首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The ECL cells in the oxyntic mucosa of rat stomach produce histamine and chromogranin A-derived peptides such as pancreastatin. The cells respond to gastrin via cholecystokinin-2 (CCK2) receptors. A CCK2 receptor blockade was induced by treatment (for up to 8 weeks) with two receptor antagonists, YM022 and YF476. Changes in ECL-cell morphology were examined by immunocytochemistry and electron microscopy, while changes in ECL cell-related biochemical parameters were monitored by measuring serum pancreastatin and oxyntic mucosal pancreastatin, and histamine concentrations, and histidine decarboxylase (HDC) activity. The CCK2 receptor blockade reduced the ECL-cell density only marginally, if at all, but transformed the ECL cells from slender, elongated cells with prominent projections to small, spherical cells without projections. The Golgi complex and the rough endoplasmic reticulum were diminished. Secretory vesicles were greatly reduced in volume density in the trans Golgi area. Circulating pancreastatin concentration and oxyntic mucosal HDC activity were lowered within a few hours. Oxyntic mucosal histamine and pancreastatin concentrations were reduced only gradually. The CCK2 receptor blockade was found to prevent the effects of omeprazole-evoked hypergastrinaemia on the ECL-cell activity and density. In conclusion, gastrin, acting on CCK2 receptors, is needed to maintain the shape, size and activity of the ECL cells, but not for maintaining the ECL-cell population.  相似文献   

2.
3.
Histamine-producing ECL cells and ghrelin-producing A-like cells are endocrine/paracrine cell populations in the acid-producing part of the rat stomach. While the A-like cells operate independently of gastrin, the ECL cells respond to gastrin with mobilization of histamine and chromogranin A (CGA)-derived peptides, such as pancreastatin. Gastrin is often assumed to be the driving force behind the postnatal development of the gastric mucosa in general and the ECL cells in particular. We tested this assumption by examining the oxyntic mucosa (with ECL cells and A-like cells) in developing rats under the influence of YF476, a cholecystokinin-2 (CCK(2)) receptor antagonist. The drug was administered by weekly subcutaneous injections starting at birth. The body weight gain was not affected. Weaning occurred at days 15-22 in both YF476-treated and age-matched control rats. Circulating gastrin was low at birth and reached adult levels 2 weeks after birth. During and after weaning (but not before), YF476 greatly raised the serum gastrin concentration (because of abolished acid feedback inhibition of gastrin release). The weight of the stomach was unaffected by YF476 during the first 2-3 weeks after birth. From 4 to 5 weeks of age, the weight and thickness of the gastric mucosa were lower in YF476-treated rats than in controls. Pancreastatin-immunoreactive cells (i.e. all endocrine cells in the stomach) and ghrelin-immunoreactive cells (A-like cells) were few at birth and increased gradually in number until 6-8 weeks of age (control rats). At first, YF476 did not affect the development of the pancreastatin-immunoreactive cells, but a few weeks after weaning, the cells were fewer in the YF476 rats. The ECL-cell parameters (oxyntic mucosal histamine and pancreastatin concentrations, the histidine decarboxylase (HDC) activity, the HDC mRNA levels and serum pancreastatin concentration) increased slowly until weaning in both YF476-treated and control rats. From then on, there was a further increase in the ECL-cell parameters in control rats but not in YF476 rats. The postnatal development of the ghrelin cells (i.e. the A-like cells) and of the A-like cell parameters (the oxyntic mucosal ghrelin concentration and the serum ghrelin concentrations) was not affected by YF476 at any point.We conclude that gastrin affects neither the oxyntic mucosa nor the endocrine cells before weaning. After weaning, CCK(2) receptor blockade is associated with a somewhat impaired development of the oxyntic mucosa and the ECL cells. While gastrin stimulation is of crucial importance for the onset of acid secretion during weaning and for the activation of ECL-cell histamine formation and secretion, the mucosal and ECL-cell growth at this stage is only partly gastrin-dependent. In contrast, the development of the A-like cells is independent of gastrin at all stages.  相似文献   

