these lipophilic cations between the inside and outside of the mutant cells, was about -150 mV at pH 7.5 and showed a strong dependency on the external pH. One of the E. coli mutants, the acrA mutant, was found to be also permeable to dicyclohexylcarbodiimide, an H+-adenosine triphosphatase inhibitor, and 1-anilino-8-naphthalene sulfonate, a fluorescent dye. The acrA mutant was vigorously motile and highly sensitive to many bacteriophages and colicins. Thus, the acrA mutant is quite useful for the quantitative measurement of transmembrane electrical potential by lipophilic cations in intact and metabolizing cells especially in relation to motility and actions of colicins and bacteriophages.  相似文献   

5.
E R Kashket 《Biochemistry》1982,21(22):5534-5538
The H+/ATP stoichiometry of the proton-translocating ATPase was investigated in growing and nongrowing, respiring cells of Escherichia coli. The protonmotive force, delta p, was determined by measuring the transmembrane chemical gradient of protons, delta pH, from the cellular accumulation of benzoate anions, and the electrical gradient, delta psi, from the accumulation of the lipophilic cation tetraphenylphosphonium (TPP+). The accumulation of lactose was also used to calculate the delta p in this lactose operon constitutive beta-galactosidase negative mutant. The phosphorylation potential, delta GP', was determined by measuring the cellular concentration of ATP, ADP, and inorganic phosphate. According to chemiosmotic principles, at steady state the phosphorylation potential is in thermodynamic equilibrium with the protonmotive force, and thus the ratio delta p/delta GP' can be used to determine the H+/ATP ratio. Respiring E. coli cells, in mid-exponential phase of growth or incubated in buffer, at external pHs from 6.25 to 8.25 had a constant delta GP' of about 500 mV. The H+/ATP ratio was found to be 3 when the delta p value derived from lactose accumulation levels was used. However, when the delta p values derived from delta pH and delta psi were used in the calculations, the H+/ATP ratio varied from about 2.5 at external pH 6.25 to about 4 at pH 8.25. Arguments are presented for the hypothesis that the delta psi values obtained from the TPP+ measurements are likely to be inaccurate and that a value of 3 H+/ATP, independent of the external pH, is likely to be the valid stoichiometry.  相似文献   

6.
Abstract The current model of TonB-dependent colicin transport through the outer membrane of Escherichia coli proposes initial binding to receptor proteins, vectorial release from the receptors and uptake into the periplasm from where the colicins, according to their action, insert into the cytoplasmic membrane or enter the cytoplasm. The uptake is energy-dependent and the TonB protein interacts with the receptors as well as with the colicins. In this paper we have studied the uptake of colicins B and Ia, both pore-forming colicins, into various tonB point mutants. Colicin Ia resistance of the tonB mutant (G186D, R204H) was consistent with a defective Cir receptor-TonB interaction while colicin Ia resistance of E. coli expressing TonB of Serratia marcescens , or TonB of E. coli carrying a C-terminal fragment of the S. marcescens TonB, seemed to be caused by an impaired colicin Ia-TonB interaction. In contrast, E. coli tonB (G174R, V178I) was sensitive to colicin Ia and resistant to colicin B unless TonB, ExbB and ExbD were overproduced which resulted in colicin B sensitivity. The differential effects of tonB mutations indicate differences in the interaction of TonB with receptors and colicins.  相似文献   

7.
8.
Genetics and physiology of colicin-tolerant mutants of Escherichia coli   总被引:87,自引:52,他引:35       下载免费PDF全文
A series of colicin-tolerant (tol) mutants of Escherichia coli K-12, which adsorbed colicins but were not killed by them, were isolated and studied genetically and physiologically. Three major classes of mutants were found: tol II, tolerant to colicins A, E1, E2, E3, and K; tol III, tolerant to A, E2, E3, and K; and tol VIII, tolerant to E1 only. The sites of tol II and tol III mutations mapped near the gal region (gene order: tol-gal-bio) and were cotransduced with gal by P1. In heterozygous diploids, tol(+) was dominant over tol; tol II and tol III gave full complementation. All the tol mutations that mapped near gal rendered the bacteria more fragile during growth and hypersensitive to deoxycholate and to ethylenediaminetetraacetic acid. The tol VIII mutation mapped between str and his. These mutants were extremely sensitive to deoxycholate and were also hypersensitive to methylene blue, acridines, and various other compounds. The sensitivity is attributed to increased uptake due to selective alteration of the permeability barrier. The colicin-tolerant mutations are interpreted as affecting some components of the cytoplasmic membrane which mediate between the adsorbed colicin molecules and the target sites of their biochemical effects in the bacterial cell.  相似文献   

