首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high fluorescent potential and the exceptional photostability of lipophilic derivatives of perylene-3,4:9,10-bis(dicarboximides) are utilized for the fluorescence-labelling of liposomes. The preparation of the liposomes is effected by supersonic starting from a lipid mixture consisting of the matrix lipids soy lecithin, cholesterol, alpha-tocopherol and the perylene dyes. From a multitude of perylene derivatives investigated only those are optimally incorporated into the bilayer membrane of unilamellar liposomes which are substituted at both nitrogen atoms by one or two linear hydrocarbon groups. In order to attain an optimal fluorescent quantum yield, about 200 to 300 dye molecules can be incorporated per liposome. The liposomes thus obtained have a diameter of about 70 to 80 nm, are homogeneous and may be stored for more than seven months. Neither the fluorescent properties nor the stability of these liposomes are influenced by the additional incorporation of various ara C-derivatives and lipophilic anchor groups which subsequently enable the coupling of antibodies to the liposomes. As the water-insoluble perylene dyes are incorporated into the bilayer membrane, the aqueous inner volume of the liposomes remains available for a further utilization.  相似文献   

2.
Lipid vesicles with incorporated ion channels from polyene antibiotic amphotericin B were used to investigate structures of planar membranes formed by Shindler's techniques. A planar membrane assembled on the aperture in a lavsan film from two layers generated at the air-aqueous liposome suspension interface is not a simple bilayer but a bimolecular membrane containing numerous partly fused liposomes. A complete fusion of liposomal membranes with the planar bilayer is an unlikely event during membrane formation. A planar bimolecular lipid membrane without incorporated liposomes can be made by a method consisting of three stages: formation of a lipid layer on the air-water interface of a suspension containing liposomes, transfer of this layer along the surface of the solution into a chamber containing a solution without liposomes where a lipid monomolecular layer forms gradually (within about 20 min) at the air-water interface, assembling of the planar bilayer membrane from this monolayer. The knowledge of the planar membrane structure may be useful in experiments on incorporation of membrane proteins into a planar lipid bilayer.  相似文献   

3.
Sonicated cholesterol-phosphatidylcholine (PC) liposomes containing 4 mol % phosphatidic acid (PA) aggregate in 10 mM Ca2+, slowly at low molar fractions of cholesterol (up to 30%) and 15 times faster at higher concentrations; the inflection point is at ca. 35 mol % bilayer cholesterol. O-[[(Methoxyethoxy)ethoxy]ethyl]cholesterol (OH-blocked cholesterol) does not give this rate enhancement. If PC is replaced by diether PC (CO groups abolished), cholesterol does not accelerate aggregation at concentrations in the bilayer below 50 mol %. No change in Ca2+-induced aggregation rates was observed if the ester CO groups of the bridge-forming PA only were replaced by CH2 (diether PA) in liposomes containing PC and cholesterol. PA-mediated Ca2+ membrane traversal seems to be accelerated by the addition of cholesterol to the PC-PA membrane, but analysis shows that the effect is due to the bilayer condensation effect of cholesterol resulting in an increase in the surface concentration of PA and that membrane cholesterol in fact slightly reduces the rate of Ca(PA)2 traversal; OH-blocked cholesterol, however, increases this rate 3-fold. It appears that lipid OH and CO groups interact, directly or with the mediation of water, in establishing the structure of the membrane "hydrogen belts", i.e., the strata containing those hydrogen-bond donors and acceptors. Cholesterol hydroxyl above 33 mol % (saturation of a 2:1 PC/cholesterol complex?) causes a restructuring of the hydrogen belts that facilitates membrane-water-membrane dehydration, the prerequisite for liposome aggregation by trans-Ca(PA)2 formation. On the other hand, the formation of the dehydrated cis-Ca(PA)2 complex that precedes Ca2+ membrane traversal is not accelerated by presence of the cholesterol hydroxyl group.  相似文献   

