首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The content-dependent activity of surfactant protein (SP)-B was studied in mixtures with dipalmitoyl phosphatidylcholine (DPPC), synthetic lipids (SL), and purified phospholipids (PPL) from calf lung surfactant extract (CLSE). At fixed SP-B content, adsorption and dynamic surface tension lowering were ordered as PPL/SP-B approximately SL/SP-B > DPPC/SP-B. All mixtures were similar in having increased surface activity as SP-B content was incrementally raised from 0.05 to 0.75% by weight. SP-B had small but measurable effects on interfacial properties even at very low levels < or =0.1% by weight. PPL/SP-B (0.75%) had the highest adsorption and dynamic surface activity, approaching the behavior of CLSE. All mixtures containing 0.75% SP-B reached minimum surface tensions <1 mN/m in pulsating bubble studies at low phospholipid concentration (1 mg/ml). Mixtures of PPL or SL with SP-B (0.5%) also had minimum surface tensions <1 mN/m at 1 mg/ml, whereas DPPC/SP-B (0.5%) reached <1 mN/m at 2.5 mg/ml. Physiological activity also was strongly dependent on SP-B content. The ability of instilled SL/SP-B mixtures to improve surfactant-deficient pressure-volume mechanics in excised lavaged rat lungs increased as SP-B content was raised from 0.1 to 0.75% by weight. This study emphasizes the crucial functional activity of SP-B in lung surfactants. Significant differences in SP-B content between exogenous surfactants used to treat respiratory disease could be associated with substantial activity variations.  相似文献   

2.
Biophysical inhibition of synthetic lung surfactants   总被引:3,自引:0,他引:3  
The biophysical activity and inhibition of a series of synthetic surfactant mixtures was studied and correlated with physiological effectiveness in restoring pressure-volume (P-V) mechanics of excised lungs. Results showed that several simple mixtures of dipalmitoyl phosphatidylcholine (DPPC) with fatty acids or diacylglycerols could be formulated to give good adsorption facility and dynamic surface tension lowering to less than 1 mN/m in pulsating bubble measurements at 37 degrees C. However, although biophysical activity approached that of natural lung surfactant (LS) and a related surfactant extract (CLSE) under normal conditions, surface properties were sharply inhibited by relatively small amounts of the plasma protein albumin (2 mg/ml) with minimum surface tensions greater than 30 nM/m even at high surfactant concentrations (5-20 mg lipids/ml). This sensitivity to biophysical inhibition was markedly increased compared to LS and CLSE, and had direct consequences for physiological efficacy: in spite of initially high activity, synthetic surfactants did not exert beneficial effects on P-V mechanics when instilled into surfactant-deficient excised rat lungs. Endogenous protein material was shown to be present upon surfactant recovery by lavage, and bubble measurements confirmed surface activity well below pre-instillation levels. Moreover, full biophysical activity was restored when lavage fluid was extracted to separate the synthetic surfactants from endogenous inhibitors. These results show that it is important to define relative sensitivity to biophysical inhibition in the development of effective lung surfactant substitutes. In addition, the existence of inhibition effects can generate an apparent lack of correspondence between initial biophysical activity and ultimate physiological actions of exogenous surfactant mixtures.  相似文献   

3.
The surface activity of two surfactant preparations, Lipid Extract Surfactant (LES) and Survanta, was examined during adsorption and dynamic compression using a pulsating bubble surfactometer. At low surfactant phospholipid concentrations (1-2.5 mg/ml), Survanta reduces surface tension at minimum bubble radius faster than LES: however, with continued pulsation LES obtains a lower surface tension. Addition of surfactant-associated protein A (SP-A) to LES significantly reduces the time required to reduce surface tension. Survanta is completely unresponsive to the addition of SP-A in that no further reduction of surface tension is observed. Addition of various blood components has been previously shown to inactivate surfactants in vitro. Addition of fibrinogen to Survanta causes an increase in surface tension when measured in the absence of calcium. When assayed in the presence of calcium, inhibition by fibrinogen is not observed possibly due to aggregation of this protein. Albumin and alpha-globulin strongly inhibit Survanta at physiological serum concentrations both in the presence and absence of calcium. The surface activity of Survanta is also inhibited by lysophosphatidylcholine (lyso-PC). The role of palmitic acid in the surface activity of pulmonary surfactant was examined by adding palmitic acid to LES. At low phospholipid concentrations addition of palmitic acid (10% w/w of the surfactant phospholipid) greatly enhances the surface activity of LES. Maximal enhancement of surface activity and adsorption was observed at or above 7.5% added palmitic acid (w/w of surfactant lipid). LES supplemented with palmitic acid is more resistant to inhibition by fibrinogen, albumin, alpha-globulin and lyso-PC than LES alone, however, the counteraction of blood protein inhibition is not as pronounced as that observed with SP-A.  相似文献   