9.
Mutants that adsorb certain colicins without being killed, i.e., tolerant mutants (tol), were isolated from Escherichia coli K-12 strains. Selection was done either with colicin K or E2. Several groups of mutants showing different phenotypes were found, and some of them showed tolerance to both K and E colicins, which have different receptors. Many of these mutants mapped near gal. Typical mutants from group II, III, and IV were studied in more detail. The mutant loci were contransducible with gal by phage P1. The linkage order was deduced to be tol-gal-λ. In partially diploid strains, these mutant loci are recessive to wild-type alleles. Temperature-dependent conditionally tolerant mutants were also isolated. Two groups were found: the first was tolerant to E2 and E3 at 40 C, but sensitive at 30 C; the second was tolerant to E2 at 30 C, but sensitive at 40 C. Experiments done with these mutants suggest that these mutations affect the heat lability of some protein that is necessary for the response of cells to colicins. Conditionally lethal tolerant mutants were isolated which at 40 C were tolerant to E2 and E3 and could not grow, but which at 30 C were fully sensitive and grew normally. The mutation mapped near malA. The tolerance at 40 C is not due to a consequence of an inactivation of general cellular metabolism, but presumably is a cause of the subsequent inhibition of cellular growth. The results suggest that some protein components involved in the response to colicin are also vital to normal cellular growth.  相似文献   

10.
Symbiosome membrane vesicles, facing bacteroid-side-out, were purified from pea (Pisum sativum L.) root nodules and used to study NH4+ transport across the membrane by recording vesicle uptake of the NH4+ analog [14C]methylamine (MA). Membrane potentials ([delta][psi]) were imposed on the vesicles using K+ concentration gradients and valinomycin, and the size of the imposed [delta][psi] was determined by measuring vesicle uptake of [14C]tetraphenylphosphonium. Vesicle uptake of MA was driven by a negative [delta][psi] and was stimulated by a low extravesicular pH. Protonophore-induced collapse of the pH gradient indicated that uptake of MA was not related to the presence of a pH gradient. The MA-uptake mechanism appeared to have a large capacity for transport, and saturation was not observed at MA concentrations in the range of 25 [mu]M to 150 mM. MA uptake could be inhibited by NH4+, which indicates that NH4+ and MA compete for the same uptake mechanism. The observed fluxes suggest that voltage-driven channels are operating in the symbiosome membrane and that these are capable of transporting NH4+ at high rates from the bacteroid side of the membrane to the plant cytosol. The pH of the symbiosome space is likely to be involved in regulation of the flux.  相似文献   

11.
Mode of Action of Colicins of Types E1, E2, E3, and K   总被引:5,自引:2,他引:3       下载免费PDF全文
The effect of colicins on deoxyribonucleic acid and protein synthesis, and also their effect on the ability of T4 phage to replicate in Escherichia coli K-12, were studied. Colicins of type K inhibited deoxyribonucleic acid synthesis, protein synthesis, and phage growth. Among colicins of type E, there was an absolute correlation between mode of action and subdivision into types E(1), E(2), and E(3).  相似文献   

12.
Measurements were made of the difference in the electrochemical potential of protons (delta-mu H+) across the membrane of vesicles restituted from the ATPase complex (TF0.F1) purified from a thermophilic bacterium and P-lipids. Two fluorescent dyes, anilinonaphthalene sulfonate (ANS) and 9-aminoacridine (9AA) were used as probes for measuring the membrane potential (delta psi) and pH difference across the membrane (delta pH), respectively. In the presence of Tris buffer the maximal delta psi ans no delta pH were produced, while in the presence of the permeant anion NO-3 the maximal delta pH and a low delta psi were produced by the addition of ATP. When thATP concentration was 0.24 mm, the delta psi was 140-150 mV (positive inside) in Tris buffer, and the delta pH was 2.9-3.5 units (acidic inside) in the presence of NO-3. Addition of a saturating amount of ATP produced somewhat larger delta psi and delta pH values, and the delta -muH+attained was about 310mV. By trapping pH indicators in the vesicles during their reconstitution it was found that the pH inside the vesicles was pH 4-5 during ATP hydrolysis. The effects of energy transfer inhibitors, uncouplers, ionophores, and permeant anions on these vesicles were studied.  相似文献   

