首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a high‐resolution pollen and charcoal record of a 218 cm long sediment core from the Serra dos Órgãos, a subrange of the coastal Serra do Mar, located at 2130 m altitude in campos de altitude (high elevation grass‐ and shrubland) vegetation near Rio de Janeiro in southeastern Brazil to reconstruct past vegetation, climate and fire dynamics. Based on seven AMS 14C ages, the record represents at least the last 10 450 14C yr bp (12 380 cal years bp ), The uppermost region was naturally covered by campos de altitude throughout the recorded period. Diverse montane Atlantic rain forest (ARF) occurred close to the studied peat bog at the end of the Late‐glacial period. There is evidence of small Araucaria angustifolia populations in the study area as late as the early Holocene, after which point the species apparently became locally extinct. Between 10 380 and 10 170 14C yr bp (12 310–11 810 cal yr bp ), the extent of campos de altitude was markedly reduced as montane ARF shifted rapidly upward to higher elevations, reflecting a very wet and warm period (temperatures similar to or warmer than present day) at the end of the Younger Dryas (YD) chronozone. This is in opposition to the broadly documented YD cooling in the northern Hemisphere. Reduced cross‐equatorial heat transport and movement of the Intertropical Convergence Zone over northeastern Brazil may explain the YD warming. Markedly extended campos de altitude vegetation indicates dry climatic conditions until about 4910 14C yr bp (5640 cal yr bp ). Later, wetter conditions are indicated by reduced high elevation grassland and the extension of ARF into higher elevation. Fire frequency was high during the early Holocene but decreased markedly after about 7020 14C yr bp (7850 cal yr bp ).  相似文献   

2.
Abstract. We document the potential for using carbon isotopes in both soil organic matter (SOM) and grass phytoliths in soil to increase the temporal and taxonomic resolutions of long term vegetation dynamics. Carbon isotope values from both SOM and phytoliths are expected to describe both the age of material through 14C dating, and the photosynthetic pathway of the source plant material through ratios of 12C/13C. Taxonomic resolution is increased because the phytoliths examined are specific to grasses, whereas the SOM reflects the contribution of all the vegetation. Temporal resolution is increased because phytoliths are less mobile in the soil profile than SOM, and can therefore provide older dates from the same soil depth. Our results, from a desert grassland site in southwestern North America, largely confirm these expectations, and show that C4 species have dominated the grass composition for the last 8000 yr, C3 non‐grass vegetation increased about 100–350 yrBP, and no significant C3 grass or non‐grass vegetation existed between 350–2000 yr BP.  相似文献   

3.
Islebe  Gerald  Sánchez  Odilon 《Plant Ecology》2002,160(2):187-192
A pollen record of a Late Holocene sediment core from the Mexican Caribbean coast (Quintana Roo) shows the development and changes of a mangrove system. Humid conditions seem to have persisted for the period approximately 2500–1500 14C yr BP (pollen zone I), and mangrove Rhizophora mangle dominated with a good representation of elements from the nearby semi-evergreen tropical forest. During the period approximately 1500–1200 14C yr BP (pollen zone II) the mangrove Conocarpus erecta dominated. R. mangle almost disappeared and other taxa appeared, suggesting drier climatic conditions and generally more open vegetation. This dry period coincided with the period of the Maya cultural decline. The following period (pollen zone III, approximately 1200–1000 14C yr BP) was characterized by the recovery of R. mangle, indicating more humid conditions than in the preceding pollen zone. Pollen zone IV (approximately 1000 14C yr BP till present) suggests a drier period reoccuring with C. erecta; this marks the transition to present day conditions.  相似文献   

4.
Luca Borghesio 《Plant Ecology》2009,201(2):723-731
This study focuses on the effect of fire on lowland heathlands at the extreme southern edge of their European distribution (Vauda Nature Reserve, NW Italy). Forty-nine plots (50 m radius) were surveyed between 1999 and 2006. Each year, fire occurrences were recorded and per cent cover of four vegetation types (grassland, heath, low shrubland, and tall shrubland) was estimated in each plot. Vascular plant species richness was also recorded in 255, 1 m2 quadrats. After a fire, grassland vegetation expanded, but then declined rapidly as heath and shrubland recovered: 7 years after a fire, tall shrubland encroached on to more than 40% of the plots, and grassland declined from 50% to 20% cover. Between 1999 and 2006, Betula pendula shrubland greatly expanded, while grassland decreased over most of the Reserve, even where fire frequency was high. Tall shrubland had low plant diversity and was dominated by widespread species of lower conservation value. By contrast, early successional vegetation (grassland and low shrubland) had higher richness and more narrowly distributed species, indication that the development of tall shrubland causes significant species loss in the heathland. Italian lowland heathlands are characterized by high rates of shrubland encroachment that threatens both habitat and species diversity. Burning frequencies of once in 3–6 years seem appropriate in this habitat, but burning alone might not suffice without actions to increase herbivore grazing.  相似文献   

