首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybrid human-murine major histocompatibility antigens have been constructed and expressed on the surface of both human RD and murine L cell lines after DNA mediated gene transfer. These antigens linked the polymorphic domains (alpha 1 and alpha 2) of H-2Kb and the carboxy-terminal domains (alpha 3, transmembrane, and intracellular) of HLA-A2. Previously we demonstrated that these antigens were serologically intact and were recognized by allospecific cytolytic T lymphocytes. However, the cell lines expressing the hybrid antigen were less well lysed than the native H-2Kb expressing cell lines. In this study, we extend these observations and demonstrate that virally restricted cytolytic T lymphocytes specific for vesicular stomatitis virus and for Sendai virus can recognize cell lines expressing the hybrid antigen, whether expressed on murine (L cell) or human (RD cell) lines. Furthermore, the data show a profound influence by the carboxy-terminal domains upon the polymorphic T-cell restricting epitopes.  相似文献   

2.
Allogeneic T cell activation triggering by MHC class I antigens   总被引:2,自引:0,他引:2  
The role of MHC-encoded class I molecules in allogeneic activation and proliferation of human T lymphocytes was investigated. The study was performed by using primary mixed culture of lymphocytes from MHC recombinant siblings identical for MHC class II Ag (DR, DP, DQ) and displaying MHC class I disparity. The results indicate that such allogeneic combination is sufficient to trigger early activation steps within responder T cells without promoting a significant proliferation. After MHC class I allosensitization, a significant proportion of cells entered the cell cycle (G0----G1). The stimulatory potential of MHC class I Ag was further stressed by the specific induction on responder cells of IL-2R (22% T cell activation Ag positive). Under the same experimental conditions, transferrin receptor expression and IL-2 activity were not detectable. This is consistent with the low T cell proliferation. Exogenous rIL-1 did not improve IL-2 production and the subsequent T cell proliferation indicating that these two events were not associated with a defective accessory cell function involving IL-1 release. MHC class I disparity can also prime precursor CTL to differentiate into IL-2-dependent functional MHC restricted cytotoxic T cells. Conversely IFN-gamma had no effect. Addition to the culture of W6/32, a mAb specifically directed against a monomorphic determinant on human class I HLA-A, -B, and -C Ag was able to block all these activation events. These data clearly indicate a role of HLA class I Ag involvement in the early events triggering allogeneic T cell activation.  相似文献   

3.
T cell recognition of peptide-MHC is highly specific and is sensitive to very low levels of agonist peptide; however, it is unclear how this effect is achieved or regulated. In this study we show that clustering class I MHC molecules on the cell surface of B lymphoblasts enhances their recognition by mouse and human T cells. We increased clustering of MHC I molecules by two methods, cholesterol depletion and direct cross-linking of a dimerizable MHC construct. Imaging showed that both treatments increased the size and intensity of MHC clusters on the cell surface. Enlarged clusters correlated with enhanced lysis and T cell effector function. Enhancements were peptide-specific and greatest at low concentrations of peptide. Clustering MHC class I enhanced recognition of both strong and weak agonists but not null peptide. Our results indicate that the lateral organization of MHC class I on the cell surface can modulate the sensitivity of T cell recognition of agonist peptide.  相似文献   

4.
CTL lines were established in vitro by stimulating patient lymphocytes with autologous melanoma cells in the presence of IL-2. Resulting CTL lines lysed autologous melanoma and failed to lyse several allogeneic melanomas or K562. The mechanism of target cell recognition by autologous tumor-specific CTL was evaluated in this system, using several CTL lines: DT6, DT105, DT141, DT166, DT169, and DT179. Autologous melanoma lysis was inhibited by W6/32, mAb directed against HLA class I Ag, but not by L243, mAb directed against HLA class II Ag. CTL from DT6, DT141, DT166, DT169, and DT179 lysed fresh and cultured allogeneic melanomas, which shared the HLA-A2 Ag, but failed to lyse allogeneic melanomas, which shared B-region or C-region Ag, or shared no HLA class I Ag. CTL from DM141 lysed DM93, which shared A2 and Bw6, but failed to lyse DM105, which shared only Bw6. DM105 CTL failed to lyse allogeneic melanomas that shared HLA-A1, or that shared B or C region Ag, but they did lyse allogeneic melanoma DM49, which expressed an A region Ag that either was A10 or was serologically cross-reactive with A10. A T cell leukemia line, three EBV transformed B cell lines, and a pancreatic cancer line, all of which expressed HLA-A2, were not lysed by DM6 or DM179 CTL. Furthermore, HLA-matched nonmelanomas failed to inhibit autologous tumor lysis in cold target inhibition assays, whereas an HLA-A2+ allogeneic melanoma, DM93, inhibited autologous tumor lysis as effectively as the autologous tumor itself. HLA-A2, and possibly other HLA-A-region Ag, appear to function in HLA-restricted recognition of shared melanoma associated Ag by CTL.  相似文献   