4.
Rates of phosphatidic acid- (PA-) mediated Ca2+-traversal are maximal in 'passive bilayers' void of lipid CO and OH groups: dietherphosphatidylcholine (diether-PC) or OH-blocked cholesterol liposomes. Phosphatidylcholine (PC) as bilayer matrix causes 99% inhibition, while 45 mol% cholesterol in passive bilayers inhibits by about 70%. Possibly, the absence of CO and OH groups causes a dehydration of the 'hydrogen belts', i.e., the membrane strata occupied by hydrogen bond acceptors (CO of phospholipids) and donors (OH of cholesterol, sphingosine) and thereby facilitates the formation of dehydrated Ca(PA)2, the ionophoric vehicle; or (our preferred explanation) PC engages in a (non-ionophoric) Ca(PA X PC) complex and thus reduces the concentration of the ionophore, while cholesterol competes with Ca2+ for the CO groups of phosphatidic acid by hydrogen-bonding. The Ca2+-traversal rates realized in bilayers with modified hydrogen belts lend support to the speculation that a Ca(PA)2 ferry may be of physiological importance, e.g., in membranes (such as myelin) containing much ether phospholipid (plasmalogen); and that Ca2+-membrane association and traversal may be controlled by the composition of the hydrogen belts.  相似文献   

5.
The vesicle-to-micelle transition of immunoliposomes formed by dioleoylphosphatidyl-ethanolamine (DOPE) and palmitoyl-immunoglobulin G (p-IgG) was investigated in the presence of bile salts and conjugated bile salts. Turbidity and the release of calcein from liposomes were measured as a function of the amount of bile salts added and compared with the solubilizing profiles of the salts according to the number and configurational state of hydroxy groups in the cholate. The solubilizing phenomena by bile salts conjugated with glycine or taurine were investigated in comparison with non-conjugated bile salts. The solubilizing effect of bile salts on the bilayer of immunoliposomes increased remarkably with the number of hydroxy groups, but was not influenced by the configurational state of the hydroxy group. The half-maximal concentration of bile salts, defined as the concentration giving the half-maximum turbidity of liposome solutions, decreased with hydrophobicity in the phosphatidylcholine (PC) bilayer. The increase in the hydrophobicity of bile salts induces the ability to permeabilize and solubilize phospholipid vesicles. In the case of PC or PE liposome bilayers with inserted protein, bile salts conjugated with taurine or glycine had lower hydrophobicity than non-conjugated bile salts and showed a lower half-maximal concentration. The conjugated bile salts are believed to interact with lipids and solubilize the bilayers, while the head groups of bile salts interact with the inserted protein and extract it from the lipid bilayer.  相似文献   

6.
Hepatocyte intracellular membranes may facilitate the directed movement of bilirubin and other hydrophobic substrates to the active site of UDP-glucuronyltransferase in the endoplasmic reticulum. We postulated that the lipid composition and physical properties of membranes that transport substrate may modulate bilirubin glucuronidation. To examine this hypothesis, we incorporated [14C]bilirubin substrate into the membrane bilayer of small unilamellar liposomes composed of native phospholipid purified from rat hepatic microsomes. The initial velocity of bilirubin glucuronide formation in rat liver microsomes, measured by radiochemical assay, was considerably more rapid than for bilirubin in liposomes of egg phosphatidylcholine (p less than 0.001). Moreover, the ratio of bilirubin diglucuronide to monoglucuronides synthesized was markedly increased (p less than 0.01), approaching that observed in normal rat bile. Although the rates of bilirubin glucuronidation did not correlate with fluidity of the liposomal membrane core region, specific phospholipid head groups were associated with an increase, and cholesterol a decrease, in rates of glucuronidation. Movement of [3H]bilirubin from dual-labeled liposomes to microsomes occurred without concomitant [14C]phospholipid transfer. Thus, the lipid composition of membranes incorporating bilirubin appears to modulate the rate of glucuronidation and the relative rates of bilirubin mono- and diglucuronide formation. Phospholipid head groups on the surface of the bilayer, not the hydrocarbon core regions, may be implicated in the rapid process of membrane transport, which is likely to involve membrane-membrane collisions or diffusion of free substrate rather than membrane fusion.  相似文献   

7.
The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers — OS) or completely (dense shell glycodendrimers — DS) modified with maltose residues. As a model membrane, two types of 100 nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between maltose shell of glycodendrimers and surface membrane of liposome.  相似文献   

