首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The clathrin triskelion, which is a three-legged pinwheel-shaped heteropolymer, is a major component in the protein coats of certain post-Golgi and endocytic vesicles. At low pH, or at physiological pH in the presence of assembly proteins, triskelia will self-assemble to form a closed clathrin cage, or “basket”. Recent static light scattering and dynamic light scattering studies of triskelia in solution showed that an individual triskelion has an intrinsic pucker similar to, but differing from, that inferred from a high resolution cryoEM structure of a triskelion in a clathrin basket. We extend the earlier solution studies by performing small-angle neutron scattering (SANS) experiments on isolated triskelia, allowing us to examine a higher q range than that probed by static light scattering. Results of the SANS measurements are consistent with the light scattering measurements, but show a shoulder in the scattering function at intermediate q values (0.016 Å−1), just beyond the Guinier regime. This feature can be accounted for by Brownian dynamics simulations based on flexible bead-spring models of a triskelion, which generate time-averaged scattering functions. Calculated scattering profiles are in good agreement with the experimental SANS profiles when the persistence length of the assumed semiflexible triskelion is close to that previously estimated from the analysis of electron micrographs.  相似文献   

2.
Atomic force microscopy (AFM) is used to characterize the structure and interactions of clathrin triskelia. Time sequence images of individual, wet triskelia resting on mica surfaces clearly demonstrate conformational fluctuations of the triskelia. AFM of dried samples yields images having nanometric resolution comparable to that obtainable by electron microscopy of shadowed samples. Increased numbers of triskelion dimers and assembly intermediates, as well as structures having dimensions similar to those of clathrin cages, are observed when the triskelia were immersed in a low salt, low pH buffer. These entities have been quantified by AFM protein volume computation.

Structured summary

MINT-7299119, MINT-7299136:Clathrin (uniprotkb:P49951) and Clathrin (uniprotkb:P49951) bind (MI:0407) by atomic force microscopy (MI:0872)  相似文献   

3.
AP-2 and AP-3 are cellular proteins that drive the in vitro polymerization of clathrin triskelia into cage structures. The interaction of these two types of assembly proteins (APs) with preassembled clathrin cages has been studied in order to identify the sites on the triskelia required for binding. Comparing binding of the APs to intact or to proteolytically clipped cages, we attempted to distinguish between binding to the terminal domain, the globular end of the heavy chain, and binding to the hub of the clathrin triskelia, the portion that remains assembled after trypsin treatment. AP-3 binds to intact clathrin cages but not to those that were treated with trypsin. AP-3 also bound to cages consisting solely of clathrin heavy chains; proteolysis of these cages also eliminated AP-3 binding. In addition, AP-3 did not bind to either isolated hubs or terminal domains that had been immobilized on Sepharose. These data indicate that clathrin light chains are not required for binding of AP-3, and that neither terminal domain nor hubs alone will suffice. However, an intact heavy chain is both necessary and sufficient for the binding of AP-3. Previous work has demonstrated one binding site for AP-2 on proteolyzed cages containing only clathrin hubs; the existence of a second binding site associated with the terminal domain was hypothesized. Here we provide direct evidence for recognition by AP-2 of isolated terminal domains immobilized on Sepharose and show that the core of the AP-2 molecule is responsible for this interaction. These results provide the first demonstration of a functional role for the conserved terminal domain of the clathrin heavy chain.  相似文献   