4.
Adsorption of the clinical lung surfactants (LS) Curosurf or Survanta from aqueous suspension to the air-water interface progresses from multi-bilayer aggregates through multilayer films to a coexistence between multilayer and monolayer domains. Exposure to environmental tobacco smoke (ETS) alters this progression as shown by Langmuir isotherms, fluorescence microscopy and atomic force microscopy (AFM). After 12 h of LS exposure to ETS, AFM images of Langmuir-Blodgett deposited films show that ETS reduces the amount of material near the interface and alters how surfactant is removed from the interface during compression. For Curosurf, ETS prevents refining of the film composition during cycling; this leads to higher minimum surface tensions. ETS also changes the morphology of the Curosurf film by reducing the size of condensed phase domains from 8-12 μm to ∼ 2 μm, suggesting a decrease in the line tension between the domains. The minimum surface tension and morphology of the Survanta film are less impacted by ETS exposure, although the amount of material associated with the film is reduced in a similar way to Curosurf. Fluorescence and mass spectra of Survanta dispersions containing native bovine SP-B treated with ETS indicate the oxidative degradation of protein aromatic amino acid residue side chains. Native bovine SP-C isolated from ETS exposed Survanta had changes in molecular mass consistent with deacylation of the lipoprotein. Fourier Transform Infrared Spectroscopy (FTIR) characterization of the hydrophobic proteins from ETS treated Survanta dispersions show significant changes in the conformation of SP-B and SP-C that correlate with the altered surface activity and morphology of the lipid-protein film.  相似文献   

5.
Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome.  相似文献   

6.
Surface activity and sensitivity to inhibition from phospholipase A2 (PLA2), lysophosphatidylcholine (LPC), and serum albumin were studied for a synthetic C16:0 diether phosphonolipid (DEPN-8) combined with 1.5% by weight of mixed hydrophobic surfactant proteins (SP)-B/C purified from calf lung surfactant extract (CLSE). Pure DEPN-8 had better adsorption and film respreading than the major lung surfactant phospholipid dipalmitoyl phosphatidylcholine and reached minimum surface tensions <1 mN/m under dynamic compression on the Wilhelmy balance and on a pulsating bubble surfactometer (37 degrees C, 20 cycles/min, 50% area compression). DEPN-8 + 1.5% SP-B/C exhibited even greater adsorption and had overall dynamic surface tension lowering equal to CLSE on the bubble. In addition, films of DEPN-8 + 1.5% SP-B/C on the Wilhelmy balance had better respreading than CLSE after seven (but not two) cycles of compression-expansion at 23 degrees C. DEPN-8 is structurally resistant to degradation by PLA2, and DEPN-8 + 1.5% SP-B/C maintained high adsorption and dynamic surface activity in the presence of this enzyme. Incubation of CLSE with PLA2 led to chemical degradation, generation of LPC, and reduced surface activity. DEPN-8 + 1.5% SP-B/C was also more resistant than CLSE to direct biophysical inhibition by LPC, and the two were similar in their sensitivity to biophysical inhibition by serum albumin. These findings indicate that synthetic surfactants containing DEPN-8 combined with surfactant proteins or related synthetic peptides have potential utility for treating surfactant dysfunction in inflammatory lung injury.  相似文献   