5.
Cytotoxic T lymphocyte (CTL) recognition sites on class I major histocompatibility complex molecules have been investigated by several laboratories by using cloned genes expressed on mouse L cells by DNA-mediated gene transfer. Recombinant genes, constructed by restriction endonuclease treatment of cloned H-2Dd and Ld genes and exchange of the N and C1 exons (exon shuffling) have provided an additional tool. These hybrid H-2 molecules expressed on L cells have been used as targets to achieve more precise localization of site(s) recognized by allospecific and virus-specific CTLs. CTL systems were chosen that limit recognition to either the Dd or Ld alloantigen or to virus and Dd or Ld complexes. Using this approach, we were able to map essential restricting site(s) to the N and/or C1 domains. Additional evidence is presented that the cytoplasmic tail of H-2 may be involved in interactions with some viral antigens and effect the formation of an immunogenic complex.  相似文献   

6.
7.
Acid-sensitive liposomes have been developed for cytosolic delivery of encapsulated substances. We now demonstrate delivery of liposome-encapsulated Ag into the class I MHC Ag processing pathway in peritoneal macrophages in vitro using several types of acid-sensitive liposomes, including those composed of dioleoylphosphatidylethanolamine (DOPE)/palmitoylhomocysteine, DOPE/cholesterol hemisuccinate, DOPE/dioleoylsuccinylglycerol, and DOPE/dipalmitoylsuccinylglycerol. Our previous studies showed that acid-resistant liposomes (dioleoylphosphatidylcholine/dioleoylphosphatidylserine) did not engender class I-mediated presentation in vitro. However, in vivo immunization with OVA encapsulated in acid-resistant as well as acid-sensitive liposomes generated class I MHC-restricted T cell responses, as determined by subsequent in vitro cytotoxicity assays using OVA-transfected target cells. Target lysis by these cells was OVA- and class I MHC (Kb)-specific. This response was not generated by immunization with equivalent amounts of soluble OVA. Thus, a pathway for in vivo class I processing of Ag encapsulated in acid-resistant liposomes has been missed in vitro, perhaps because it is dependent on specific populations of APC or interactions between cells that have not been reconstituted in vitro. This pathway may explain the ability of many exogenous particulate Ag (liposomes, bacteria, parasites, and mammalian cells) to generate class I MHC-restricted T cell responses.  相似文献   

8.
T cell recognition of nonpolymorphic determinants on H-2 class I molecules   总被引:2,自引:0,他引:2  
Recognition of polymorphic determinants on class I or class II MHC Ag is required for T lymphocyte responses. Using cell-size artificial membranes (pseudocytes) bearing H-2 class I Ag it is demonstrated that T cells can, in addition, recognize nonpolymorphic determinants on class I proteins. Pseudocytes bearing class I alloantigen stimulate in vitro generation of secondary allogeneic CTL responses. At a suboptimal alloantigen surface density, incorporation of class I molecules identical to those of the responder cells (self-H-2) or from third-party cells resulted in dramatically enhanced responses, whereas incorporation of class II proteins had no effect. The receptor that mediates recognition of conserved class I determinants has not been identified, but results of antibody blocking studies are consistent with the Lyt-2/3 complex of CTL having this role. Thus, class I proteins on Ag-bearing cells can have two distinct roles in T cell activation, one involving recognition of polymorphic determinants by the Ag-specific receptor and the other involving recognition of conserved determinants.  相似文献   

9.
The present work demonstrates that antibody-induced cross-linking of MHC class I antigens on Jurkat T lymphoma cells leads to a rise in intracellular calcium (Cai2+) and, in the presence of phorbol ester (PMA), to IL-2 production and IL-2 receptor expression. The rise in Cai2+ exhibited a profile very different from that obtained after anti-CD3 antibody-induced activation suggesting that activation signals are transduced differently after binding of anti-CD3 antibody and class I cross-linking, respectively. However, when Cai2+ was examined in individual Jurkat cells by means of a digital image processing system no differences were observed after cross-linking with anti-CD3 and anti-MHC class I antibodies, respectively. Two CD3-negative mutant lymphoma lines were nearly totally refractory to class I cross-linking. Taken together our results may indicate the existence of a functional linkage between the T cell receptor complex and MHC class I molecules.  相似文献   