8.
The molecular structure of membrane lipids is formed by mono- or polyunsaturations on their aliphatic tails that make them susceptible to oxidation, facilitating the incorporation of hydroperoxide (R-OOH) functional groups. Such groups promote changes in both composition and complexity of the membrane significantly modifying its physicochemical properties. Human Langerhans islets amyloid polypeptide (hIAPP) is the main component of amyloid deposits found in the pancreas of patients with type-2 diabetes (T2D). hIAPP in the presence of membranes with oxidized lipid species accelerates the formation of amyloid fibrils or the formation of intermediate oligomeric structures. However, the molecular bases at the initial stage of the anchoring and stabilization of the hIAPP in a hydroperoxidized membrane are not yet well understood. To shed some light on this matter, in this contribution, three bilayer models were modeled: neutral (POPC), anionic (POPS), and oxidized (POPCOOH), and full atom Molecular Dynamics (MD) simulations were performed. Our results show that the POPCOOH bilayer increases the helicity in hIAPP when compared to POPC or POPS bilayer. The modification in the secondary structure covers the residues of the so-called amyloidogenic core of the hIAPP. Overall, the hydroperoxidation of the neutral lipids modifies both the anchoring and the stabilization of the peptide hIAPP by reducing the random conformations of the peptide and increasing of hydrogen bond population with the hydroperoxidized lipids.  相似文献   

9.
Bilayer asymmetry in the apical membrane may be important to the barrier function exhibited by epithelia in the stomach, kidney, and bladder. Previously, we showed that reduced fluidity of a single bilayer leaflet reduced water permeability of the bilayer, and in this study we examine the effect of bilayer asymmetry on permeation of nonelectrolytes, gases, and protons. Bilayer asymmetry was induced in dipalmitoylphosphatidylcholine liposomes by rigidifying the outer leaflet with the rare earth metal, praseodymium (Pr3+). Rigidification was demonstrated by fluorescence anisotropy over a range of temperatures from 24 to 50 degrees C. Pr3+-treatment reduced membrane fluidity at temperatures above 40 degrees C (the phase-transition temperature). Increased fluidity exhibited by dipalmitoylphosphatidylcholine liposomes at 40 degrees C occurred at temperatures 1-3 degrees C higher in Pr3+-treated liposomes, and for both control and Pr3+-treated liposomes permeability coefficients were approximately two orders of magnitude higher at 48 degrees than at 24 degrees C. Reduced fluidity of one leaflet correlated with significantly reduced permeabilities to urea, glycerol, formamide, acetamide, and NH3. Proton permeability of dipalmitoylphosphatidylcholine liposomes was only fourfold higher at 48 degrees than at 24 degrees C, indicating a weak dependence on membrane fluidity, and this increase was abolished by Pr3+. CO2 permeability was unaffected by temperature. We conclude: (a) that decreasing membrane fluidity in a single leaflet is sufficient to reduce overall membrane permeability to solutes and NH3, suggesting that leaflets in a bilayer offer independent resistances to permeation, (b) bilayer asymmetry is a mechanism by which barrier epithelia can reduce permeability, and (c) CO(2) permeation through membranes occurs by a mechanism that is not dependent on fluidity.  相似文献   

10.
Vectamidine is a liposome-forming double-chain cationic amphiphile. The present work was aimed to microscopically study the interactions of Vectamidine liposomes with the human erythrocyte plasma membrane. Vectamidine rapidly induced stomatocytic shapes. Attachment of Vectamidine liposomes to the erythrocyte induced a strong local invagination of the membrane. This frequently resulted in a complete encapsulation of the liposome. Liposomes composed of phosphatidylcholine (neutral) or phosphatidylserine/phosphatidylcholine (anionic) did not perturb the erythrocyte shape. Our results indicate that besides an attraction of Vectamidine liposomes to the plasma membrane, there is a preference of Vectamidine for the inner bilayer leaflet. We suggest that cationic amphiphiles may transfer from membrane-attached liposomes to the plasma membrane and then translocate to the inner bilayer leaflet where they induce a strong local inward bending of the plasma membrane resulting in an encapsulation of the liposome.  相似文献   