7.
The addition of various polymers to pulmonary surfactants improves surface activity in experiments both in vitro and in vivo. Although the viscosity of surfactants has been investigated, the viscosity of surfactant polymer mixtures has not. In this study, we have measured the viscosities of Survanta and Infasurf with and without the addition of polyethylene glycol, dextran or hyaluronan. The measurements were carried out over a range of surfactant concentrations using two concentrations of polymers at two temperatures. Our results indicate that at lower surfactant concentrations, the addition of any polymers increased the viscosity. However, the addition of polyethylene glycol and dextran to surfactants at clinically used concentrations can substantially lower viscosity. Addition of hyaluronan at clinical surfactant concentrations slightly increased Infasurf viscosity and produced little change in Survanta viscosity. Effects of polymers on viscosity correlate with changes in size and distribution of surfactant aggregates and the apparent free volume of liquid as estimated by light microscopy. Aggregation of surfactant vesicles caused by polymers may therefore not only improve surface activity as previously shown, but may also affect viscosity in ways that could improve surfactant distribution in vivo.  相似文献   

8.
The proposed in vitro model for studying the alveolar surface layer of the lungs enables one to investigate the surface intermolecular forces which influence the stability of the alveolus. The general role for the stability of the alveolus belongs to the phospholipids in the alveolar surfactant and predominantly to their main component dipalmitoylphosphatidylcholine (DPPC). The aim of the study was to investigate the rheological behavior of DPPC and exogenous surfactant preparations used in neonatal clinical practice. Data for the rheological behavior of the solutions of the commercially available surfactants, Infasurf, Exosurf and Survanta, as well as of DPPC (their main phospholipid component) at shear rates from 0.024 to 94.5 s(-1) under steady and transient flow conditions at 23 degrees C were obtained. Infasurf and Exosurf showed Newtonian rheological behavior, while Survanta revealed the shear-thinning behavior of a non-Newtonian pseudoplastic fluid. The rheological properties of aqueous solutions of DPPC containing 0.14 M NaCl at concentrations from 100 and 630 microg/ml of phospholipid (chosen from the dependence of the probability for bilayer film formation) were studied. Differences observed in the rheological properties of the exogenous surfactants were interpreted on the basis of their composition, the presence of other phospholipid components, certain additives and surfactant proteins, as well as the bulk structures formed from them. The relevance of the results for the delivery of exogenous surfactants and their spreading in replacement therapy is discussed.  相似文献   

9.
This paper reports the chemical synthesis and purification of a novel phospholipase-resistant C16:0, C16:1 diether phosphonoglycerol with structural analogy to ester-linked anionic phosphatidylglycerol (PG) in endogenous pulmonary surfactant. This diether phosphonoglycerol (PG 1) is studied for phospholipase A(2) (PLA(2)) resistance and for surface activity in synthetic exogenous surfactants combined with Super Mini-B (S-MB) peptide and DEPN-8, a previously-reported diether phosphonolipid analog of dipalmitoyl phosphatidylcholine (DPPC, the major zwitterionic phospholipid in native lung surfactant). Activity experiments measured both adsorption and dynamic surface tension lowering due to the known importance of these surface behaviors in lung surfactant function in vivo. Synthetic surfactants containing 9 : 1 DEPN-8:PG 1 + 3% S-MB were resistant to degradation by PLA(2) in chromatographic studies, while calf lung surfactant extract (CLSE, the substance of the bovine clinical surfactant Infasurf?) was significantly degraded by PLA(2). The 9 : 1 DEPN-8:PG 1 + 3% S-MB mixture also had small but consistent increases in both adsorption and dynamic surface tension lowering ability compared to DEPN-8 + 3% S-MB. Consistent with these surface activity increases, molecular dynamics simulations using Protein Modeller, GROMACS force-field, and PyMOL showed that bilayers containing DPPC and palmitoyl-oleoyl-PC (POPC) as surrogates of DEPN-8 and PG 1 were penetrated to a greater extent by S-MB peptide than bilayers of DPPC alone. These results suggest that PG 1 or related anionic phosphono-PG analogs may have functional utility in phospholipase-resistant synthetic surfactants targeting forms of acute pulmonary injury where endogenous surfactant becomes dysfunctional due to phospholipase activity in the innate inflammatory response.  相似文献   