4.
C J Smith  N Grigorieff    B M Pearse 《The EMBO journal》1998,17(17):4943-4953
We present a map at 21 A resolution of clathrin assembled into cages with the endocytic adaptor complex, AP-2. The map was obtained by cryo-electron microscopy and single-particle reconstruction. It reveals details of the packing of entire clathrin molecules as they interact to form a cage with two nested polyhedral layers. The proximal domains of each triskelion leg depart from a cage vertex in a skewed orientation, forming a slightly twisted bundle with three other leg domains. Thus, each triskelion contributes to two connecting edges of the polyhedral cage. The clathrin heavy chains continue inwards under the vertices with local 3-fold symmetry, the terminal domains contributing to 'hook-like' features which form an intermediate network making possible contacts with the surface presented by the inner adaptor shell. A node of density projecting inwards from the vertex may correspond to the C-termini of clathrin heavy chains which form a protrusion on free triskelions at the vertex. The inter-subunit interactions visible in this map provide a structural basis for considering the assembly of clathrin coats on a membrane and show the contacts which will need to be disrupted during disassembly.  相似文献   

5.
Bovine brain clathrin light chains impede heavy chain assembly in vitro   总被引:7,自引:0,他引:7  
Intact bovine brain clathrin triskelia, comprising three heavy and three light chains, require either 2 mM calcium or the assistance of protein co-factors for efficient assembly into regular cage structures (Keen, J. H., Willingham, M. C., and Pastan, I. (1979) Cell 16, 303-312). In contrast light chain-free heavy chains assemble readily in the absence of co-factors or calcium. Reconstitution of intact clathrin from heavy and light chains restores the calcium requirement. Our data indicate that light chains impede assembly by creating a kinetic trap rather than by perturbing the affinity of heavy chains for each other. This property suggests a function for light chains as regulatory subunits for clathrin assembly.  相似文献   

6.
Clathrin‐coated pits are formed by the recognition of membrane and cargo by the AP2 complex and the subsequent recruitment of clathrin triskelia. A role for AP2 in coated‐pit assembly beyond initial clathrin recruitment has not been explored. Clathrin binds the β2 subunit of AP2, and several binding sites have been identified, but our structural knowledge of these interactions is incomplete and their functional importance during endocytosis is unclear. Here, we analysed the cryo‐EM structure of clathrin cages assembled in the presence of β2 hinge‐appendage (β2HA). We find that the β2‐appendage binds in at least two positions in the cage, demonstrating that multi‐modal binding is a fundamental property of clathrin‐AP2 interactions. In one position, β2‐appendage cross‐links two adjacent terminal domains from different triskelia. Functional analysis of β2HA‐clathrin interactions reveals that endocytosis requires two clathrin interaction sites: a clathrin‐box motif on the hinge and the “sandwich site” on the appendage. We propose that β2‐appendage binding to more than one triskelion is a key feature of the system and likely explains why assembly is driven by AP2.  相似文献   

7.
Enzymatic dissociation of clathrin cages in a two-stage process   总被引:6,自引:0,他引:6  
Uncoating ATPase catalyzes the ATP-dependent dissociation of clathrin from coated vesicles and empty cages. Following an uncoating reaction, clathrin triskelions are released intact, in a stoichiometric complex with bound uncoating protein. This overall uncoating process was dissected into two partial reactions. In the first, ATP hydrolysis drives the transient displacement of a portion of a triskelion from a cage. Uncoating protein then captures the displaced triskelion, in the second stage, by binding to a newly exposed site on clathrin that had previously been buried in the cage lattice. Triskelion-uncoating protein complexes are released when all points of attachment of the triskelion to the cage have been severed. The uncoating protein interacts with a distinct site on clathrin for each of these reactions.  相似文献   