5.
The relationship between the diversity of higher plant macrofossils in surface sediments of lakes and the surrounding vegetation is examined in two mountain regions; Grødalen in central Norway and the south-east Cairngorms in Scotland. Two lake sediment cores from each area were also analysed to examine vegetation history and to estimate changes in biodiversity through the Holocene. The diversity of present day vegetation in each region was estimated using both quadrat data and classified satellite images of the study areas. The mean surface sample macrofossil representation of species recorded in quadrats collected within 250 m of the lakes was c. 17%. This figure drops to only c. 2% when the satellite imagery of the same area is used to provide a maximal species list. The macrofossil data from the Norwegian cores show that deglaciation in this region occurred earlier on the mountain summit than in the valley and that the maximum tree line elevation was during the interval 9100–4400 14C yr BP . In the Cairngorms the maximum tree line elevation was prior to c. 4500 14C yr BP . The changes in higher plant diversity recorded at these sites through the Holocene show that c. 4000 14C yr BP the reduction in the tree line resulted in decreased β-diversity at higher altitudes but an increase at the lower altitude as the forest cover opened up. Under conditions of climatic warming it is likely areas that come to lie below the tree line will experience reduced diversity and that a permanent loss of biodiversity would result from a severe reduction in the area above the tree line.  相似文献   

6.
Two cores, one 1141-cm long (An-S) and the other 885-cm long (An-A), were retrieved from Anguli-nuur Lake (41°18′–24′N, 114°20′–27′E, ~ 1315 masl), one of the largest lakes in the transition zone between a semi-humid and semi-arid climate parallel to the present limit of the southeast monsoon along the southeastern Inner Mongolia Plateau in north China. Mineral-magnetic parameters (χlf, ARM, IRM300mT, SIRM and IRM? 300mT) were measured on An-S and two additional parameters (χARM and HIRM) and four inter-parametric ratios (χARM/SIRM, IRM300mT/SIRM, IRM? 300mT/SIRM and SIRM/χlf) were calculated. Potential sources of these lake sediments (catchment soils and dune materials close to the lake and in a distant sand plain) were sampled, and the magnetic properties of the surface-material specimens were measured. A chronological model was developed for An-S by comparing and combining AMS14C dates of An-S with 137Cs, 210Pb and AMS14C dates of An-A. With the help of surface-material magnetism, the magnetic data of An-S in combination with particle size, TOC and C/N and pollen analyses indicate the environmental changes during the last ~ 10,000 years around this lake. Conditions began to ameliorate at 10,900 cal. yr BP (9600 14C yr BP) and thus relatively wet and warm environments prevailed during 10,900–8900 cal. yr BP (9600–8000 14C yr BP). The Holocene optimum or the wettest and warmest conditions, was during 8900–7400 cal. yr BP (8000–6500 14C yr BP). The environment began to deteriorate from 7400 cal. yr BP (6500 14C yr BP) and the driest and coolest conditions occurred during 2200–480 cal. yr BP. There may have been a minor amelioration after 480 cal. yr BP. The inferred changes in palaeoenvironmental conditions around Anguli-nuur Lake are broadly in agreement with those around most other sites on the Inner Mongolia Plateau.  相似文献   