10.
IFN-gamma is an immunomodulatory agent which is known to induce or enhance the expression of class II histocompatibility Ag (Ia Ag) on many lymphoid cells and cell lines of diverse origin. However, we have observed that IFN-gamma did not induce the expression of Ia Ag on Ia- human T cell lines. Neither did IFN-gamma enhance the expression of Ia Ag on Ia+ T cells. However, IFN-gamma was able to enhance the expression of class I histocompatibility Ag (HLA-A,B,C Ag) on a number of the T cell lines tested. Experiments with 125I-labeled IFN-gamma showed a relatively small degree of specific binding to these T cell lines. More extensive studies on two of the T cell lines demonstrated 1000 and 2600 IFN-gamma binding receptor sites/cell and binding affinities of 4.0 X 10(-10) M and 7.3 X 10(-10) M. Thus, although IFN-gamma can bind to human T cell lines and enhance class I histocompatibility Ag on these cells, IFN-gamma alone does not appear to regulate expression of class II histocompatibility Ag on T cell lines.  相似文献   

11.
Monospecific T cell clones have been proven to be powerful tools for the characterization of T cell recognition in many Ag-specific as well as allo-specific T cell responses. In this report, in order to elucidate the mechanism of T cell recognition of minor stimulating locus Ag (Mlsc) determinants, Mlsc-specific cloned T cells were employed together with primary T cell responses to clarify the role of MHC-gene products in Mlsc-specific T cell recognition. The results indicated that T cells recognize Mlsc determinants in conjunction with I-region MHC gene products. Moreover, certain MHC haplotypes (e.g., H-2a and H-2k) appear to function efficiently in the "presentation" of Mlsc, whereas other haplotypes (e.g., H-2b and H-2q) function poorly if at all in presenting Mlsc. Experiments with the use of stimulators derived from F1 hybrids between the low stimulatory H-2b, Mlsc strain, C3H.SW, and a panel of Mlsb, H-2-different or intra-H-2 recombinant strains strongly suggested that expression of E alpha E beta molecules on stimulators plays a critical role for Mlsc stimulation. The functional importance of the E alpha E beta product in Mlsc recognition was further demonstrated by the ability of anti-E alpha monoclonal antibody to inhibit the response of cloned Mlsc-specific T cells. Inhibition of the same Mlsc-specific response by anti-A beta k antibody suggests that the A beta product may also play a role in T cell responses to Mlsc.  相似文献   

12.
The alpha 1 and alpha 2 domains of the class I MHC molecule constitute the putative binding site for processed peptides and the TCR, although the alpha 3 domain has been implicated as a binding site for the CD8 molecule. Species specificity in the binding of CD8 to the alpha 3 domain has been suggested as an explanation for the low xenogeneic T cell response to class I molecules, but results on this point have been conflicting and controversial. We have addressed this issue using CTL lines from HLA-A2.1 transgenic mice that specifically recognize and lyse A2.1-expressing cells infected with influenza A/PR/8 or pulsed with influenza matrix peptide M1(57-68). Species specificity was examined using transfectants that expressed hybrid molecules containing the alpha 1 and alpha 2 domains from HLA-A2.1 and the alpha 3 domain from a murine class I molecule. Lower levels of M1(57-68) peptide were required to sensitize L cell transfectants expressing a chimera that contained an H-2Dd alpha 3 domain than targets expressing the intact A2.1 molecule. However, at high doses of peptide, lysis of these two targets was similar. However, no reproducible difference in sensitization was observed using EL4 or Jurkat transfectants expressing A2.1 or A2.1 chimeric molecules that contained an H-2Kb alpha 3 domain. In all cases, however, lysis of peptide-pulsed A2.1 expressing targets was more sensitive to inhibition with anti-CD8 mAb than lysis of cells expressing these chimeric molecules. Thus, under suboptimal conditions such as low Ag density or in the presence of anti-CD8 mAb, these CTL preferentially recognize class I molecules with a murine alpha 3 domain. This suggests that there is some species specificity in the interaction of CD8 with the alpha 3 domain of the class I molecule. However, CTL recognition was inhibited by point mutations in the alpha 3 domain of HLA-A2.1 that have been shown to inhibit binding of human CD8 and recognition by human CTL, suggesting that murine CD8 interacts to some degree with human alpha 3 domains, and that similar alpha 3 domain residues may be important for murine and human CD8 binding. The relevance of these results to an understanding of low xenogeneic responses is discussed.  相似文献   