8.
Clathrin domains involved in recognition by assembly protein AP-2   总被引:5,自引:0,他引:5  
The domains on clathrin responsible for interaction with the plasma membrane-associated assembly protein AP-2 have been studied using a novel cage binding assay. AP-2 bound to pure clathrin cages but not to coat structures already containing AP that had been prepared by coassembly. Binding to preassembled cages also occurred in the presence of elevated Tris-HCl concentrations (greater than or equal to 200 mM) which block AP-2 interactions with free clathrin. AP-2 interactions with assembled cages could also be distinguished from AP-2 binding to clathrin trimers by sodium tripolyphosphate (NaPPPi), which binds to the alpha subunit of AP-2 (Beck, K., and Keen, J. H. (1991) J. Biol. Chem. 266, 4442-4447). At concentrations of 1-5 mM, NaPPPi blocked clathrin-triskelion binding; in contrast, interactions with cages persisted in the presence of 25 mM NaPPPi. To begin to identify the region(s) of the clathrin molecule important in recognition by AP-2, clathrin cages were proteolyzed to remove heavy chain terminal domains and portions of the distal leg as well as all of the light chains. AP-2 bound to these "clipped cages"; however, unlike the interaction with native cages, binding of AP-2 to clipped cages was sensitive to the lower concentrations of both Tris-HCl and NaPPPi which disrupt interactions of AP-2 with clathrin trimers. Reconstitution of the clipped cages with clathrin light chains did not restore resistance of AP-2 binding to Tris-HCl. We conclude that one binding site for AP-2 resides on the hub and/or proximal part of the clathrin triskelion whereas a second site is likely to involve the terminal domain and/or distal leg; the second site is manifested only in the assembled lattice structure. We suggest that these two distinct binding interactions may be mediated by the two unique large subunits within the AP-2 complex, acting sequentially during assembly.  相似文献   

9.
D T Clarke  G R Jones 《Biochemistry》1999,38(32):10457-10462
A number of models have been proposed for the assembly of clathrin triskelia into coats. However, little is known of the effects of assembly on triskelion structure. A more detailed knowledge of the way in which assembly affects triskelion structure would be valuable for assessing the relative merits of the proposed models. The development of a vacuum-ultraviolet circular dichroism (CD) instrument that uses synchrotron radiation as a light source has allowed us to extend the range of CD measurements to shorter wavelengths. This has greatly increased signal quality even for highly scattering samples. Also, we have improved CD data analysis to provide standard deviations for calculated secondary structure content. These developments have increased the precision of CD analysis beyond what has been thus far possible. Using these developments, we have determined the secondary structure content of all components of coat protein, under both assembly and dissociating conditions. The assembly of coats does not incur any change in secondary structure content, but a 10% loss of triskelion helical content accompanies assembly in the absence of AP-2. We conclude that coat assembly requires no detectable reorganization of triskelion structure. Our result indicates that AP-2 stabilizes helical structure in the triskelion, and we propose that this increases triskelion rigidity, restricting the range of coat sizes.  相似文献   

10.
Energetics of clathrin basket assembly   总被引:2,自引:0,他引:2  
A minimal thermodynamic model is used to study the in vitro equilibrium assembly of reconstituted clathrin baskets. The model contains parameters accounting for i) the combined bending and flexing rigidities of triskelion legs and hubs, ii) the intrinsic curvature of an isolated triskelion, and iii) the free energy changes associated with interactions between legs of neighboring triskelions. Analytical expressions for basket size distributions are derived, and published size distribution data (Zaremba S, Keen JH. J Cell Biol 1983;97: 1339–1347) are then used to provide estimates for net total basket assembly energies. Results suggest that energies involved in adding triskelions to partially formed clathrin lattices are small (of the order of kBT), in accord with the notion that lattice remodeling during basket formation occurs as a result of thermodynamic fluctuations. In addition, analysis of data showing the effects of assembly proteins (APs) on basket size indicates that the binding of APs increases the intrinsic curvature of an elemental triskelial subunit, the stabilizing energy of leg interactions, and the effective leg/hub rigidity. Values of effective triskelial rigidity determined in this investigation are similar to those estimated by previous analysis of shape fluctuations of isolated triskelia.  相似文献   