7.
The 586-m Funza-2 sequence from the high plain of Bogotá, Colombia has provided one of the longest pollen-based vegetation reconstructions in the world. Affinity scores to seven biomes are compared to the record of CO2 fluctuation from the Vostok ice core for the period spanning from approximately 25 000 to 450 000 yr before present (BP). Results are compared to output from the BIOME-3 vegetation model run under different environmental scenarios at regional and local scales. The model is run with temperature and precipitation reductions, relative to the present values, of up to −10°C and −700 mm yr−1 respectively. For this particular investigation we are interested in the role of CO2 as a forcer of vegetation change; we run the model with concentrations of atmospheric CO2 ([CO2]atm.) within the range of 170 to 340 ppmV. During glacial periods, the cool grass/shrubland biome is highly dominant, less so during interglacial periods when the cool evergreen and cool mixed forest biomes become co-dominant. In addition to this climate-driven altitudinal oscillation of the vegetation, there is also a signal that indicates longer term evolution of the vegetation. The cool grass/shrubland and cool evergreen and cool mixed forest biomes become co-dominant for the first time over the 450 000-yr record at approximately 170 000 yr BP, become completely anti-phase (during a period of extreme low [CO2]atm.) and then become co-dominant from approximately 120 000 yr BP until the core top, just prior to the last glacial maximum. The model results for the Funza area indicate that changes in [CO2]atm., temperature and precipitation are inter-linked by the vegetation response. A shift of 5.5°C is required to lower the cool grass/shrubland biome to altitudes about the Funza catchment where the Andean forest biome dominant. At low [CO2]atm. concentrations, particularly below 180 ppmV, the composition of the high latitudinal tropical vegetation about the Funza catchment changed. It is suggested that this low [CO2]atm., combined with a period when the climate was characterised by extreme cooling and drying, caused a readjustment of the tropical high altitudinal vegetation zonation and the formation of plant communities that are presently recorded.  相似文献   

8.
Aim We report the first analysis of the long‐term ecology of Tenerife, in order to establish a pre‐colonization base‐line and to assess the effect of human activity and the role of climatic variation on vegetation during the Late Holocene. Location A former lake bed in the city of La Laguna (Tenerife, Canary Islands, Spain). Methods A sedimentary sequence of over 2 m was obtained from the former lake bed. Fossil pollen and microfossil charcoal concentrations were analysed. Radiocarbon dating of the sequence indicates that it spans approximately the last 4700 years. The pollen diagram was zoned using optimal splitting within psimpoll 4.25. Results Three pollen zones were differentiated: (1) in Zone L1 (c. 4700–2900 cal. yr bp ) a mixed forest was dominated by Quercus, Carpinus, Myrica and Pinus; (2) in Zone L2 (c. 2900–2000 cal. yr bp ) the laurel forest taxa increased, while Pinus, Juniperus and Phoenix declined; and (3) Zone L3 (c. 2000–400 cal. yr bp ) was characterized by the decline of Carpinus and Quercus and the abundance of laurel forest taxa (e.g. Myrica). Neither Carpinus nor Quercus was hitherto considered to be native to the Canary Islands. Their decline started c. 2000 years ago, coinciding with microfossil charcoal evidence of increased burning and with archaeological evidence for the first human settlement on Tenerife. Main conclusions Between c. 4700 and 2000 cal. yr bp , the composition of the forest in the valley of La Laguna was very different from what it is at present. In particular, Quercus and Carpinus appear to have been significant components, alongside components of the present‐day laurel forest, and the native pine (Pinus canariensis) forest and thermophilous woodland were also more prevalent in the region (but probably not within the lake basin itself) until 3000 cal. yr bp . The subsequent decline of Quercus and Carpinus led to the establishment of the present laurel forest in the region and a shift to more open vegetation types. These changes indicate that the aboriginal inhabitants of the islands, the Guanches, had a far more profound impact on the vegetation of Tenerife than hitherto realized.  相似文献   

9.
Charcoal remains, evidence of ancient fire, have been discovered in the dolines of the asylvatic or deforested sub Mediterranean area, from the ‘Grands Causses’. First 14C AMS dating on Pinus cf. sylvestris charcoal, cover the period 4805–2990 yr BP. This testifies to the development of a pine forest in the transition Middle–Late Holocene. The existence of several phases of fires, affecting the forests in the northwestern areas of the Causse during the second part of the Holocene is also proved. The origin of present-day herbaceous vegetation seems to date back to the Bronze Age. To cite this article: D. Quilès et al., C. R. Palevol 1 (2002) 59–65.  相似文献   