10.
Freeze-fracture transmission electron microscopy shows significant differences in the bilayer organization and fraction of water within the bilayer aggregates of clinical lung surfactants, which increases from Survanta to Curosurf to Infasurf. Albumin and serum inactivate all three clinical surfactants in vitro; addition of the nonionic polymers polyethylene glycol, dextran, or hyaluronic acid also reduces inactivation in all three. Freeze-fracture transmission electron microscopy shows that polyethylene glycol, hyaluronic acid, and albumin do not adsorb to the surfactant aggregates, nor do these macromolecules penetrate the interior water compartments of the surfactant aggregates. This results in an osmotic pressure difference that dehydrates the bilayer aggregates, causing a decrease in the bilayer spacing as shown by small angle x-ray scattering and an increase in the ordering of the bilayers as shown by freeze-fracture electron microscopy. Small angle x-ray diffraction shows that the relationship between the bilayer spacing and the imposed osmotic pressure for Curosurf is a screened electrostatic interaction with a Debye length consistent with the ionic strength of the solution. The variation in surface tension due to surfactant adsorption measured by the pulsating bubble method shows that the extent of surfactant aggregate reorganization does not correlate with the maximum or minimum surface tension achieved with or without serum in the subphase. Albumin, polymers, and their mixtures alter the surfactant aggregate microstructure in the same manner; hence, neither inhibition reversal due to added polymer nor inactivation due to albumin is caused by alterations in surfactant microstructure.  相似文献   

11.
This research studies the biophysical surface activity of synthetic phospholipids combined in vitro with purified lung surfactant apoprotein, having an Mr of 6000. Hydrophobic surfactant-associated protein (SAP-6) was delipidated and purified from both bovine and canine lung lavage, and was combined in vitro with a synthetic phospholipid mixture (SM) of similar composition to natural lung surfactant phospholipids. SM phospholipids were also combined and studied biophysically with another purified surfactant-associated protein, SAP-35. The biophysical activity of synthetic phospholipid-apoprotein combinants was assessed by measurements of adsorption facility and dynamic surface tension lowering ability at 37 degrees C. The SM-SAP-6 combinants had adsorption facility equivalent to natural lung surfactant, and to the surfactant extract preparations CLSE and surfactant-TA used in exogenous surfactant replacement therapy for the neonatal Respiratory Distress Syndrome (RDS). The synthetic phospholipid-SAP-6 combinants also lowered surface tension to less than 1 dyne/cm under dynamic compression in an oscillating bubble apparatus at concentrations as low as 0.5 mg phospholipid/ml. A striking finding was that this excellent dynamic surface activity was preserved as SAP-6 composition was reduced to values as low as 5 micrograms/5 mg SM phospholipid (0.1% SAP-6 protein), an order of magnitude less than the 1% protein content of CLSE and surfactant-TA. Mixtures of SM phospholipids plus SAP-35, the major surfactant glycoprotein, had significantly lower biophysical activity, which did not approach that of a functional lung surfactant. These results suggest that synthetic exogenous surfactants of potential utility for replacement therapy in RDS can be formulated by combining synthetic phospholipids in vitro with specifically purified, hydrophobic surfactant-associated protein, SAP-6.  相似文献   