11.
Deep-etch visualization of 27S clathrin: a tetrahedral tetramer   总被引:3,自引:3,他引:0       下载免费PDF全文
It has recently been reported that 8S clathrin trimers or "triskelions" form larger 27S oligomers upon dialysis into low ionic strength buffers (Prasad, K., R. E. Lippoldt, H. Edelhoch, and M. S. Lewis, 1986, Biochemistry, 25:5214-5219). Here, deep-etch electron microscopy of the 27S species reveals that they are closed tetrahedra composed of four clathrin triskelions. This was determined by two approaches. First, standard quick-freezing and freeze-etching of unfixed 27S species suspended in 2 mM 2-(N-morpholino)ethane sulfonic acid (MES) buffer, pH 5.9, yielded unambiguous images of tetrahedra that measured 33 nm on each edge. Second, the technique of freeze-drying molecules on mica (Heuser, J. E., 1983, J. Mol. Biol., 169:155-195) was modified to overcome the low affinity of mica in 2 mM MES, by pretreating the mica with polylysine. Thereafter, 27S species adsorbed avidly to it and collapsed into characteristic configurations containing four globular domains, each linked to the others by three approximately 33-nm struts. The globular domains look like vertices of deep-etched clathrin triskelions and the links, numbering 12 in all, look like four sets of triskelion legs. New light scattering and equilibrium centrifugation data confirm that 27S polymer is four times as massive as one clathrin triskelion. We conclude that in conditions that do not favor the formation of standard clathrin cages, low affinity interactions lead to closed, symmetrical assemblies of four triskelions, each of which assumes a unique puckered, straight-legged configuration to create the edges of a tetrahedron. Tetrahedra are similar in construction to the cubic octomers of clathrin recently found in ammonium sulfate solutions (Sorger, P. K., R. A. Crowther, J. T. Finch, and B. M. F. Pearse, 1986, J. Cell Biol., 103:1213-1219) but are still smaller, involving only half as many clathrin triskelions.  相似文献   

12.
The self-assembly of clathrin proteins into polyhedral cages is simulated for the first time (to our knowledge) by introducing a coarse-grain triskelion particle modeled after clathrin's characteristic shape. The simulations indicate that neither this shape, nor the antiparallel binding of four legs along the lattice edges, is sufficient to induce cage formation from a random solution. Asymmetric intersegmental interactions, which probably result from a patchy distribution of interactions along the legs' surfaces, prove to be crucial for the efficient self-assembly of cages.  相似文献   

13.
Clathrin assembly into coated pits and vesicles is promoted by accessory proteins such as auxilin and AP180, and disassembly is effected by the Hsc70 ATPase. These interactions may be mimicked in vitro by the assembly and disassembly of clathrin "baskets." The chimera C58J is a minimal construct capable of supporting both reactions; it consists of the C58 moiety of AP180, which facilitates clathrin assembly, fused with the J domain of auxilin, which recruits Hsc70 to baskets. We studied the process of disassembly by using cryo-electron microscopy to identify the initial binding site of Hsc70 on clathrin-C58J baskets at pH 6, under which conditions disassembly does not proceed further. Hsc70 interactions involve two sites: (i) its major interaction is with the sides of spars of the clathrin lattice, close to the triskelion hubs and (ii) there is another interaction at a site at the N-terminal hooks of the clathrin heavy chains, presumably via the J domain of C58J. We propose that individual triskelions may be extricated from the clathrin lattice by the concerted action of up to six Hsc70 molecules, which intercalate between clathrin leg segments, prying them apart. Three Hsc70s remain bound to the dissociated triskelion, close to its trimerization hub.  相似文献   

14.
Clathrin assembly involves a light chain-binding region   总被引:3,自引:2,他引:1       下载免费PDF全文
Two regions on the clathrin heavy chain that are involved in triskelion interactions during assembly have been localized on the triskelion structure. These regions were previously identified with anti-heavy chain monoclonal antibodies X19 and X35, which disrupt clathrin assembly (Blank, G. S., and F. M. Brodsky, 1986, EMBO (Eur. Mol. Biol. Organ.) J., 5:2087-2095). Antibody-binding sites were determined based on their reactivity with truncated triskelions, and were mapped to an 8-kD region in the middle of the proximal portion of the triskelion arm (X19) and a 6-kD region at the triskelion elbow (X35). The elbow site implicated in triskelion assembly was also shown to be included within a heavy chain region involved in binding the light chains and to constitute part of the light chain-binding site. We postulate that this region of the heavy chain binds to the interaction site identified on the light chains that has homology to intermediate filament proteins (Brodsky, F. M., C. J. Galloway, G. S. Blank, A. P. Jackson, H.-F. Seow, K. Drickamer, and P. Parham, 1987, Nature (Lond.), 326:203-205). These findings suggest the existence of a heavy chain site, near the triskelion elbow, which is involved in both intramolecular and intermolecular interactions during clathrin assembly.  相似文献   

