首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated transforming growth factor β1 (TGFβ1) levels are frequently observed in chronic kidney disease (CKD) patients. TGFβ1 contributes to development of medial vascular calcification during hyperphosphatemia, a pathological process promoted by osteo−/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Vasorin is a transmembrane glycoprotein highly expressed in VSMCs, which is able to bind TGFβ to inhibit TGFβ signaling. Thus, the present study explored the effects of vasorin on osteo−/chondrogenic transdifferentiation and calcification of VSMCs. Primary human aortic smooth muscle cells (HAoSMCs) were treated with recombinant human TGFβ1 or β-glycerophosphate without or with recombinant human vasorin or vasorin gene silencing by siRNA. As a result, TGFβ1 down-regulated vasorin mRNA expression in HAoSMCs. Vasorin supplementation inhibited TGFβ1-induced pathway activation, SMAD2 phosphorylation and downstream target genes expression in HAoSMCs. Furthermore, treatment with exogenous vasorin blunted, while vasorin knockdown augmented TGFβ1-induced osteo−/chondrogenic transdifferentiation of HAoSMCs. In addition, phosphate down-regulated vasorin mRNA expression in HAoSMCs. Phosphate-induced TGFβ1 expression was not affected by addition of exogenous vasorin. Nonetheless, the phosphate-induced TGFβ1 signaling, osteo−/chondrogenic transdifferentiation and calcification of HAoSMCs were all blunted by vasorin. Conversely, silencing of vasorin aggravated osteoinduction in HAoSMCs during high phosphate conditions. Aortic vasorin expression was reduced in the hyperphosphatemic klotho-hypomorphic mouse model of CKD-related vascular calcification. In conclusion, vasorin, which suppresses TGFβ1 signaling and protects against osteo−/chondrogenic transdifferentiation and calcification of VSMCs, is reduced by pro-calcifying conditions. Thus, vasorin is a novel key regulator of VSMC calcification and may represent a potential therapeutic target for vascular calcification during CKD.  相似文献   

2.
3.
PurposeTo investigate the effects of pirfenidone (PFD) on post-cryoablation inflammation in a mouse model.Materials and methodsIn this IACUC-approved study, eighty Balb/c mice were randomly divided into four groups (20/group): sham + vehicle, sham + PFD, cryoablation + vehicle, and cryoablation + PFD. For cryoablation groups, a 20% freeze rate cryoablation (20 s to less than −100 °C) was used to ablate normal muscle in the right flank. For sham groups, the cryoprobe was advanced into the flank and maintained for 20 s without ablation. PFD or vehicle solution was intraperitoneally injected (5 mg/kg) at days 0, 1, 2, 3, and then every other day until day 13 after cryoablation. Mice were euthanized at days 1, 3, 7, and 14. Blood samples were used for serum IL-6, IL-10, and TGFβ1 analysis using electrochemiluminescence and ELISA assays, respectively. Immunohistochemistry-stained ablated tissues were used to analyze macrophage infiltration and local TGFβ1 expression in the border region surrounding the cryoablation-induced coagulation zone.ResultsCryoablation induced macrophage infiltration and increased TGFβ1 expression in the border of the necrotic zone, and high levels of serum IL-6, peaking at days 7 (70.5 ± 8.46/HPF), 14 (228 ± 18.36/HPF), and 7 (298.67 ± 92.63), respectively. Animals receiving PFD showed reduced macrophage infiltration (35.5 ± 16.93/HPF at day 7, p < 0.01) and cytokine levels (60.2 ± 7.6/HPF at day 14, p < 0.01). PFD also significantly reduced serum IL-6 levels (p < 0.001 vs. all non-PFD groups).ConclusionsPFD mitigates cryoablation induced muscle tissue macrophage infiltration, increased IL-6 levels, and local TGFβ1 expression in a small animal model.  相似文献   

4.
Kidney fibrosis is a common feature of chronic kidney disease (CKD). A recent study suggests that abnormal Notch signaling activation contributes to the development of renal fibrosis. However, the molecular mechanism that regulates this process remains unexplored. Unilateral ureteral obstruction (UUO) or sham-operated C57BL6 mice (aged 10 weeks) were randomly assigned to receive dibenzazepine (DBZ, 250 μg/100 g/d) or vehicle for 7 days. Histologic examinations were performed on the kidneys using Masson's trichrome staining and immunohistochemistry. Real-time PCR and western blot analysis were used for detection of mRNA expression and protein phosphorylation. The expression of Notch 1, 3, and 4, Notch intracellular domain (NICD), and its target genes Hes1 and HeyL were upregulated in UUO mice, while the increase in NICD protein was significantly attenuated by DBZ. After 7 days, the severity of renal fibrosis and expression of fibrotic markers, including collagen 1α1/3α1, fibronectin, and α-smooth muscle actin, were markedly increased in UUO compared with sham mice. In contrast, administration of DBZ markedly attenuated these effects. Furthermore, DBZ significantly inhibited UUO-induced expression of transforming growth factor (TGF)-β, phosphorylated Smad 2, and Smad 3. Mechanistically, Notch signaling activation in tubular epithelial cells enhanced fibroblast proliferation and activation in a coculture experiment. Our study provides evidence that Notch signaling is implicated in renal fibrogenesis. The Notch inhibitor DBZ can ameliorate this process via inhibition of the TGF-β/Smad2/3 signaling pathway, and might be a novel drug for preventing chronic kidney disease.  相似文献   