13.
Previously, we described H-2K(bW9) (K(bW9)), an engineered variant of the murine MHC class I molecule H-2K(b) (K(b)), devoid of the central anchor ("C") pocket owing to a point mutation on the floor of the peptide binding site; this substitution drastically altered selection of bound peptides, such that the peptide repertoires of K(b) and K(bW9) are largely nonoverlapping in vivo. On the basis of these observations, we used K(bW9) and K(b) to revisit the role of peptides in alloreactive T cell recognition. We first compared Ab and TCR recognition of K(bW9) and K(b). Six of six K(b)-specific mAbs, directed against different parts of the molecule, recognized K(bW9) well, albeit at different levels than K(b). Furthermore, K(bW9) readily served as a restriction element for a peptide-specific syngeneic CTL response. Therefore, K(bW9) mutation did not result in gross distortions of the TCR-interacting surface of class I, which was comparable between K(b) and K(bW9). Interestingly, when K(bW9) was used to stimulate allogeneic T cells, it induced an infrequent CTL population that cross-reacted against K(b) and was specific for peptide-independent MHC epitopes. By contrast, K(b)-induced alloreactive CTLs recognized K(b) in a peptide-specific manner, did not cross-react on K(bW9), and were present at much higher frequencies than those induced by K(bW9). Thus, induction of rare peptide-independent CTLs depended on unique structural features of K(bW9), likely due to the elevated floor of the peptide-binding groove and the consequent protruding position of the peptide. These results shed new light on the relationship between TCR and peptide-MHC complex in peptide-independent allorecognition.  相似文献   

14.
The T4 molecule has been identified as a marker of human T cell differentiation, but the function of this molecule remains to be defined. We have investigated its possible functional involvement in T cell proliferative responses to class II HLA antigens encoded by the recently described SB locus. The responses of SB-primed cells (specific for each of four different SB antigens) were studied with the use of two proliferation-inducing stimuli, SB antigen or TCGF. The proliferative responses to both stimuli were found to be mediated by T4+, T8- cells. Monoclonal antibodies against some epitopes on the T4 molecule (OKT4A and OKT4B) substantially blocked antigen-stimulated proliferative responses; antibodies against other epitopes of the T4 molecule (OKT4, T4C, T4D) blocked less well. Inhibition of SB-specific proliferation by antibodies to the T4 molecule was maximal only when the antibodies were incubated with the responder cells before the addition of stimulator cells. Proliferative responses of SB-primed cells stimulated with TCGF alone were not inhibited by any of the OKT4-related antibodies, but were completely inhibited by the anti-Tac monoclonal antibody, which reacts with the TCGF receptor. These results lend further support for the hypothesis that the T4 molecule is involved in T cell recognition of and/or activation by class II HLA antigens. We suggest that 1) the T4 molecule binds a nonpolymorphic epitope on class II HLA molecules, and 2) this interaction may facilitate, but not be an obligate requirement for, T cell activation by class II antigens.  相似文献   

15.
Cytotoxic T lymphocyte recognition of secreted HLA class I molecules   总被引:1,自引:0,他引:1  
The cytolytic responses of DBA/2 mice against syngeneic transfected P815 mastocytoma cells expressing either membrane-associated (HLA-Cw3) or -secreted hybrid (HLA-Cw3 x H-2 Q10b) molecules were compared. In spite of the absence of serologically detectable hybrid molecules on their plasma membrane, cells secreting these molecules elicited a CTL response similar to that of cells expressing the membrane associated HLA-Cw3 molecules, in terms of both MHC-restriction and peptide specificity. Together with the observation that syngeneic mice were capable of rejecting the injected secreting cells, these results imply that secreted HLA class I molecules can function as minor histocompatibility Ag and suggest that processing of both the membrane-bound and the -secreted forms of a protein may follow common or overlapping pathways.  相似文献   

16.
Within 2-4 h of interaction of parental spleen cells from naive mice or of their supernates with alloantigen-bearing F1 hybrid spleen cells, a factor called soluble early product of immune recognition (SEPIR) is secreted. SEPIR could be revealed by its ability to enhance mixed leukocyte cultures (MLC) set up in suboptimal conditions. The factor appears to be generated by parental strain T but not B lymphocytes, is active at low concentration and acts in a pulse-like fashion. Its formation is triggered by unstimulated T cells reacting with H-2 antigens; no cytokine activity of IL 1, IL 2 or interferon character could be detected. It is suggested that the formation of SEPIR within the first few hours of MLC interaction is critically related to the further development of alloantigen-driven T cell proliferation. SEPIR might thus be the earliest discernible product of alloimmune recognition.  相似文献   