10.
Aim There remains some uncertainty concerning the causes of extinctions of Madagascar’s megafauna. One hypothesis is that they were caused by over‐hunting by humans. A second hypothesis is that their extinction was caused by both environmental change and hunting. This paper systematically addresses the second hypothesis through examination of two new pollen records from south‐eastern Madagascar alongside other published records across the island. Location South‐eastern Madagascar. Methods We reconstructed past vegetation and fire dynamics over the past 6000 years at two sites in south‐eastern Madagascar (Ste‐Luce) using fossil pollen and charcoal contained in sedimentary sequences. We investigated drivers of vegetation changes and how these, in turn, influenced faunal species in the south‐east, using published climatic, archaeological and faunal records. Further, we also used published records to provide a synthesis of environmental changes on the whole island. Results Vegetation reconstructions indicate that the mosaic vegetation in the region of Ste‐Luce was highly dynamic in response to climatic changes. The open woodland, surrounding the littoral forest, transformed into an ericoid grassland between c. 5800 and 5200 cal. yr bp , possibly in response to a moderate drought recorded during this period. The littoral forest was more stable between c. 5100 and 1000 cal. yr bp , with only some minor compositional changes c. 2800 cal. yr bp and between c. 1900 and 1000 cal. yr bp . Significant forest decline, however, is observed at c. 950 cal. yr bp , coinciding with a drought and a marine surge. A comparison of these results with a synthesis of published vegetation records across the island shows asynchronous vegetation changes in response to various droughts during the Holocene, except for the 950 cal. yr bp drought event, with evidence of widespread vegetation transformations and fires across the island. Main conclusions Pronounced climatic desiccation between 1200 and 700 cal. yr bp may have been the slow driver framing and triggering vegetation transformations and decline in megafaunal populations. In addition, hunting by drought‐impacted human inhabitants and competition with newly introduced cattle would have amplified the impacts on megafaunal populations, leading to numerous extinctions in this period.  相似文献   

11.
Carbon cycle feedbacks from permafrost ecosystems are expected to accelerate global climate change. Shifts in vegetation productivity and composition in permafrost regions could influence soil organic carbon (SOC) turnover rates via rhizosphere (root zone) priming effects (RPEs), but these processes are not currently accounted for in model predictions. We use a radiocarbon (bomb‐14C) approach to test for RPEs in two Arctic tall shrubs, alder (Alnus viridis (Chaix) DC.) and birch (Betula glandulosa Michx.), and in ericaceous heath tundra vegetation. We compare surface CO2 efflux rates and 14C content between intact vegetation and plots in which below‐ground allocation of recent photosynthate was prevented by trenching and removal of above‐ground biomass. We show, for the first time, that recent photosynthate drives mineralization of older (>50 years old) SOC under birch shrubs and ericaceous heath tundra. By contrast, we find no evidence of RPEs in soils under alder. This is the first direct evidence from permafrost systems that vegetation influences SOC turnover through below‐ground C allocation. The vulnerability of SOC to decomposition in permafrost systems may therefore be directly linked to vegetation change, such that expansion of birch shrubs across the Arctic could increase decomposition of older SOC. Our results suggest that carbon cycle models that do not include RPEs risk underestimating the carbon cycle feedbacks associated with changing conditions in tundra regions.  相似文献   

12.
Aim To test whether fire contributed to the expansion and compositional change of evergreen forests in the Mediterranean region during the Holocene. Location The peri‐Adriatic region, encompassing the Italian peninsula, Sicily and the western and southern Balkans between latitudes 46° and 37° N. Methods New high‐resolution pollen and microscopic charcoal data from Lago dell’Accesa (Tuscany, Italy) were used to estimate the response of the evergreen oak, Quercus ilex L., to fire during its expansion phase at 8500 cal. yr bp . The data were compared with the pollen and charcoal series from other Mediterranean sites (Lago di Massaciuccoli in Tuscany, Malo Jezero in Croatia, Biviere di Gela in Sicily) and analysed using numerical techniques (redundancy analysis, detrended canonical correspondence analysis) to identify long‐term fire–vegetation linkages and the degree of compositional change. Results Microscopic charcoal and pollen of evergreen oaks were negatively correlated during the period of quasi‐natural fire regime (Mesolithic, 10,000–8000 cal. yr bp ). In addition, there was no such positive correlation during periods when the fire regime was potentially more influenced by people (Neolithic–Bronze Age, 8000–3000 cal. yr bp ). Compared with inland sites, coastal sites that are currently located at a distinct ecotone showed more compositional change. Main conclusions The analyses suggest that climatic change, without an additional effect of fire regimes, favoured the expansion and compositional change of evergreen forests across the peri‐Adriatic region. Strikingly different patterns occurred along a north–south gradient. In the north (Tuscany and Croatia, meso‐Mediterranean belt), Q. ilex replaced deciduous forests when conditions became drier; in the south (Sicily, thermo‐Mediterranean belt) the species replaced maquis or steppe vegetation when climatic conditions became moister. We conclude that the projected increase in fire activity may lead to the loss of most of the remaining relict forests of Q. ilex in southern Europe.  相似文献   