15.
Flat clathrin lattices or 'plaques' are commonly believed to be the precursors to clathrin-coated buds and vesicles. The sequence of steps carrying the flat hexagonal lattice into a highly curved polyhedral cage with exactly 12 pentagons remains elusive, however, and the large numbers of disrupted interclathrin connections in previously proposed conversion pathways make these scenarios rather unlikely. The recent notion that clathrin can make controlled small conformational transitions opens new avenues. Simulations with a self-assembling clathrin model suggest that localized conformational changes in a plaque can create sufficiently strong stresses for a dome-like fragment to break apart. The released fragment, which is strongly curved but still hexagonal, may subsequently grow into a cage by recruiting free triskelia from the cytoplasm, thus building all 12 pentagonal faces without recourse to complex topological changes. The critical assembly concentration in a slightly acidic in vitro solution is used to estimate the binding energy of a cage at 25-40 k(B) T/clathrin.  相似文献   

16.
Clathrin heavy and light chains form triskelia, which assemble into polyhedral coats of membrane vesicles that mediate transport for endocytosis and organelle biogenesis. Light chain subunits regulate clathrin assembly in vitro by suppressing spontaneous self-assembly of the heavy chains. The residues that play this regulatory role are at the N terminus of a conserved 22-amino acid sequence that is shared by all vertebrate light chains. Here we show that these regulatory residues and others in the conserved sequence mediate light chain interaction with Hip1 and Hip1R. These related proteins were previously found to be enriched in clathrin-coated vesicles and to promote clathrin assembly in vitro. We demonstrate Hip1R binding preference for light chains associated with clathrin heavy chain and show that Hip1R stimulation of clathrin assembly in vitro is blocked by mutations in the conserved sequence of light chains that abolish interaction with Hip1 and Hip1R. In vivo overexpression of a fragment of clathrin light chain comprising the Hip1R-binding region affected cellular actin distribution. Together these results suggest that the roles of Hip1 and Hip1R in affecting clathrin assembly and actin distribution are mediated by their interaction with the conserved sequence of clathrin light chains.  相似文献   