4.
Rat stomach ECL cells are rich in histamine and chromogranin A-derived peptides, such as pancreastatin. Gastrin causes the parietal cells to secrete acid by flooding them with histamine from the ECL cells. In the past, gastric histamine release has been studied using anaesthetized, surgically manipulated animals or isolated gastric mucosa, glands or ECL cells. We monitored gastric histamine mobilization in intact conscious rats by subjecting them to gastric submucosal microdialysis. A microdialysis probe was implanted into the submucosa of the acid-producing part of the stomach (day 1). The rats had access to food and water or were deprived of food (48 h), starting on day 2 after implantation of the probe. On day 4, the rats received food or gastrin (intravenous infusion), and sampling of microdialysate commenced. Samples (flow rate 1.2 microl min(-1)) were collected every 20 or 60 min, and the histamine and pancreastatin concentrations were determined. The serum gastrin concentration was determined in tail vein blood. Exogenous gastrin (4-h infusion) raised microdialysate histamine and pancreastatin dose-dependently. This effect was prevented by gastrin receptor blockade (YM022). Depletion of ECL-cell histamine by alpha-fluoromethylhistidine, an irreversible inhibitor of the histamine-forming enzyme, suppressed the gastrin-evoked release of histamine but not that of pancreastatin. Fasting lowered serum gastrin and microdialysate histamine by 50%, while refeeding raised serum gastrin and microdialysate histamine and pancreastatin 3-fold. We conclude that histamine mobilized by gastrin and food intake derives from ECL cells because: 1) Histamine and pancreastatin were released concomitantly, 2) histamine mobilization following gastrin or food intake was prevented by gastrin receptor blockade, and 3) mobilization of histamine (but not pancreastatin) was abolished by alpha-fluoromethylhistidine. Hence, gastric submucosal microdialysis allows us to monitor the mobilization of ECL-cell histamine in intact conscious rats under various experimental conditions not previously accessible to study. While gastrin receptor blockade lowered post-prandial release of ECL-cell histamine by about 80%, unilateral vagotomy reduced post-prandial mobilization of ECL-cell histamine by about 50%. Hence, both gastrin and vagal excitation contribute to the post-prandial release of ECL-cell histamine.  相似文献   

5.
In the oxyntic mucosa of the mammalian stomach, histamine is stored in ECL cells and in mucosal mast cells. In the rat, at least 80 percent of oxyntic mucosal histamine resides in the ECL cells. Histamine is a key factor in the regulation of gastric acid secretion. Following depletion of ECL-cell histamine by treatment with alpha-fluoromethylhistidine (alpha-FMH), basal acid secretion was reduced, and gastrin-stimulated acid secretion was abolished. Vagally-induced acid secretion (by insulin injection or pylorus ligation) was unaffected by alpha-FMH treatment but inhibited by an H2 antagonist. These results suggest that gastrin stimulates acid secretion via release of ECL-cell histamine, whereas vagally-induced acid secretion--although histamine-dependent--does not rely on ECL-cell histamine. Gastrin is known to have a trophic effect on the oxyntic mucosa. By combining long-term hypergastrinemia with continuous infusion of alpha-FMH, we were able to show that gastrin-evoked trophic effects in the stomach do not depend on ECL-cell histamine.  相似文献   

6.
The enterochromaffin-like (ECL) cells of the oxyntic mucosa (fundus) of the stomach produce, store and secrete histamine, chromogranin A-derived peptides such as pancreastatin, and an unanticipated but as yet unidentified peptide hormone. The cells are stimulated by gastrin and pituitary adenylate cyclase activating peptide and suppressed by somatostatin and galanin. Choline esters and histamine seem to be without effect on ECL cell secretion. The existence of a gastrin-ECL cell axis not only explains how gastrin stimulates acid secretion but also may help to explore the functional significance of the ECL cells with respect to the nature and bioactivity of its peptide hormone. From the results of studies of gastrectomized/fundectomized and gastrin-treated rats, it has been speculated that the anticipated ECL-cell peptide hormone acts on bone metabolism.  相似文献   