5.
Transforming growth factor (TGF)-β, a pleiotropic cytokine released by both immune and non-immune cells in the gut, exerts an important tolerogenic action by promoting regulatory T cell differentiation. TGF-β also enhances enterocyte migration and regulates extracellular matrix turnover, thereby playing a crucial role in tissue remodeling in the gut. In this review we describe the mechanisms by which abnormal TGF-β signaling impairs intestinal immune tolerance and tissue repair, thus predisposing to the onset of immune-mediated bowel disorders, such as inflammatory bowel disease and celiac disease. Additionally, we will discuss potential therapeutic strategies aiming at restoring physiologic TGF-β signaling in chronic intestinal diseases.  相似文献   

6.
Research involving mesenchymal multipotent/stem/progenitor/stromal/marrow cells (MSCs) have translated to clinical trials at an extraordinary pace. By the time of this review, the public clinical trials database (http://clinicaltrials.gov) has 394 clinical trials listed using MSCs for a very wide range of therapeutic applications. Unexpectedly, the explanation for the increase in clinical trials using MSCs does not lie on a well-defined therapeutic mechanism – dramatic results have been demonstrated in a variety of studies involving different animal models of diseases, often describing discrete therapeutic mechanisms exerted by MSCs. This review will focus on recent data suggesting the involvement of hyaluronic acid (HA) in the beneficial effects of MSCs, evaluate the potential of MSC as modulators of HA and the implications of this modulation for disease therapy.  相似文献   

7.
Nicotinamide adenine dinucleotide, NAD+, is a small metabolite coenzyme that is essential for the progress of crucial cellular pathways including glycolysis, the tricarboxylic acid cycle (TCA) and mitochondrial respiration. These processes consume and produce both oxidative and reduced forms of NAD (NAD+ and NADH). NAD+ is also important for ADP(ribosyl)ation reactions mediated by the ADP-ribosyltransferase enzymes (ARTDs) or deacetylation reactions catalyzed by the sirtuins (SIRTs) which use NAD+ as a substrate. In this review, we highlight the significance of NAD+ catabolism in DNA repair and cell death through its utilization by ARTDs and SIRTs. We summarize the current findings on the involvement of ARTD1 activity in DNA repair and most specifically its involvement in the trigger of cell death mediated by ARTD1 activation and energy depletion. By sharing the same substrate, the activities of ARTDs and SIRTs are tightly linked, are dependent on each other and are thereby involved in the same cellular processes that play an important role in cancer biology, inflammatory diseases and ischaemia/reperfusion.  相似文献   

8.
Mesenchymal stem cells (MSCs) are multipotent precursor cells originating from several adult connective tissues. MSCs possess the ability to self-renew and differentiate into several lineages, and are recognized by the expression of unique cell surface markers. Several lines of evidence suggest that various signal transduction pathways and their interplay regulate MSC differentiation. To that end, a critical player in regulating MSC differentiation is a group of proteins encoded by the Wnt gene family, which was previously known for influencing various stages of embryonic development and cell fate determination. As MSCs have gained significant clinical attention for their potential applications in regenerative medicine, it is imperative to unravel the mechanisms by which molecular regulators control differentiation of MSCs for designing cell-based therapeutics. It is rather coincidental that the functional outcome(s) of Wnt-induced signals share similarities with cellular redox-mediated networks from the standpoint of MSC biology. Furthermore, there is evidence for a crosstalk between Wnt and redox signalling, which begs the question whether Wnt-mediated differentiation signals involve the intermediary role of reactive oxygen species. In this review, we summarize the impact of Wnt signalling on multi-lineage differentiation of MSCs, and attempt to unravel the intricate interplay between Wnt and redox signals.  相似文献   