13.
The mechanism and energetics of citrate transport in Leuconostoc oenos were investigated. Resting cells of L. oenos generate both a membrane potential (delta psi) and a pH gradient (delta pH) upon addition of citrate. After a lag time, the internal alkalinization is followed by a continuous alkalinization of the external medium, demonstrating the involvement of proton-consuming reactions in the metabolic breakdown of citrate. Membrane vesicles of L. oenos were prepared and fused to liposomes containing cytochrome c oxidase to study the mechanism of citrate transport. Citrate uptake in the hybrid membranes is inhibited by a membrane potential of physiological polarity, inside negative, and driven by an inverted membrane potential, inside positive. A pH gradient, inside alkaline, leads to the accumulation of citrate inside the membrane vesicles. Kinetic analysis of delta pH-driven citrate uptake over a range of external pHs suggests that the monovalent anionic species (H2cit-) is the transported particle. Together, the data show that the transport of citrate is an electrogenic process in which H2cit- is translocated across the membrane via a uniport mechanism. Homologous exchange (citrate/citrate) was observed, but no evidence for a heterologous antiport mechanism involving products of citrate metabolism (e.g., acetate and pyruvate) was found. It is concluded that the generation of metabolic energy by citrate utilization in L. oenos is a direct consequence of the uptake of the negatively charged citrate anion, yielding a membrane potential, and from H(+)-consuming reactions involved in subsequent citrate metabolism, yielding a pH gradient. The uptake of citrate is driven by its own concentration gradient, which is maintained by efficient metabolic breakdown (metabolic pull).  相似文献   

14.
Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, is transported into bovine synaptic vesicles in a manner that is ATP dependent and requires a vesicular electrochemical proton gradient. We studied the electrical and chemical elements of this driving force and evaluated the effects of chloride on transport. Increasing concentrations of Cl- were found to increase the steady-state ATP-dependent vesicular pH gradient (delta pH) and were found to concomitantly decrease the vesicular membrane potential (delta psi). Low millimolar chloride concentrations, which cause 3-6-fold stimulation of vesicular glutamate uptake, caused small but measurable increases in delta pH and decreases in delta psi, when compared to control vesicles in the absence of chloride. Nigericin in potassium buffers was used to alter the relative proportions of delta pH and delta psi. Compared to controls, at all chloride concentrations tested, nigericin virtually abolished delta pH and increased the vesicle interior positive delta psi. Concomitantly, nigericin increased ATP-dependent glutamate uptake in 0-1 mM chloride but decreased glutamate uptake in 4 mM (45%), 20 mM (80%), and 140 mM (75%) Cl- (where delta pH in the absence of nigericin was large). These findings suggest that either delta psi, delta pH, or a combination can drive glutamate uptake, but to different degrees. In the presence of 4 mM Cl-, where uptake is optimal, both delta psi and delta pH contribute to the driving force for uptake. When the extravesicular pH was increased from 7.4 to 8.0, more Cl- was required to stimulate vesicular glutamate uptake. In the absence of Cl-, as extravesicular pH was lowered to 6.8, uptake was over 3-fold greater than it was at pH 7.4. As extravesicular pH was reduced from 8.0 toward 6.8, less Cl- was required for maximal stimulation. Decreasing the extravesicular pH from 8.0 to 6.8 in the absence of Cl- significantly increased glutamate uptake activity, even though proton-pumping ATPase activity actually decreased about 45% under identical conditions. In the absence of chloride, nigericin increased glutamate uptake at all the pH values tested except pH 8.0. Glutamate uptake at pH 6.8 in the presence of nigericin was over 6-fold greater than uptake at pH 7.4 in the absence of nigericin. We conclude from these experiments that optimal ATP-dependent glutamate uptake requires a large delta psi and a small delta pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Con minus mutants, conjugation-defective mutants of Escherichia coli K-12, have been shown to be tolerant to colicins K and L. They map at approximately 14 min on the genetic map. The significance of the colicin tolerance of conjugation-defective mutants is discussed.  相似文献   

16.
S Ramos  H R Kaback 《Biochemistry》1977,16(5):854-859
In the previous paper [ramos, S., and Kaback, H.R. (1977), Biochemistry 16 (preceding paper in this issue)], it was demonstrated that Escherichia coli membrane vesicles generate a large electrochemical proton gradient (delta-muH+) under appropriate conditions, and some of the properties of delta-muH+ and its component forces [i.e., the membrane potential (delta psi) and the chemical gradient of protons (deltapH)] were described. In this paper, the relationship between delta-muH+, delta psi, and deltapH and the active transport of specific solutes is examined. Addition of lactose or glucose 6-phosphate to membrane vesicles containing the appropriate transport systems results in partial collapse of deltapH, providing direct evidence for the suggestion that respiratory energy can drive active transport via the pH gradient across the membrane. Titration studies with valinomycin and nigericin lead to the conclusion that, at pH 5.5, there are two general classes of transport systems: those that are driven primarily by delta-muH+ (lactose, proline, serine, glycine, tyrosine, glutamate, leucine, lysine, cysteine, and succinate) and those that are driven primarily by deltapH (glucose 6-phosphate, D-lactate, glucuronate, and gluconate). Importantly, however, it is also demonstrated that at pH 7.5, all of these transport systems are driven by delta psi which comprises the only component of delta-muH+ at this external pH. In addition, the effect of external pH on the steady-state levels of accumulation of different solutes is examined, and it is shown that none of the pH profiles correspond to those observed for delta-muH+, delta psi, or deltapH. Moreover, at external pH values above 6.0-6.5, delta-muH+ is insufficient to account for the concentration gradients established for each substrate unless the stoichiometry between protons and accumulated solutes is greater than unity. The results confirm many facets of the chemiosmotic hypothesis, but they also extend the concept in certain important respects and allow explanations for some earlier observations which seemed to preclude the involvement of chemiosmotic phenomena in active transport.  相似文献   