7.
8.
9.
Many physiological functions of the stomach depend on an intact mucosal integrity; function reflects structure and vice versa. Histamine in the stomach is synthesized by histidine decarboxylase (HDC), stored in enterochromaffin-like (ECL) cells, and released in response to gastrin, acting on CCK(2) receptors on the ECL cells. Mobilized ECL cell histamine stimulates histamine H(2) receptors on the parietal cells, resulting in acid secretion. The parietal cells express H(2), M(3), and CCK(2) receptors and somatostatin sst(2) receptors. This review discusses the consequences of disrupting genes that are important for ECL cell histamine release and synthesis (HDC, gastrin, and CCK(2) receptor genes) and genes that are important for "cross-talk" between H(2) receptors and other receptors on the parietal cell (CCK(2), M(3), and sst(2) receptors). Such analysis may provide insight into the functional significance of gastric histamine.  相似文献   

10.
Gastrin is one of the main factors controlling enterochromaffin-like (ECL) cell endocrine function and growth. Long-standing hypergastrinemia may give rise to ECL cell carcinoids in the gastric corpus in man and in experimental models. We have analysed the expression and function of CCK-B/gastrin receptors in normal ECL cells and in ECL cell tumours (gastric carcinoids) of the African rodent Mastomys natalensis. Hypergastrinemia induced by short-term (5 days) histamine2-receptor blockade (loxtidine) resulted in increased histidine decarboxylase (HDC) mRNA expression in the gastric oxyntic mucosa. This increase was significantly and dose-dependently reversed by selective CCK-B/gastrin receptor blockade (YM022). Long-term (12 months) hypergastrinemia, induced by histamine2-receptor blockade, gave rise to ECL cell carcinoids in the gastric oxyntic mucosa. CCK-B/gastrin receptor mRNA was only slightly elevated while HDC mRNA expression was eight-fold elevated in ECL cell carcinoids and was not influenced by CCK-B/gastrin receptor blockade. Thus CCK-B/gastrin receptor blockade of hypergastrinemic animals reduces the HDC mRNA expression in normal mucosa but not in ECL cell carcinoids. These results demonstrate that HDC mRNA expression in neoplastic ECL cells is not controlled by CCK-B/gastrin receptors.  相似文献   

11.
Histamine-containing enterochromaffin-like (ECL) cells are numerous in the gastric mucosa. They operate under the control of gastrin. ECL-cell tumors (gastric carcinoids) may arise as a consequence of sustained hypergastrinemia. For reasons unknown, such tumors have a female preponderance both in laboratory animals and humans. The present study consisted of four experiments exploring the possibility that gender-related factors might affect rat ECL cells. 1) A gender difference in terms of serum gastrin concentration and oxyntic mucosal histidine decarboxylase (HDC) activity appeared in Sprague-Dawley but not Wistar rats. Ultrastructural appearance of the ECL cells did not differ between genders. 2) During the different phases of the estrous cycle, the serum gastrin concentration, HDC activity and histamine concentration did not change. 3) During pregnancy, the serum gastrin concentration was suppressed, while it was increased during lactation. The HDC activity and the histamine concentration of the oxyntic mucosa were correlated with the levels of circulating gastrin. 4) Twelve-month treatment with estrogen-like agents, dieldrin and/or toxaphene (alone or in combination) was without any effect on the ECL cells neither in male nor in female rats. In conclusion, the ECL cells are under the control of gastrin, but probably not hormones that involve in the estrous cycle and pregnancy and lactation in rats. Possible gender-related factors behind the female preponderance of ECL-cell tumors remain unknown.  相似文献   