9.
Aberrant DNA base excision repair (BER) contributes to malignant transformation. However, inter-individual variations in DNA repair capacity plays a key role in modifying breast cancer risk. We review here emerging evidence that two proteins involved in BER – adenomatous polyposis coli (APC) and flap endonuclease 1 (Fen1) – promote the development of breast cancer through novel mechanisms. APC and Fen1 expression and interaction is increased in breast tumors versus normal cells, APC interacts with and blocks Fen1 activity in Pol-β-directed LP-BER, and abrogation of LP-BER is linked with cigarette smoke condensate-induced transformation of normal breast epithelial cells. Carcinogens increase expression of APC and Fen1 in spontaneously immortalized human breast epithelial cells, human colon cancer cells, and mouse embryonic fibroblasts. Since APC and Fen1 are tumor suppressors, an increase in their levels could protect against carcinogenesis; however, this does not seem to be the case. Elevated Fen1 levels in breast and lung cancer cells may reflect the enhanced proliferation of cancer cells or increased DNA damage in cancer cells compared to normal cells. Inactivation of the tumor suppressor functions of APC and Fen1 is due to their interaction, which may act as a susceptibility factor for breast cancer. The increased interaction of APC and Fen1 may occur due to polypmorphic and/or mutational variation in these genes. Screening of APC and Fen1 polymorphic and/or mutational variations and APC/Fen1 interaction may permit assessment of individual DNA repair capability and the risk for breast cancer development. Such individuals might lower their breast cancer risk by reducing exposure to carcinogens. Stratifying individuals according to susceptibility would greatly assist epidemiologic studies of the impact of suspected environmental carcinogens. Additionally, a mechanistic understanding of the interaction of APC and Fen1 may provide the basis for developing new and effective targeted chemopreventive and chemotherapeutic agents.  相似文献   

10.
Gangliosides play important roles in the development, differentiation and proliferation of mammalian cells. They bind to other cell membrane components through their terminal sialic acids. Different gangliosides influence cellular functions based on the positions and linkages of sialic acids. Expression of gangliosides mainly depends on the status of sialic acid-modulatory enzymes, such as different types of sialyltransferases and sialidases. One such sialyltransferase, disialoganglioside GD3 synthase, is specifically responsible for the production of GD3. Pancreatic ductal adenocarcinoma, making up more than 90% of pancreatic cancers, is a fatal malignancy with poor prognosis. Despite higher sialylation status, the disialoganglioside GD3 level is very low in this cancer. However, the exact status and function of this disialoganglioside is still unknown. Here, we intended to study the intracellular mechanism of disialoganglioside GD3-induced apoptosis and its correlation with the adhesion and angiogenic pathways in pancreatic cancer. We demonstrated that disialoganglioside GD3 synthase-transfected cells showed enhanced apoptosis and it caused the arrest of these cells in the S-phase of the cell cycle. Integrins, a family of transmembrane proteins play important role in cell–cell recognition, invasion, adhesion and migration. disialoganglioside GD3 co-localised with integrin-β1 and thereby inhibited it's downstream signalling in transfected cells. Transfected cells exhibited inhibition of cell adhesion with extracellular matrix proteins. Enhanced GD3 expression down regulated angiogenesis-regulatory proteins and inhibited epidermal growth factor/vascular endothelial growth factor-driven angiogenic cell growth in these cells. Taken together, our study provides support for the GD3-induced cell cycle arrest, disruption of integrin-β1-mediated anchorage, inhibition of angiogenesis and thereby induced apoptosis in pancreatic cancer cells.  相似文献   

11.
Contraction is a central feature for skeletal, cardiac and smooth muscle; this unique feature is largely dependent on calcium (Ca2+) signaling and therefore maintenance of internal Ca2+ stores. Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane protein that functions as a Ca2+ sensor for the activation store-operated calcium channels (SOCCs) on the plasma membrane in response to depleted internal sarco(endo)plasmic (S/ER) reticulum Ca2+ stores. STIM1 was initially characterized in non-excitable cells; however, evidence from both animal models and human mutations suggests a role for STIM1 in modulating Ca2+ homeostasis in excitable tissues as well. STIM1-dependent SOCE is particularly important in tissues undergoing sustained contraction, leading us to believe STIM1 may play a role in smooth muscle contraction. To date, the role of STIM1 in smooth muscle is unknown. In this review, we provide a brief overview of the role of STIM1-dependent SOCE in striated muscle and build off that knowledge to investigate whether STIM1 contributes to smooth muscle contractility. We conclude by discussing the translational implications of targeting STIM1 in the treatment of smooth muscle disorders.  相似文献   

12.
Dietary protein intake is important for skeletal muscle protein synthesis. In this study, we investigated the differential effect of protein sources on hypertrophy of plantaris muscle induced by surgical ablation of gastrocnemius and soleus muscles. Six-week old mice were fed diets containing caseinate, whey, or soy as protein sources for 2 weeks. Plantaris muscle hypertrophy was induced by a unilateral ablation of synergistic muscles after a week. Food intake of soy protein-fed mice was higher than that of caseinate and whey-fed mice, resulting in higher body and fat weights. Plantaris muscle weight in sham-operated mice was not different across the groups. Overload-operated plantaris muscle weight and increased ratio of overloaded muscle to sham-operated muscle weights were higher in caseinate-fed mice than in whey- and soy protein-fed mice, suggesting caseinate as a promising protein source for muscle hypertrophy.  相似文献   