17.
Escherichia coli intracellular pH, membrane potential, and cell growth.   总被引:24,自引:13,他引:11       下载免费PDF全文
We studied the changes in various cell functions during the shift to alkaline extracellular pH in wild-type Escherichia coli and in strain DZ3, a mutant defective in pH homeostasis. A rapid increase in membrane potential (delta psi) was detected in both the wild type and the mutant immediately upon the shift, when both cell types failed to control intracellular pH. Upon reestablishment of intracellular pH - extracellular pH and growth in the wild type, delta psi decreased to a new steady-state value. The electrochemical proton gradient (delta muH+) was similar in magnitude to that observed before the pH shift. In the mutant DZ3, delta psi remained elevated, and even though delta muH+ was higher than in the wild type, growth was impaired. Cessation of growth in the mutant is not a result of cell death. Hence, the mutant affords an interesting system to explore the intracellular-pH-sensitive steps that arrest growth without affecting viability. In addition to delta muH+, we measured respiration rates, protein synthesis, cell viability, induction of beta-galactosidase, DNA synthesis, and cell elongation upon failure of pH homeostasis. Cell division was the only function arrested after the shift in extracellular pH. The cells formed long chains with no increase in colony-forming capacity.  相似文献   

18.
Protein 1, a major protein of the outer membrane of Escherichia coli, has been shown to be the pore allowing the passage of small hydrophilic solutes across the outer membrane. In E. coli K-12 protein 1 consists of two subspecies, 1a and 1b, whereas in E. coli B it consists of a single species which has an electrophoretic mobility similar to that of 1a. K-12 strains mutant at the ompB locus lack both proteins 1a and 1b and exhibit multiple transport defects, resistance to toxic metal ions, and tolerance to a number of colicins. Mutation at the tolF locus results in the loss of 1a, in less severe transport defects, and more limited colicin tolerance. Mutation at the par locus causes the loss of protein 1b, but no transport defects or colicin tolerance. Lysogeny of E. coli by phage PA-2 results in the production of a new major protein, protein 2. Lysogeny of K-12 ompB mutants resulted in dramatic reversal of the transport defects and restoration of the sensitivity to colicins E2 and E3 but not to other colicins. This was shown to be due to the production of protein 2, since lysogeny by phage mutants lacking the ability to elicit protein 2 production did not show this effect. Thus, protein 2 can function as an effective pore. ompB mutations in E. coli B also resulted in loss of protein 1 and similar multiple transport defects, but these were only partially reversed by phage lysogeny and the resulting production of protein 2. When the ompB region from E. coli B was moved by transduction into an E. coli K-12 background, only small amounts of proteins 1a and 1b were found in the outer membrane. These results indicate that genes governing the synthesis of outer membrane proteins may not function interchangeably between K-12 and B strains, indicating differences in regulation or biosynthesis of these proteins between these strains.  相似文献   

19.
Cross-resistance between bacteriophages and colicins was studied using collections of bacteriophage- and colicin-resistant mutants of Escherichia coli K-12. No new examples were found of highly specific one-to-one cross-resistance of the type suggestive of common receptors. However, several groups of mutants showed tolerance to colicins and resistance to bacteriophages. Mutants known to be very defective in lipopolysaccharides composition were found to commonly show tolerance to certain colicins in addition to their bacteriophage resistance. Another group of mutants showed varying patterns of resistance to colicins E2, E3, K, L, A, S4, N, and X and bacteriophages E4, K2, K20, K21, K29, and H+. However, many bacteriophage-resistant mutants were fully colicin sensitive, and most colicin-resistant mutants were fully sensitive to bacteriophages.  相似文献   

20.
Nine classes of group B colicin-resistant mutants were examined to study the role of enterochelin in colicin resistance. Four of the mutants studied (cbt, exbC, exbB, and tonB) hypersecreted enterochelin. Enterochelin hypersecretion was apparently responsible for resistance of the exbC mutant to colicins G and H and for resistance of the exbB mutant to colicins G, H, Ia, Ib, S1, and V. All four mutants scored as colicin B tolerant, even in the absence of enterochelin synthesis. The mutants produced substantially increased amounts of two high-molecular-weight outer membrane polypeptides when grown under limiting iron conditions. The presence of these polypeptides was correlated with increased colicin B-neutralizing activity in the outer membrane preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号