17.
The physicochemical properties of the clathrin triskelion were determined by dynamic and static light-scattering and sedimentation analyses in Tris and triethanolamine (TEA) buffers of about pH 8, in which the clathrin triskelion has been found to be in different conformational states by electron microscopy [Heuser, J., & Kirchhausen, T. (1985) J. Ultrastruct. Res. 92, 1-27]. Dynamic light-scattering measurements provided diffusion coefficients (D0(20,w)) of 1.22 x 10(-7) and 1.23 x 10(-7) cm2/s, and ultracentrifugal analysis gave sedimentation coefficients (S0(20,w)) of 8.39 and 8.32 S in Tris and TEA buffer, respectively. The average Stokes radius of the protein was determined to be 175 A from its diffusion and sedimentation coefficients and its molecular weight. Static light-scattering analysis provided molecular weights of 6.58 x 10(5) and 6.41 x 10(5) and radii of gyration of 311 and 301 A in the respective buffers. These results indicate that the clathrin triskelion has a similar conformation in the two buffers. For clarification of the skeletal structure of the clathrin triskelion in solution, the physicochemical parameters were calculated by using two models in which the clathrin arms are bent at various angles in a plane, on the basis of the Bloomfield approximation and a formula derived to estimate the radius of gyration of proteins consisting of various structural units. Values for the Stokes radius, diffusion and sedimentation coefficients, and radius of gyration in the ranges of 178-170 A, (1.20-1.26) x 10(-7) cm2/s, 8.26-8.66 S, and 316-266 A, respectively, were obtained with these models with the arms bent in the range of 0-60 degrees.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Protein–protein interactions (PPI) play key roles in various biological processes. The bimolecular fluorescence complementation (BiFC) assay is an excellent tool for routine PPI analyses in living cells. We developed new Gateway vectors for a high-throughput BiFC analysis of plants, adopting a monomeric Venus split just after the tenth β-strand, and analyzed the interaction between Arabidopsis thaliana coated vesicle coatmers, the clathrin heavy chain (CHC), and the clathrin light chain (CLC). In competitive BiFC tests, CLC interacted with CHC through a coiled-coil motif in the middle section of CLC. R1340, R1448, and K1512 in CHC and W94 in CLC are potentially key amino acids underlying the inter-chain interaction, consistent with analyses based on homology modeling. Our Gateway BiFC system, the V10-BiFC system, provides a useful tool for a PPI analysis in living plant cells. The CLC–CHC interaction identified may facilitate clathrin triskelion assembly needed for cage formation.  相似文献   

19.
Fullerene cages have n trivalent vertices, 12 pentagonal faces, and (n - 20)/2 hexagonal faces. The smallest cage in which all of the pentagons are surrounded by hexagons and thus isolated from each other has 60 vertices and is shaped like a soccer ball. The protein clathrin self-assembles into fullerene cages of a variety of sizes and shapes, including smaller ones with adjacent pentagons as well as larger ones, but the variety is limited. To explain the range of clathrin architecture and how these fullerene cages self-assemble, we proposed a hypothesis, the “head-to-tail exclusion rule” (the “Rule”). Of the 5769 small clathrin cage isomers with n ≤ 60 vertices and adjacent pentagons, the Rule permits just 15, three identified in 1976 and 12 others. A “weak version” of the Rule permits another 99. Based on cryo-electron tomography, Cheng et al. reported six raw clathrin fullerene cages. One was among the three identified in 1976. Here, (1) we identify the remaining five. (2) Four are new and are among the 12 others permitted by the Rule. (3) One, also new, is among the 99 weak version cages. (4) Of particular note, none of the remaining 5565 excluded cages has been identified. These findings provide powerful experimental confirmation of the Rule and the principle on which it is based. (5) Surprisingly, the newly identified clathrin cages are among the least symmetric of those permitted. (6) By devising a method for counting assembly paths, (7) we show that asymmetric cages can be assembled by larger numbers of paths, thus providing a kinetic explanation for the prevalence of asymmetric cages. (8) Finally, we show that operation during cage growth of the Rule greatly increases the likelihood of producing a closed fullerene cage, specifically one of those permitted, but efficient assembly still appears to require internal remodeling.  相似文献   

20.
Two classes of binding sites for uncoating protein in clathrin triskelions   总被引:4,自引:0,他引:4  
Clathrin released from coated vesicles or empty cages by the ATP-dependent action of uncoating protein exists as a complex with the uncoating protein. Despite its apparent consumption during a round of uncoating, we have found that uncoating protein functions as an enzyme in that it rapidly and spontaneously recycles from its product (triskelions) to its substrate (cages). The binding of uncoating protein to clathrin triskelions is a complex equilibrium that involves the interaction of uncoating protein with at least two distinct sites on the clathrin molecule. Limited proteolysis dissected clathrin into two domains, each of which contained distinct binding sites. Binding to one of these sites, located on the proximal leg of a triskelion, was dependent upon the presence of light chains and was unstable to gel filtration. Binding to the second kind of site, located on the distal portion of a triskelion leg, was stable to gel filtration and was independent of the presence of light chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号