13.
The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.  相似文献   

14.
Immunostimulants represent a promising aquaculture tool for enhancing disease and stress resistance in cultured fish. Moreover, the term and dose for acting immunostimulants is an important thing for fish farmer. This study investigated the immune parameters of common carp after oral administration of LPS (5, 10, 20 μg/kg/days) for 30 and 60 days, which is considered to be the proper time period for acting in aquaculture. Phagocytic and bactericidal activities of head kidney macrophages and serum lysozyme activities were significantly enhanced in LPS-fed carp. Orally administered LPS augmented the expression of interleukin (IL)-1β and TNF-α mRNAs but reduced the expression of IL-6 mRNA in head kidney. Although LPS was detected in the serum and liver after a high-dose (>15 mg/kg) oral administration, it was not detected by administered LPS-specific ELISA after a low-dose (<20 μg/kg) administration. It is speculated that orally administered LPS enhances the eliminating functions of head kidney macrophages with down-regulation of IL-6.  相似文献   

15.
Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies.  相似文献   

16.
Interleukin (IL)-36 cytokines belong to the IL-1 family and include three agonists, IL-36 α, β and γ and one inhibitor, IL-36 receptor antagonist (IL-36Ra). IL-36 and IL-1 (α and β) activate similar intracellular pathways via their related heterodimeric receptors, IL-36R/IL-1RAcP and IL-1R1/IL-1RAcP, respectively. However, excessive IL-36 versus IL-1 signaling induces different phenotypes in humans, which may be related to differential expression of their respective receptors.We examined the expression of IL-36R, IL-1R1 and IL-1RAcP mRNA in human peripheral blood, tonsil and skin immune cells by RT-qPCR. Monocyte-derived dendritic cells (MDDC), M0, M1 or M2-polarized macrophages, primary keratinocytes, dermal macrophages and Langerhans cells (LC) were stimulated with IL-1β or IL-36β. Cytokine production was assessed by RT-qPCR and immunoassays.The highest levels of IL-36R mRNA were found in skin-derived keratinocytes, LC, dermal macrophages and dermal CD1a+ DC. In the blood and in tonsils, IL-36R mRNA was predominantly found in myeloid cells. By contrast, IL-1R1 mRNA was detected in almost all cell types with higher levels in tonsil and skin compared to peripheral blood immune cells. IL-36β was as potent as IL-1β in stimulating M2 macrophages, keratinocytes and LC, less potent than IL-1β in stimulating M0 macrophages and MDDC, and exerted no effects in M1 and dermal macrophages. Levels of IL-1Ra diminished the ability of M2 macrophages to respond to IL-1.Taken together, these data are consistent with the association of excessive IL-36 signaling with an inflammatory skin phenotype and identify human LC and M2 macrophages as new IL-36 target cells.  相似文献   

17.
A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse (“PolG” mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.  相似文献   

18.
Since its discovery, the BRCA1 tumor suppressor has been shown to play a role in multiple DNA damage response pathways. Here, we will review the involvement of BRCA1 in base-excision DNA repair and highlight its clinical implications.  相似文献   

19.
Vimentin expression correlates well with migratory and invasive potential of the carcinoma cells. The molecular mechanism by which vimentin regulates cell motility is not yet clear. Here, we addressed this issue by depleting vimentin in oral squamous cell carcinoma derived cell line. Vimentin knockdown cells showed enhanced adhesion and spreading to laminin-5. However, we found that they were less invasive as compared to the vector control cells. In addition, signaling associated with adhesion behavior of the cell was increased in vimentin knockdown clones. These findings suggest that the normal function of β4 integrin as mechanical adhesive device is enhanced upon vimentin downregulation. As a proof of principle, the compromised invasive potential of vimentin depleted cells could be rescued upon blocking with β4 integrin adhesion-blocking (ASC-8) antibody or downregulation of β4 integrin in vimentin knockdown background. Interestingly, plectin which associates with α6β4 integrin in the hemidesmosomes, was also found to be upregulated in vimentin knockdown clones. Furthermore, experiments on lysosome and proteasome inhibition revealed that perhaps vimentin regulates the turnover of β4 integrin and plectin. Moreover, an inverse association was observed between vimentin expression and β4 integrin in oral squamous cell carcinoma (OSCC). Collectively, our results show a novel role of vimentin in modulating cell motility by destabilizing β4 integrin-mediated adhesive interactions. Further, vimentin-β4 integrin together may prove to be useful markers for prognostication of human oral cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号