17.
An interspecies class I MHC molecule, Kb1+2/A2 (in which the alpha-1 and alpha-2 domains of the H-2Kb molecule have been linked to the alpha-3, transmembrane and intracytoplasmic domains of the HLA-A2 molecule) has been expressed on both human and mouse target cells by gene transfer. Maintenance of serologic determinants has been demonstrated. However, decreased lysis by allospecific CTL populations of cell lines that expressed a hybrid interspecies class I molecule, Kb1+2/A2, as compared with lines that expressed the native Ag, H-2Kb, has been described. An analysis with a limited panel of H-2Kb allospecific clones demonstrated that not all H-2Kb-specific CTL can lyse cells that express Kb1+2/A2 Ag. This suggested that the reduction of lysis by CTL populations was due to the loss of specific alloreactive clones in the population. Each clone used in this study was then defined as having high or low affinity characteristics. No correlation between the affinity of the CTL and the ability to recognize the interspecies hybrid molecule could be shown. Rather, these data suggest that antigenic determinants that are located within the polymorphic domains, alpha-1 and alpha-2, may be conformationally influenced by the alpha-3 domain.  相似文献   

18.
NK T cells are a T cell subset in the human that express an invariant alpha-chain (V alpha 24invt T cells). Because of the well-described immunomodulation by glucocorticoids on activation-induced cell death (AICD), the effects of dexamethasone and anti-CD3 stimulation on V alpha 24invt T cell clones and CD4+ T cell clones were investigated. Dexamethasone significantly enhanced anti-CD3-mediated proliferation of V alpha 24invt T cells, whereas CD4+ T cells were inhibited. Addition of neutralizing IL-2 Ab partially abrogated dexamethasone-induced potentiation of V alpha 24invt T cell proliferation, indicating a role for autocrine IL-2 production in corticosteroid-mediated proliferative augmentation. Dexamethasone treatment of anti-CD3-stimulated V alpha 24invt T cells did not synergize with anti-Fas blockade in enhancing proliferation or preventing AICD. The V alpha 24invt T cell response to dexamethasone was dependent on the TCR signal strength. In the presence of dexamethasone, lower doses of anti-CD3 inhibited proliferation of V alpha 24invt T cells and CD4+ T cells; at higher doses of anti-CD3, which caused inhibition of CD4+ T cells, the V alpha 24invt T cell clones proliferated and were rescued from AICD. These results demonstrate significant differences in TCR signal strength required between V alpha 24invt T cells and CD4+ cells, and suggest important immunomodulatory consequences for endogenous and exogenous corticosteroids in immune responses.  相似文献   

19.
Clostridium histolyticum type I collagenase (ColG) has a segmental structure, S1+S2+S3a+S3b. S3a and S3b bound to insoluble collagen, but S2 did not, thus indicating that S3 forms a collagen-binding domain (CBD). Because S3a+S3b showed the most efficient binding to substrate, cooperative binding by both domains was suggested for the enzyme. Monomeric (S3b) and tandem (S3a+S3b) CBDs bound to atelocollagen, which contains only the collagenous region. However, they did not bind to telopeptides immobilized on Sepharose beads. These results suggested that the binding site(s) for the CBD is(are) present in the collagenous region. The CBD bound to immobilized collagenous peptides, (Pro-Hyp-Gly)(n) and (Pro-Pro-Gly)(n), only when n is large enough to allow the peptides to have a triple-helical conformation. They did not bind to various peptides with similar amino acid sequences or to gelatin, which lacks a triple-helical conformation. The CBD did not bind to immobilized Glc-Gal disaccharide, which is attached to the side chains of hydroxylysine residues in the collagenous region. These observations suggested that the CBD specifically recognizes the triple-helical conformation made by three polypeptide chains in the collagenous region.  相似文献   

20.
The monomorphic anti-HLA Class I monoclonal antibody 01.65 inhibits the incorporation of tritiated thymidine ([3H]TdR) in Phytohemagglutinin (PHA)-activated human T lymphocytes. Our data indicate that 01.65 affects the average duration of the cell cycle by increasing the length of the early S subphase. As a consequence of the increase in the doubling time of the cell population, the absolute number of cells at harvesting time was reduced in 01.65-treated cultures compared to that of untreated cultures. The lengthening of the S-phase and the decrease in the cell number can together quantitatively account for the reduction of [3H]TdR incorporation observed in 01.65-treated cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号