12.
13.
ECL cells are endocrine/paracrine cells in the oxyntic mucosa. They produce, store and secrete histamine and chromogranin A-derived peptides such as pancreastatin. The regulation of ECL-cell secretion has been studied by several groups using purified ECL cells, isolated from rat stomachs. Reports from different laboratories often disagree. The purpose of the present study was to re-evaluate the discrepancies by studying histamine (or pancreastatin) secretion from standardized preparations of pure, well-functioning ECL cells. Cells from rat oxyntic mucosa were dispersed by pronase digestion, purified by repeated counter-flow elutriation and subjected to density gradient centrifugation. The final preparation consisted of more than 90% ECL cells (verified by histamine and/or histidine decarboxylase immunocytochemistry). They were maintained in primary culture for 48 h before they were exposed to candidate stimulants and inhibitors for 30 min after which the medium was collected for determination of mobilized histamine (or pancreastatin). Gastrin-17 and sulphated cholecystokinin octapeptide (CCK-8s) raised histamine secretion 4-fold, the EC(50) for both peptides being around 100 pM. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP-27) (5-fold increase) and the related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) (3-fold increase) mobilized histamine with similar potency (EC(50) ranging from 80 to 140 pM). Adrenaline, isoprenaline and terbutaline stimulated secretion by activating a beta2 receptor subtype, while acetylcholine and carbachol were without effect. Secretion experiments were invariably run in parallel with a gastrin standard curve. Somatostatin, prostaglandin E2 (PGE2) and the PGE1 congener misoprostol inhibited PACAP- and gastrin-stimulated secretion by more than 90%, with IC(50) values ranging from 90-720 (somatostatin) to 40-200 (misoprostol) pM. The neuropeptide galanin inhibited secretion by 60-70% with a potency similar to that of somatostatin. Proposed inhibitors such as peptide YY, neuropeptide Y and the cytokines interleukin 1-beta and tumor necrosis factor alpha induced at best a moderate inhibition of gastrin- or PACAP-stimulated secretion at high concentrations, while calcitonin gene-related peptide, pancreatic polypeptide and histamine itself were without effect. Inhibition of gastrin- or PACAP-stimulated secretion was routinely compared to a somatostatin standard curve. In conclusion, gastrin, PACAP, VIP/PHI and adrenaline stimulated secretion. Somatostatin and PGE2 were powerful inhibitors of both gastrin- and PACAP-stimulated secretion; although equally potent, galanin was less effective than somatostatin and PGE2.  相似文献   

14.
Histamine in the rat stomach resides in enterochromaffin-like (ECL) cells and mast cells. The ECL cells are peptide-hormone-producing endocrine cells known to release histamine and chromogranin-A-derived peptides (such as pancreastatin) in response to gastrin. Ischemia (induced by clamping of the celiac artery or by gastric submucosal microinfusion of the vasoconstrictor endothelin) mobilizes large amounts of ECL-cell histamine in a burst-like manner. This report examines the ECL-cell response to ischemia and compares it with that induced by gastrin in rats. Arterial clamping (30 min) and gastric submucosal microinfusion (3 h) of endothelin, vasopressin, or adrenaline caused ischemia, manifested as a raised lactate/pyruvate ratio and mucosal damage. Whereas microinfusion of gastrin released both histamine and pancreastatin, ischemia mobilized histamine only. The mucosal concentrations of histamine and pancreastatin, the number and immunostaining intensity of the ECL cells, and the ultrastructure of the ECL cells were unchanged following ischemia. The long-term effects of ischemia and reperfusion (60-90 min) on gastric mucosa were examined in rats treated with the proton pump inhibitor omeprazole for 4 days. The activity of the ECL cells was suppressed (reflected in low histamine-forming capacity) but returned to normal within 1 week, illustrating the ability of the ECL cells to recover. We suggest that ischemia mobilizes cytosolic ECL-cell histamine without affecting the storage of histamine (and pancreastatin) in the secretory organelles and without causing lasting ECL-cell impairment.  相似文献   