12.
Whereas decreased concentrations of surfactant protein (SP)-B are associated with lung injury and respiratory distress, potential causal relationships between SP-B deficiency and lung inflammation remain unclear. A transgenic mouse in which human SP-B expression was placed under conditional control of doxycycline via the CCSP promoter was utilized to determine the role of SP-B in the initiation of pulmonary inflammation. Adult mice, made SP-B deficient by removal of doxycycline, developed severe respiratory failure within 4 days. Deficiency of SP-B was associated with increased minimal surface tension of the surfactant and perturbed lung mechanics. Four days of SP-B deficiency did not alter SP-C content or surfactant phospholipid content or composition. SP-B deficiency was associated with lung inflammation and increased soluble L-selectin, STAT-3, and phosphorylated STAT-3 in alveolar macrophages and alveolar epithelial cells. Alveolar IL-6, IL-1beta, and macrophage inflammatory protein-2 concentrations were increased after removal of doxycycline, indicating pulmonary inflammation. Restoration of SP-B expression following administration of doxycycline rapidly reversed SP-B-dependent abnormalities in lung mechanics and inflammation. SP-B deficiency is sufficient to cause lung dysfunction and inflammation in adult mice. SP-B reversed inflammation and maintained lung function in vivo, indicating its potential utility for the prevention and treatment of pulmonary injury and surfactant deficiency.  相似文献   

13.
As birds have tubular lungs that do not contain alveoli, avian surfactant predominantly functions to maintain airflow in tubes rather than to prevent alveolar collapse. Consequently, we have evaluated structural, biochemical, and functional parameters of avian surfactant as a model for airway surfactant in the mammalian lung. Surfactant was isolated from duck, chicken, and pig lung lavage fluid by differential centrifugation. Electron microscopy revealed a uniform surfactant layer within the air capillaries of the bird lungs, and there was no tubular myelin in purified avian surfactants. Phosphatidylcholine molecular species of the various surfactants were measured by HPLC. Compared with pig surfactant, both bird surfactants were enriched in dipalmitoylphosphatidylcholine, the principle surface tension-lowering agent in surfactant, and depleted in palmitoylmyristoylphosphatidylcholine, the other disaturated phosphatidylcholine of mammalian surfactant. Surfactant protein (SP)-A was determined by immunoblot analysis, and SP-B and SP-C were determined by gel-filtration HPLC. Neither SP-A nor SP-C was detectable in either bird surfactant, but both preparations of surfactant contained SP-B. Surface tension function was determined using both the pulsating bubble surfactometer (PBS) and capillary surfactometer (CS). Under dynamic cycling conditions, where pig surfactant readily reached minimal surface tension values below 5 mN/m, neither avian surfactant reached values below 15 mN/m within 10 pulsations. However, maximal surface tension of avian surfactant was lower than that of porcine surfactant, and all surfactants were equally efficient in the CS. We conclude that a surfactant composed primarily of dipalmitoylphosphatidylcholine and SP-B is adequate to maintain patency of the air capillaries of the bird lung.  相似文献   

14.
The rate of change of surface pressure, pi, in a Langmuir trough following the deposition of surfactant suspensions on subphases containing serum, with or without polymers, is used to model a likely cause of surfactant inactivation in vivo: inhibition of surfactant adsorption due to competitive adsorption of surface active serum proteins. Aqueous suspensions of native porcine surfactant, organic extracts of native surfactant, and the clinical surfactants Curosurf, Infasurf, and Survanta spread on buffered subphases increase the surface pressure, pi, to approximately 40 mN/m within 2 min. The variation with concentration, temperature, and mode of spreading confirmed Brewster angle microscopy observations that subphase to surface adsorption of surfactant is the dominant form of surfactant transport to the interface. However (with the exception of native porcine surfactant), similar rapid increases in pi did not occur when surfactants were applied to subphases containing serum. Components of serum are surface active and adsorb reversibly to the interface increasing pi up to a concentration-dependent saturation value, pi(max). When surfactants were applied to subphases containing serum, the increase in pi was significantly slowed or eliminated. Therefore, serum at the interface presents a barrier to surfactant adsorption. Addition of either hyaluronan (normally found in alveolar fluid) or polyethylene glycol to subphases containing serum reversed inhibition by restoring the rate of surfactant adsorption to that of the clean interface, thereby allowing surfactant to overcome the serum-induced barrier to adsorption.  相似文献   