11.
Wang X  Bogdanov M  Dowhan W 《The EMBO journal》2002,21(21):5673-5681
In Escherichia coli, the major cytoplasmic domain (C6) of the polytopic membrane protein lactose permease (LacY) is exposed to the opposite side of the membrane from a neighboring periplasmic domain (P7). However, these domains are both exposed on the periplasmic side of the membrane in a mutant of E.coli lacking phosphatidylethanolamine (PE) wherein LacY only mediates facilitated transport. When purified LacY was reconstituted into liposomes lacking PE or phosphatidylcholine (PC), C6 and P7 were on the same side of the bilayer. In liposomes containing PE or PC, C6 and P7 were on opposite sides of the bilayer. Only the presence of PE in the liposomes restored active transport function of LacY as opposed to restoration of only facilitated transport function in the absence of PE. These results were the same for LacY purified from PE-containing or PE-lacking cells, and are consistent with the topology and function of LacY assembled in vivo. Therefore, irrespective of the mechanism of membrane insertion, the subdomain topological orientation and function of LacY are determined primarily by membrane phospholipid composition.  相似文献   

12.
Upon storage of phospholipid liposome samples, lysolipids, fatty acids, and glycerol-3-phosphatidylcholine are generated as a result of acid- or base-catalyzed hydrolysis. Accumulation of hydrolysis products in the liposome membrane can induce fusion, leakage, and structural transformations of the liposomes, which may be detrimental or beneficial to their performance depending on their applications as, e.g., drug delivery devices. We investigated in the present study the influence of phospholipid hydrolysis on the aggregate morphology of DPPC/DSPE-PEG2000 liposomes after transition of the phospholipid membrane from the gel phase to liquid crystalline phase using high performance liquid chromatography (HPLC) in combination with static light scattering, dynamic light scattering, and cryo-transmission electron microscopy (cryo-TEM). The rates of DPPC hydrolysis in DPPC/DSPE-PEG2000 liposomes were investigated at a pH of 2, 4, or 6.5 and temperatures of 22 degrees C or 4 degrees C. Results indicate that following phase transition, severe structural reorganizations occurred in liposome samples that were partially hydrolyzed in the gel phase. The most prominent effect was an increasing tendency of liposomes to disintegrate into membrane discs in accordance with an increasing degree of phospholipid hydrolysis. Complete disintegration occurred when DPPC concentrations had decreased by, in some cases, as little as 3.6%. After extensive phospholipid hydrolysis, liposomes and discs fused to form large bilayer sheets as well as other more complex bilayer structures apparently due to a decreased ratio of lysolipid to palmitic acid levels in the liposome membrane.  相似文献   

13.
The antioxidant activity and the membrane effects of the flavanols (-)-epicatechin, (+)-catechin, and their related oligomers, the procyanidins, were evaluated in liposomes composed by phosphatidylcholine:phosphatidylserine (60:40, molar ratio). When liposomes were oxidized with a steady source of free radicals, the flavanols and procyanidins (25 microM monomer equivalents) inhibited oxidation in a manner that was related to procyanidin chain length. Flavanols and procyanidins did not influence membrane fluidity or lipid lateral phase separation. However, flavanols and procyanidins induced a decrease in the membrane surface potential and protected membranes from detergent-induced disruption. These effects were dependent on flavonoid concentration, procyanidin chain length, and membrane composition. Flavanol- and procyanidin-induced inhibition of lipid oxidation was correlated with their effect on membrane surface potential and integrity. These results indicate that the interaction of flavanols and procyanidins with phospholipid head groups, particularly with those containing hydroxyl groups, is associated with a reduced rate of membrane lipid oxidation. Thus, flavanols and procyanidins can potentially reduce oxidative modifications of membranes by restraining the access of oxidants to the bilayer and the propagation of lipid oxidation in the hydrophobic membrane matrix.  相似文献   

14.
Upon storage of phospholipid liposome samples, lysolipids, fatty acids, and glycerol-3-phosphatidylcholine are generated as a result of acid- or base-catalyzed hydrolysis. Accumulation of hydrolysis products in the liposome membrane can induce fusion, leakage, and structural transformations of the liposomes, which may be detrimental or beneficial to their performance depending on their applications as, e.g., drug delivery devices. We investigated in the present study the influence of phospholipid hydrolysis on the aggregate morphology of DPPC/DSPE-PEG2000 liposomes after transition of the phospholipid membrane from the gel phase to liquid crystalline phase using high performance liquid chromatography (HPLC) in combination with static light scattering, dynamic light scattering, and cryo-transmission electron microscopy (cryo-TEM). The rates of DPPC hydrolysis in DPPC/DSPE-PEG2000 liposomes were investigated at a pH of 2, 4, or 6.5 and temperatures of 22 °C or 4 °C. Results indicate that following phase transition, severe structural reorganizations occurred in liposome samples that were partially hydrolyzed in the gel phase. The most prominent effect was an increasing tendency of liposomes to disintegrate into membrane discs in accordance with an increasing degree of phospholipid hydrolysis. Complete disintegration occurred when DPPC concentrations had decreased by, in some cases, as little as 3.6%. After extensive phospholipid hydrolysis, liposomes and discs fused to form large bilayer sheets as well as other more complex bilayer structures apparently due to a decreased ratio of lysolipid to palmitic acid levels in the liposome membrane.  相似文献   