15.
The enterochromaffin-like (ECL) cells represent the predominant endocrine cell population in the acid-producing part of the stomach of both experimental animals and man. These cells actively produce and store histamine in addition to an anticipated but as yet unidentified peptide hormone and are under the control of gastrin. An acute gastrin stimulus causes exocytosis of the cytoplasmic granules/vesicles (and release of histamine and activation of the histamine-forming enzyme, histidine decarboxylase), while a more sustained gastrin stimulus causes first hypertrophy and then hyperplasia of the ECL cells in the rat (at most, a fivefold increase in the cell number). These effects can be demonstrated following infusion of gastrin or following an increase in the concentration of circulating gastrin of endogenous origin. The growth of the ECL cells reflects an accelerated self-replication rate. As studied in the rat, the self-replication rate is accelerated quite soon after induction of hypergastrinemia (blockade of acid secretion), the rate is maximally elevated within two weeks and then declines to control values at ten and 20 weeks despite the sustained hypergastrinemia. Lifelong hypergastrinemia in rats is associated not only with ECL-cell hyperplasia but also with an increased incidence of ECL-cell carcinoids. Recently, we could show that alpha-fluoromethylhistidine, which is a suicide inhibitor of histidine decarboxylase, effectively depletes the ECL cells of histamine and that the histamine-depleted ECL cells respond to gastrin with hyperplasia in a manner identical to normal ECL cells. Other factors beside gastrin seem to participate in the control of ECL-cell function and proliferation. Although exogenous somatostatin is known to suppress the activity of the ECL cells, we have failed to obtain evidence that the somatostatin cells in the oxyntic mucosa play a role in the physiological control of the ECL cells. The vagus, however, is important for the ability of the ECL cells to respond to gastrin. This conclusion is based on the observation that vagal denervation suppresses the hyperplastic response of the ECL cells to gastrin. Porta-cava shunting, on the other hand, greatly enhances the responsiveness of the ECL cells to gastrin. The mechanism behind this effect is unknown.  相似文献   

16.
The ECL cells constitute the predominant endocrine cell population in the mucosa of the acid-secreting part of the stomach (fundus). They are rich in chromogranin A (CGA), histamine and histidine decarboxylase (HDC). They secrete CGA-derived peptides and histamine in response to gastrin. The objective of this investigation was to examine the expression of pancreastatin (rat CGA266-314) and WE14 (rat CGA343-356) in rat stomach ECL cells. The distribution and cellular localisation of pancreastatin- and WE14-like immunoreactivities (LI) were analysed by radioimmunoassay and immunohistochemistry with antibodies against pancreastatin, WE14 and HDC. The effect of food deprivation on circulating pancreastatin-LI was examined in intact rats and after gastrectomy or fundectomy. Rats received gastrin-17 (5 nmol/kg/h) by continuous intravenous infusion or omeprazole (400 μmol/kg) once daily by the oral route, to induce hypergastrinemia. CGA-derived peptides in the ECL cells were characterised by gel permeation chromatography. The expression of CGA mRNA was examined by Northern blot analysis. Among all of the endocrine cells in the body, the ECL cell population was the richest in pancreastatin-LI, containing 20–25% of the total body content. Food deprivation and/or surgical removal of the ECL cells lowered the level of pancreastatin-LI in serum by about 80%. Activation of the ECL cells by gastrin infusion or omeprazole treatment raised the serum level of pancreastatin-LI, lowered the concentrations of pancreastatin- and WE14-LI in the ECL cells and increased the CGA mRNA concentration. Chromatographic analysis of the various CGA immunoreactive components in the ECL cells of normal and hypergastrinemic rats suggested that these cells respond to gastrin with a preferential release of the low-molecular-mass forms.  相似文献   

17.
The oxyntic mucosa of the rat stomach is rich in ECL cells which produce and secrete histamine in response to gastrin. Histamine and the histamine-forming enzyme histidine decarboxylase (HDC) have been claimed to occur also in the gastrin-secreting G cells in the antrum. In the present study, we used a panel of five HDC antisera and one histamine antiserum to investigate whether histamine and HDC are exclusive to the ECL cells. By immunocytochemistry, we could show that the ECL cells were stained with the histamine antiserum and all five HDC antisera. The G cells, however, were not stained with the histamine antiserum, but with three of the five HDC antisera. Thus, histamine and HDC coexist in the ECL cells (oxyntic mucosa) but not in G cells (antral mucosa). Western blot analysis revealed a typical pattern of HDC-immunoreactive bands (74, 63 and 54 kDa) in oxyntic mucosa extracts with all five antisera. In antral extracts, immunoreactive bands were detected with three of the five HDC antisera (same as above); the pattern of immunoreactivity differed from that in oxyntic mucosa. Food intake of fasted rats or treatment with the proton pump inhibitor omeprazole raised the HDC activity and the HDC protein content of the oxyntic mucosa but not of the antral mucosa; the HDC activity in the antrum was barely detectable. We suggest that the HDC-like immunoreactivity in the antrum represents a cross-reaction with non-HDC proteins and conclude that histamine and HDC are hallmark features of ECL cells but not of G cells.  相似文献   