13.
Aim We analysed lake‐sediment pollen records from eight sites in southern New England to address: (1) regional variation in ecological responses to post‐glacial climatic changes, (2) landscape‐scale vegetational heterogeneity at different times in the past, and (3) environmental and ecological controls on spatial patterns of vegetation. Location The eight study sites are located in southern New England in the states of Massachusetts and Connecticut. The sites span a climatic and vegetational gradient from the lowland areas of eastern Massachusetts and Connecticut to the uplands of north‐central and western Massachusetts. Tsuga canadensis and Fagus grandifolia are abundant in the upland area, while Quercus, Carya and Pinus species have higher abundances in the lowlands. Methods We collected sediment cores from three lakes in eastern and north‐central Massachusetts (Berry East, Blood and Little Royalston Ponds). Pollen records from those sites were compared with previously published pollen data from five other sites. Multivariate data analysis (non‐metric multi‐dimensional scaling) was used to compare the pollen spectra of these sites through time. Results Our analyses revealed a sequence of vegetational responses to climate changes occurring across southern New England during the past 14,000 calibrated radiocarbon years before present (cal yr bp ). Pollen assemblages at all sites were dominated by Picea and Pinus banksiana between 14,000 and 11,500 cal yr bp ; by Pinus strobus from 11,500 to 10,500 cal yr bp ; and by P. strobus and Tsuga between 10,500 and 9500 cal yr bp . At 9500–8000 cal yr bp , however, vegetation composition began to differentiate between lowland and upland sites. Lowland sites had higher percentages of Quercus pollen, whereas Tsuga abundance was higher at the upland sites. This spatial heterogeneity strengthened between 8000 and 5500 cal yr bp , when Fagus became abundant in the uplands and Quercus pollen percentages increased further in the lowland records. The differentiation of upland and lowland vegetation zones remained strong during the mid‐Holocene Tsuga decline (5500–3500 cal yr bp ), but the pattern weakened during the late‐Holocene (3500–300 cal yr bp ) and European‐settlement intervals. Within‐group similarity declined in response to the uneven late‐Holocene expansion of Castanea, while between‐group similarity increased due to homogenization of the regional vegetation by forest clearance and ongoing disturbances. Main conclusions The regional gradient of vegetation composition across southern New England was first established between 9500 and 8000 cal yr bp . The spatial heterogeneity of the vegetation may have arisen at that time in response to the development or strengthening of the regional climatic gradient. Alternatively, the differentiation of upland and lowland vegetation types may have occurred as the climate ameliorated and an increasing number of species arrived in the region, arranging themselves in progressively more complex vegetation patterns across relatively stationary environmental gradients. The emergence of a regional vegetational gradient in southern New England may be a manifestation of the increasing number of species and more finely divided resource gradient.  相似文献   

14.
Abstract. Current land‐use a bandonment and the current rise in temperature in the Alps both suggest that tree limits may change. When it is assumed that the climate of the early mid‐Holocene between 8000 and 5000 yr before present is analogous to that of the predicted climate of the late 21st century, palaeo‐ecological studies of the early Holocene may provide data for the prediction of the vegetation pattern in a century from now. It appears that mid‐Holocene charcoal assemblages can be used to reconstruct the spatial patterns of the vegetation before, or during, the practice of slash‐and‐burn. Correspondence analysis (CA) of charcoal assemblages shows that an important ecological gradient is determined by elevation. However CA also shows that charcoal assemblages in profiles between 1700 and 2100 m a.s.l. are roughly stratified: the more recent assemblages from the topmost centimetres of soil are intermediate between the lowermost assemblages and assemblages from higher elevations. This suggests that the woody communities at the highest elevation were located at lower elevations at a later date. The taxonomic diversity of the soil charcoal assemblages has been compared to that of present‐day phytosociological relevés after transformation to charcoal‐equivalent data. This comparison revealed that the vegetation pattern along the altitudinal gradient in the mid‐Holocene was different from that at present. The assemblages indicate that some communities disappeared, that Picea is a late‐Holocene invading species, and that there is no strict modern analogue for the vegetation structure prior to that of 3000 yr ago. The past structure of the woody vegetation was also different from that of today. Although past vegetation is not a good analogue for predicting future vegetation patterns, it still has potential as an indicator for the potential presence of tree species where there is none today. If we assume a temperature rise, and take into account current trends of landscape use abandonment, then we can expect strong vegetation dynamics at the upper tree line in the future: Abies alba may expand to occupy elevations of ca. 1800–2000 m in mixed communities with Picea abies, Pinus sylvestris and hardwood species, and Pinus cembra may expand up to 2500–2700 m a.s.l.  相似文献   