15.
The effect of surface tension on alveolar macrophage shape and phagocytosis was assessed in vivo and in vitro. Surface tension was regulated in vivo by conditionally expressing surfactant protein (SP)-B in Sftpb-/- mice. Increased surface tension and respiratory distress were produced by depletion of SP-B and were readily reversed by repletion of SP-B in vivo. Electron microscopy was used to demonstrate that alveolar macrophages were usually located beneath the surfactant film on the alveolar surfaces. Reduction of SP-B increased surface tension and resulted in flattening of alveolar macrophages on epithelial surfaces in vivo. Phagocytosis of intratracheally injected fluorescent microbeads by alveolar macrophages was decreased during SP-B deficiency and was restored by repletion of SP-B in vivo. Incubation of MH-S cells, a mouse macrophage cell line, with inactive surfactant caused cell flattening and decreased phagocytosis in vitro, findings that were reversed by the addition of sheep surfactant or phospholipid containing SP-B. SP-B controls surface tension by forming a surfactant phospholipid film that regulates shape and nonspecific phagocytic activity of alveolar macrophages on the alveolar surface.  相似文献   

16.
Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A(2) (sPLA(2)) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA(2) exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA(2)-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA(2)-mediated surfactant hydrolysis. Three surfactant preparations were used containing varied amounts of SP-B and radiolabeled tracers of phosphatidylcholine (PC) or phosphatidylglycerol (PG): 1) washed ovine surfactant (OS) (pre- and postorganic extraction) compared with Survanta (protein poor), 2) Survanta supplemented with purified bovine SP-B (1-5%, wt/wt), and 3) a mixture of dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (DPPC:POPC:POPG, 40:40:20) prepared as vesicles and monomolecular films in the presence or absence of SP-B. Hydrolysis of PG and PC by Group IB sPLA(2) (PLA2G1A) was significantly lower in the extracted OS, which contains SP-B, compared with Survanta (P = 0.005), which is SP-B poor. Hydrolysis of PG and PC in nonextracted OS, which contains all SPs, was lower than both Survanta and extracted OS. When Survanta was supplemented with 1% SP-B, PG and PC hydrolysis by PLA2G1B was significantly lower (P < 0.001) than in Survanta alone. When supplemented into pure lipid vesicles and monomolecular films composed of PG and PC mixtures, SP-B also inhibited hydrolysis by both PLA2G1B and Group IIA sPLA2 (PLA2G2A). In films, PLA2G1B hydrolyzed surfactant PL monolayers at surface pressures ≤30 mN/m (P < 0.01), and SP-B lowered the surface pressure range at which hydrolysis can occur. These results suggest the hydrophobic SP, SP-B, protects alveolar surfactant PL from hydrolysis mediated by multiple sPLA(2) in both vesicles (alveolar subphase) and monomolecular films (air-liquid interface).  相似文献   

17.
The captive bubble tensiometer was employed to study interactions of phospholipid (PL) mixtures of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) at 50 microg/ml with physiological levels of the surfactant protein (SP) A SP-B, and SP-C alone and in combination at 37 degrees C. All surfactant proteins enhanced lipid adsorption to equilibrium surface tension (gamma), with SP-C being most effective. Kinetics were consistent with the presence of two adsorption phases. Under the conditions employed, SP-A did not affect the rate of film formation in the presence of SP-B or SP-C. Little difference in gamma(min) was observed between the acidic POPG and the neutral POPC systems with SP-B or SP-C with and without SP-A. However, gamma(max) was lower with the acidic POPG system during dynamic, but not during quasi-static, cycling. Considerably lower compression ratios were required to generate low gamma(min) values with SP-B than SP-C. DPPC-POPG-SP-B was superior to the neutral POPC-SP-B system. Although SP-A had little effect on film formation with SP-B, surface activity during compression was enhanced with both PL systems. In the presence of SP-C, lower compression ratios were required with the acidic system, and with this mixture, SP-A addition adversely affected surface activity. The results suggest specific interactions between SP-B and phosphatidylglycerol, and between SP-B and SP-A. These observations are consistent with the presence of a surface-associated surfactant reservoir which is involved in generating low gamma during film compression and lipid respreading during film expansion.  相似文献   