18.
19.
The oxyntic mucosa is rich in ECL cells. They secrete histamine and chromogranin A-derived peptides, such as pancreastatin, in response to gastrin and pituitary adenylate cyclase-activating peptide (PACAP). Secretion is initiated by Ca2+ entry. While gastrin stimulates secretion by opening L-type and N-type Ca2+ channels, PACAP stimulates secretion by activating L-type and receptor-operated Ca2+ channels. Somatostatin, galanin and prostaglandin E2 (PGE2) inhibit gastrin- and PACAP-stimulated secretion from the ECL cells. In the present study, somatostatin and the PGE2 congener misoprostol inhibited gastrin- and PACAP-stimulated secretion 100%, while galanin inhibited at most 60-65%. Bay K 8644, a specific activator of L-type Ca2+ channels, stimulated ECL-cell secretion, an effect that was inhibited equally effectively by somatostatin, misoprostol and galanin (75-80% inhibition). Pretreatment with pertussis toxin, that inactivates inhibitory G-proteins, prevented all three agents from inhibiting stimulated secretion (regardless of the stimulus). Pretreatment with nifedipine (10 microM), an L-type Ca2+ channel blocker, reduced PACAP-evoked pancreastatin secretion by 50-60%, gastrin-evoked secretion by approximately 80% and abolished the response to Bay K 8644. The nifedipine-resistant response to PACAP was abolished by somatostatin and misoprostol but not by galanin. Gastrin and PACAP raised the intracellular Ca2+ concentration in a biphasic manner, believed to reflect mobilization of internal Ca2+ followed by Ca2+ entry. Somatostatin and misoprostol blocked Ca2+ entry (and histamine and pancreastatin secretion) but not mobilization of internal Ca2+. The present observations on isolated ECL cells suggest that Ca2+ entry rather than mobilization of internal Ca2+ triggers exocytosis, that gastrin and PACAP activate different (but over-lapping) Ca2+ channels, that somatostatin, misoprostol and galanin interact with inhibitory G-proteins to block Ca2+ entry via L-type Ca2+ channels, and that somatostatin and misoprostol (but not galanin) in addition block N-type and/or receptor-operated Ca2+ channels.  相似文献   

20.
To elucidate the regulatory mechanism of acid secretion by cholecystokinin (CCK) in vivo, we compared the effects of CCK and gastrin on acid secretion and histidine decarboxylase (HDC) activity. We also examined the effects of MK-329, a specific antagonist for pancreatic-type CCK receptor, and L-365,260, a specific antagonist for gastrin-type CCK receptor, on the action of CCK. Graded doses of CCK or gastrin were intravenously infused into conscious rats with gastric fistula. Gastrin-17 I infusion up to 10 nmol/kg/h resulted in dose-related increases in acid secretion. CCK-8 infusion also caused an increase in acid secretion. However, it reached a peak with 0.3 nmol/kg/h CCK-8 and attenuated with higher concentrations of CCK-8. This attenuating effect of a higher dose of CCK was reversed by MK-329, but not by L-365,260. Both CCK and gastrin were potent in increasing fundic HDC activity, and the effect of CCK on HDC activity was significantly inhibited by L-365,260, but not by MK-329. Taken together, the present study suggests that CCK and gastrin stimulate histamine formation via a gastrin-type CCK receptor, and the attenuating action of CCK with higher concentrations on acid secretion in vivo is mediated by a pancreatic-type CCK receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号