15.
An examination of post-Younger Dryas (YD) pollen stratigraphies in the Gulf of St. Lawrence and St. Lawrence estuary region reveals features in the pollen records that represent breaks in the normal vegetation succession, widespread vegetation suppression, and a delay in migration of plant taxa between 9.7 and 7.2 14C ka (11.2 and 8.0 cal ka). The domination of Alnus crispa at sites bordering the St. Lawrence estuary-Gulf region in Gaspésie and northern New Brunswick within this timeframe represents a diversion from the typical vegetation progression from Picea and/or Populus or Picea/Betula to Pinus and/or Betula, and signifies a shift to a cooler, drier climate. Coinciding with the A. crispa expansion and domination in that region was the contraction of Picea populations in other areas. In southwestern New Brunswick and eastern and southeastern Nova Scotia, Picea was replaced by the first appearance of tree birch, B. papyrifera; whereas in western and southwestern Newfoundland, Picea gave way to a resurgence of shrub birch, Betula glandulosa. The Picea contraction and immediate resurgence of Betula represents cooling, and is reliably dated at 9720 ± 110 14C BP (10,800-11,240 cal BP) in southwest Newfoundland. This first post-YD episode of widespread cooling is correlated with the North Atlantic Preboreal Oscillation (PBO) centered around 9650 14C BP (10,900-11,180 cal BP) in the adjacent Great Lakes region. Sites exposed to winds from the Gulf of St. Lawrence in eastern New Brunswick, Prince Edward Island, and northern Nova Scotia show a lingering persistence of Picea and delay in arrival of Pinus to 8.0 and 7.7 14C ka (9.0 and 8.4 cal ka), yet Pinus was dominant as early as 9.4 14C ka (10.6 cal ka) in southwestern New Brunswick. At the same time, tundra vegetation persisted at high elevations in western and southwestern Newfoundland only to be replaced by upslope migration of shrub-birch heath by 8 14C ka. Prolonged broad-scale cooling to 8 14C ka and to as late as 7.7 14C ka extended up to 200 km inland in areas exposed to the St. Lawrence estuary and Gulf region and was in response to strong, cold, dry anticyclonic winds coming off the retreating Laurentide Ice Sheet in combination with enhanced freshwater runoff through the Gulf of St. Lawrence.The end of the period of prolonged cooling and onset of regional warming coincided with the diversion of western Canada runoff and Agassiz-Ojibway drainage to Hudson Bay and reduced effect or final break-up of the Laurentide Ice Sheet. Several sites document a subsequent cold shift, that interrupted regional warming at 7650 to 7200 14C BP (8400 to 8000 cal BP), and which is variously represented by the suppression of Pinus and resurgence of Picea, sometimes with A. crispa (Québec-Maritime region), or by an abrupt decrease of Picea and resurgence of Betula (western Newfoundland). This second post-YD cool interval is equated with the 8200 cal BP cold event registered in the Greenland ice isotopic record.  相似文献   

16.
Abstract. Analysis of pollen, charcoal and loss-on-ignition in peat cores from a Picea aèies-dominated swamp forest in central Sweden show the vegetation changes and disturbance patterns over 9500 yr. Six major sequences of local vegetation development are identified: (A) Pinus period, ca. 9500–7000 cal. BP; (B) Open mire period (ca. 7000–4500 cal. BP; (C) Betula period, ca. 4500–2300 cal. BP; (D) Picea period (ca. 2300–1000 cal. BP; (E) Human impact period (ca. 1000–100 cal. BP); and (F) Period of human abandonment during the last ca. 100 yr. The swamp forest has been highly dynamic in response to various natural and anthropogenic disturbance agencies. Several fires have heavily influenced the vegetation development. During the last ca. 900 yr human influence has been important, initially from grazing and trampling by domesticated animals (ca. 1000–500 cal. BP), and subsequently small-scale cereal growing (ca. 400–100 BP). Cutting, burning and animal browsing influenced the structure and dynamics of the swamp forest by creating a more open stand and suppressing tree regeneration. Recent cessation of human impact has led to increased tree regeneration and a denser swamp forest stand. The present high biodiversity, and subsequent conservation interest does not result from long-term stability or absence of fire and human impact. However, in spite of repeated disturbances, a continuity of old and senescent trees produced a forest type with abundant dead wood. With the relatively minor importance of fire over long periods of time, the swamp forest developed a structure maintaining a high biological diversity. An important issue for maintaining long-term biodiversity in the boreal landscape must be to create a mosaic where different forest types are present, with a variety of structures, substrates and processes, to provide a certain degree of freedom for species to move around in the landscape.  相似文献   