15.
The sequence of events involved in the transition from attached liposomes to bilayer patches on hydrophilic and hydrophobic solid supports were visualized in situ by Tapping Mode atomic force microscopy in liquid. In a smooth manner, the attached liposomes spread and flattened from the outer edges toward the center until the two membrane bilayers were stacked on top of each other. The top bilayer then either rolls or slides over the bottom bilayer, and the adjacent edges join to form a larger membrane patch. This is clearly visible from the apparent height of 6.0-7.5 nm of the single bilayer, measured in situ. The addition of calcium appeared to increase the rate of the processes preventing the visualization of the intermediate stages. The same intermediate steps appeared to be present on hydrophobic surfaces, although the attached liposomes seemed to be distorted and the resultant membrane edges were uneven. This work has provided visual and detailed information on liposome coalescence (fusion) onto solid supports and demonstrated how the atomic force microscope can be used to study the process.  相似文献   

16.
We apply and quantify two techniques to incorporate carotenoids into liposomes: (i). preparation of unilamellar liposomes from mixtures of phospholipids and a carotenoid or cholesterol; (ii). insertion of carotenoids into prepared liposomes. Homogeneous liposomal fractions with a vesicle size diameter of approximately 50 nm were obtained by an extrusion method. The resulting vesicles were subjected to a three-dimensional light scattering cross-correlation measurement in order to evaluate their size distribution. The fluorescent dyes Laurdan, DiI-C(18), C(6)-NBD-PC were used to label the liposomes and to evaluate modulations of ordering, hydrophobicity and permeability to water molecules adjacent to the bilayer in the presence of carotenoids and/or cholesterol. Zeaxanthin incorporation (up to 0.1-1 mol%) attributes to the symmetric and ordered structure of the bilayer, causing both a strong hydrophobicity and a lower water permeability at the polar region of the membrane. The incorporation of lutein has similar effects, but its ordering effect is inferior in the polar region and superior in the non-polar region of the membrane. beta-Carotene, which can be incorporated at lower effective concentrations only, distributes in a more disordered way in the membrane, but locates preferentially in the non-polar region and, compared to lutein and zeaxanthin, it induces a less ordered structure, a higher hydrophobicity and a lower water permeability on the bilayer.  相似文献   

17.
Antifreeze proteins have been reported to be capable of maintaining the membrane integrity of cold sensitive mammalian cells when exposed to hypothermic temperatures. However the mechanism(s) whereby these proteins exert this protective effect is unknown. The present study used liposomes as a model system to examine the nature of the interactions between four antifreeze (glyco)protein types (AFP I, II, III and AFGP) and albumin, with lipid membranes. Fluorescein isothiocyanate labelling indicated that all of the proteins bound to the three liposome types (dielaidoylphosphatidylcholine (DEPC), dielaidoylphosphatidylethanolamine (DEPE) and dielaidoylphosphatidylglycerol (DEPG)). AFGP was found to be highly effective at preventing leakage from all three liposome compositions as they were cooled through their phase transition temperatures. This was not the case for the other proteins. All four antifreeze types prevented zwitterionic DEPC liposomes from leaking as they were cooled through their phase transition temperature. However, albumin was equally as effective, indicating that this capacity was not unique to antifreeze proteins. All of the proteins, except AFGP, induced the negatively charged DEPG liposomes to leak prior to cooling, and were less effective than AFGP in preventing phase transition leakage from DEPE liposomes. It is proposed that many proteins, including antifreeze proteins, can protect zwitterionic liposomes, such as DEPC, by binding to the lipid bilayer thereby maintaining the ordered structure of the membrane during phase transition. However, when the membrane contains a negatively charged polar group, such as with DEPE and DEPG, proteins, although bound to them, may not be able to maintain sufficient membrane organization to prevent leakage during phase transition or, they may gain entry into the lipid bilayer, disrupt the structure and induce leakage. These results imply that the efficacy of antifreeze proteins in the cold protection of mammalian cells will not only depend on protein structure, but also on the lipid composition of the cell membrane.  相似文献   