18.
This study focused on two hydrophobic fractions (HF-A and HF-B) isolated from porcine lung surfactant (LS) that had similar phospholipid composition, but HF-A consisted of the hydrophobic LS specific proteins (SP-B and SP-C), in contrast to HF-B. Monolayers spread in a Langmuir trough were formed at the air/water interface of both fractions and the rate of adsorption-desorption and the respreading potential of the LS constituents was studied during six consecutive compression/decompression cycles of the monolayers. By drawing a comparison between the behavior of HF-A and HF-B monolayers on the subphase of 150 mm NaCl, either with or without additional Ca2+, we estimated the role of hydrophobic LS proteins and Ca2+ ions for LS surface activity. The results demonstrated much higher ability of the HF-A sample, compared to HF-B, to maintain lower surface tension (γ) during monolayer compression and its better respreading capacity during decompression. For instance, at a surface concentration corresponding to 80 Å2 per phospholipid molecule, the HF-A monolayers showed a much lower γ max value (surface tension at 100% of the trough area), being ca. 31.0 mN/m, compared to the HF-B monolayers (γ max? 62.0 mN/m). The surface tension after compression to 20% of the initial area (γ min) reached ca. 7.0 and 19.0 mN/m in the HF-A and HF-B monolayers, respectively. Better respreading of the HF-A monolayers compared to the HF-B monolayers was due to the faster adsorption and spreading of LS phospholipids during decompression, facilitated by the hydrophobic proteins. As the phospholipid composition of both fractions was similar, we showed that the hydrophobic surfactant proteins were responsible also for the prevention of the irreversible loss of material from the surface during monolayer compression/decompression. The effects observed demonstrated also that the hydrophobic surfactant proteins were the stronger determinant, compared with Ca2+ ions, for the surface tension decrease and respreading of the monolayers during film compression/decompression. For instance, when the HF-A monolayers were spread on a subphase with an additional 5 mm Ca2+ ion content, no significant changes were detected in the γ min and γ max values between the first and sixth cycle, compared to the monolayers spread on a subphase of 150 mm NaCl only. However, in the absence of positively charged SP-B and SP-C (HF-B sample) in highly compressed monolayers, Ca2+ ions were able to cause the effects shown by SP-B and SP-C, although to a less extent. The role of the electrostatic and hydrophobic interactions is discussed for the better respreading of LS components in the presence of LS proteins and Ca2+ ions.  相似文献   

19.
Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations.  相似文献   

20.
Surfactant protein B (SP-B) is a hydrophobic, 79 amino acid peptide that regulates the structure and function of surfactant phospholipid membranes in the airspaces of the lung. Addition of SP-B to liposomes composed of DPPC/PG (7:3) leads to membrane binding, destabilization, and fusion, ultimately resulting in rearrangement of membrane structure. The goal of this study was to map the fusogenic and lytic domains of SP-B and assess the effects of altered fusion and lysis on surface activity. Synthetic peptides were generated to predicted helices and/or interhelical loops of SP-B and tested for fusion, lytic, and surface activities. The N-terminal half of SP-B (residues 1-37), which includes the nonhelical N-terminal amino acids in addition to helices 1 and 2, promoted rapid liposome fusion whereas shorter peptides were significantly less effective. The requirements for optimal surface tension reduction were similar to those for fusion; in contrast, helix 1 (residues 7-22) alone was sufficient for liposome lysis. The C-terminal half of SP-B (residues 43-79), which includes helices 3, 4, and 5, exhibited significantly lower levels of fusogenic, lytic, and surface tension reducing activities compared to the N-terminal region. These results indicate that SP-B fusion, lytic and surface activities map predominantly to the N-terminal half of SP-B. Amino acid substitutions in synthetic peptides corresponding to the N-terminal half of SP-B indicated that, in general, decreased fusion or lytic activities were associated with altered surface tension reducing properties of the peptide. However, the presence of fusion and lytic activities alone could not account for the surface tension reducing property of SP-B. We propose a model in which association of helix 1 with lipids leads to membrane permeabilization but not aggregation; helix 2 mediates membrane cross-linking (aggregation), which, in turn, facilitates lipid mixing, membrane fusion, and interfacial adsorption/surface tension reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号