17.
We present the 11?150-cal-yr-long pollen record Laguna Las Margaritas (3°23′N, 73°26′W; 290 m altitude), located at a site sensitive to climatic change near the transition from the Amazonian rainforest to the savanna of the Llanos Orientales in Colombia. In the 10-m-long core nine AMS 14C bulk samples show ages from 9760±60 to 854±36 BP and provide initial time control. Thirty-one additional AMS 14C samples of selected macrofossils provide time control from 6250 to 4050 cal BP; for this interval precise time control was obtained by 14C wiggle-match dating. From 11?150 to 9100 cal BP, grass savanna dominated the landscape while gallery forest along the drainage system was poorly developed. Water availability was lower than today and the length of the dry season longer. From 9100 to 7330 cal BP gallery forest expanded pointing to wetter conditions. From 7330 to 5430 cal BP savanna was increasingly replaced by forest, but with alternating abundance of both vegetation types. From 5430 to 2500 cal BP forest and wooded savanna dominated the western Llanos Orientales suggesting high precipitation rates. Expansion of Mauritia palm forest at 2500 cal BP reflects increasing water availability and stagnant water environments. Increasing savanna between 2500 and 1000 cal BP may represent a combined natural and anthropogenic signal. Development from open savanna to forest during the Middle Holocene is synchronous with a decreasing caloric seasonality, and a southward migration of the Intertropical Convergence Zone, suggesting that the large-scale climatic and vegetational change in the Colombian savannas is precession-forced. High-frequent migration of the savanna-rainforest boundary started around 6000 cal BP and continued at least to 3000 cal BP. Precipitation regimes in northwest and northeast South America seem opposite: dry conditions in the Colombian savanna area seem to reflect a La Niña setting of the climate system; wet conditions reflect an El Niño setting. Δ14C fluctuations reflect changes of solar activity and we tested the hypothesis that Δ14C fluctuations correspond to climatic and vegetational change. For the interval 6250 to 4050 cal BP, we applied 14C wiggle-match dating (WMD), i.e. matching a series of radiocarbon ages in 14C BP from the sediment, with the dendrochronology-based calibration curve, and we also wiggle-matched the pollen record vs. the Δ14C record. In this first attempt in a neotropical ecosystem, we could not find unambiguous support that changes in solar activity did trigger climatic and vegetational change in the savannas of the Llanos Orientales.  相似文献   

18.
A chronology for late prehistoric Madagascar   总被引:2,自引:0,他引:2  
A database has been assembled with 278 age determinations for Madagascar. Materials 14C dated include pretreated sediments and plant macrofossils from cores and excavations throughout the island, and bones, teeth, or eggshells of most of the extinct megafaunal taxa, including the giant lemurs, hippopotami, and ratites. Additional measurements come from uranium-series dates on speleothems and thermoluminescence dating of pottery. Changes documented include late Pleistocene climatic events and, in the late Holocene, the apparently human-caused transformation of the environment. Multiple lines of evidence point to the earliest human presence at ca. 2300 14C yr BP (350 cal yr BC). A decline in megafauna, inferred from a drastic decrease in spores of the coprophilous fungus Sporormiella spp. in sediments at 1720+/-40 14C yr BP (230-410 cal yr AD), is followed by large increases in charcoal particles in sediment cores, beginning in the SW part of the island, and spreading to other coasts and the interior over the next millennium. The record of human occupation is initially sparse, but shows large human populations throughout the island by the beginning of the Second Millennium AD. Dating of the "subfossil" megafauna, including pygmy hippos, elephant birds, giant tortoises, and large lemurs, demonstrates that most if not all the extinct taxa were still present on the island when humans arrived. Many taxa overlapped chronologically with humans for a millennium or more. The extinct lemurs Hadropithecus stenognathus, Pachylemur insignis, Mesopropithecus pithecoides, and Daubentonia robusta, and the elephant birds Aepyornis spp. and Mullerornis spp., were still present near the end of the First Millennium AD. Palaeopropithecus ingens, Megaladapis edwardsi, and Archaeolemur sp. (cf. edwardsi) may have survived until the middle of the Second Millennium A.D. One specimen of Hippopotamus of unknown provenance dates to the period of European colonization.  相似文献   