18.
The function of membrane-bound transporters is commonly affected by the milieu of the hydrophobic, membrane-spanning part of the transmembrane protein. Consequently, functional studies of these proteins often involve incorporation into a native-like bilayer where the lipid components of the membrane can be controlled. The classical approach is to reconstitute the purified protein into liposomes. Even though the use of such liposomes is essential for studies of transmembrane transport processes in general, functional studies of the transporters themselves in liposomes suffer from several disadvantages. For example, transmembrane proteins can adopt two different orientations when reconstituted into liposomes, and one of these populations may be inaccessible to ligands, to changes in pH or ion concentration in the external solution. Furthermore, optical studies of proteins reconstituted in liposomes suffer from significant light scattering, which diminishes the signal-to-noise value of the measurements. One attractive approach to circumvent these problems is to use nanodiscs, which are phospholipid bilayers encircled by a stabilizing amphipathic helical membrane scaffold protein. These membrane nanodiscs are stable, soluble in aqueous solution without detergent and do not scatter light significantly. In the present study, we have developed a protocol for reconstitution of the aa(3)- and ba(3)-type cytochrome c oxidases into nanodiscs. Furthermore, we studied proton-coupled electron-transfer reactions in these enzymes with microsecond time resolution. The data show that the nanodisc membrane environment accelerates proton uptake in both oxidases.  相似文献   

19.
Many prokaryotic organisms (archaea and bacteria) are covered by a regularly ordered surface layer (S-layer) as the outermost cell wall component. S-layers are built up of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. Pores in S-layers are of regular size and morphology, and functional groups on the protein lattice are aligned in well-defined positions and orientations. Due to the high degree of structural regularity S-layers represent unique systems for studying the structure, morphogenesis, and function of layered supramolecular assemblies. Isolated S-layer subunits of numerous organisms are able to assemble into monomolecular arrays either in suspension, at air/water interfaces, on planar mono- and bilayer lipid films, on liposomes and on solid supports (e.g. silicon wafers). Detailed studies on composite S-layer/lipid structures have been performed with Langmuir films, freestanding bilayer lipid membranes, solid supported lipid membranes, and liposomes. Lipid molecules in planar films and liposomes interact via their head groups with defined domains on the S-layer lattice. Electrostatic interactions are the most prevalent forces. The hydrophobic chains of the lipid monolayers are almost unaffected by the attachment of the S-layer and no impact on the hydrophobic thickness of the membranes has been observed. Upon crystallization of a coherent S-layer lattice on planar and vesicular lipid membranes, an increase in molecular order is observed, which is reflected in a decrease of the membrane tension and an enhanced mobility of probe molecules within an S-layer-supported bilayer. Thus, the terminology 'semifluid membrane' has been introduced for describing S-layer-supported lipid membranes. The most important feature of composite S-layer/lipid membranes is an enhanced stability in comparison to unsupported membranes.  相似文献   

20.
N-Acylethanolamines elicited much interest in recent years owing to their occurrence in biological membranes under conditions of stress as well as under normal conditions. The molecular conformation, packing properties and intermolecular interactions of N-myristoylethanolamine (NMEA) have been determined by single crystal X-ray diffraction analysis. The lipid crystallized in the space group P21/a with unit cell dimensions: a=9.001, b=4.8761, c=39. 080. There are four symmetry-related molecules in the monoclinic unit cell. The molecules are organized in a tail-to-tail fashion, similar to the arrangement in a bilayer membrane. The hydrophobic acyl chain of the NMEA molecule is tilted with respect to the bilayer normal by an angle of 37 degrees. Each hydroxy group forms two hydrogen bonds, one as a donor and the other as an acceptor, with the hydroxy groups of molecules in the opposing leaflet. These O-H...O hydrogen bonds form an extended, zig-zag type network along the b-axis. In addition, the N-H and C=O groups of adjacent molecules are involved in N-H...O hydrogen bonds, which also connect adjacent molecules along the b-axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号