19.
Charcoal analysis of six shell mounds showed that no major changes of the mainland vegetation ecosystem have taken place along the southeastern Brazilian coast (22 degrees 53'-22 degrees 57'S, 42 degrees 03'-42 degrees 33'W) from 5500 to 1400 14C yr BP. These shell mounds have been occupied by sedentary fisher-gatherer-hunters. Charcoal fragments retrieved from vertical profiles in the archaeological sites were examined; taxonomic determinations were based on a reference collection of charred woods and a program for computer-aided identification. Charcoal assemblages of all the studied sites present taxa from various restinga vegetation types, mangroves, xeromorphic coastal forest, and inland Atlantic Forest. The restinga ecosystem, characteristic of the Brazilian coast, is associated with sandy beach ridges; the restinga forest was much more abundant during the studied period than nowadays. The charcoal assemblages represent mainly the local vegetation; a regional reconstruction depends on the study of numerous sites. In the Cabo Frio region, open restinga taxa are more abundant in the Sambaqui do Forte, while forest elements are more important in the Sambaquis Salinas Peroano and Boca da Barra. The sites studied in the Arraial do Cabo (Sambaqui da Ponta da Cabe?a) and in the Saquarema regions (Sambaquis da Pontinha and da Beirada) show that open restinga formations were locally predominant. A comparison of multivariate analysis applied to both charcoal assemblages and to phytosociological data of the extant vegetation showed a good correspondence between the charcoal spectra and the present vegetation. The high taxonomic diversity of archaeological charcoal samples and numerous fragments showing traces of decay before charring suggests that aleatory gathering of dead wood constituted the main source of firewood for fisher-gatherer-hunters populations. Condalia sp. was probably selected for cultural reasons.The only significant fluctuations on the charcoal spectra relate to the mangrove vegetation. Two relatively humid episodes (recorded from ca. 5500 to 4900/4500 and from ca. 2300 to 2000 14C yr BP), intercalated by two episodes of increased dryness with increased lagoon salinity (from ca. 4900/4500 to 2300 and from ca. 2000 to 1400 14C yr BP) were recorded in the Cabo Frio region. The changes in mangrove vegetation cannot be attributed to sea-level variations, for the three regressive and the two transgressive episodes identified for the Brazilian coast during this period are not in phase with the development of mangroves. The stability of the mainland vegetation ecosystem is probably due to the edaphic character of the coastal environments, which makes coastal formations much more resistant to climatic variations and less sensitive to climatic change. We propose that this environmental stability was a decisive factor in the maintenance of the fisher-gatherer-hunter sociocultural system.  相似文献   

20.
Wetland dynamics in the eastern Amazon region during the past 7000 years were studied using pollen, textural and structural analyses of sediment cores, as well as AMS radiocarbon dating. Four sediment cores were sampled from Marajó Island, which is located at the mouth of the Amazon River. Marajó Island is covered mainly by Amazon coastal forest, as well as herbaceous and varzea vegetation. Three cores were sampled from Lake Arari, which is surrounded by herbaceous vegetation flooded by freshwater. One core was sampled from a herbaceous plain located 15 km southeast of Lake Arari. Pollen preservation in the sedimentary deposits from this lake and from its drainage basin suggests significant vegetation changes on Marajó Island during the mid- and late-Holocene. Between 7328–7168 and 2306–2234 cal. yr BP, mangrove vegetation was more widely distributed on the island than it is today. During the past 2306–2234 cal. yr BP herbaceous vegetation expanded. Sedimentary structures and pollen data suggest a lagoon system until ~ 2300 cal. yr BP. The current distribution of mangroves along the Pará littoral, together with the presence of mangrove pollen and the sedimentary structures of the cores, indicates greater marine influence during the mid-Holocene. This may be attributed to the association between the eustatic sea-level change and the dry period recorded in Amazonia during the early- and mid-Holocene, followed by a wet phase over the past 2000 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号