首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Gong B  Wang YT 《The EMBO journal》2012,31(4):783-785
EMBO J 31 4, 805–816 (2012); published online December202011Synaptic plasticity, the activity-dependent modification of synaptic strength, plays a fundamental role in learning and memory as well as in developmental maturation of neuronal circuitry. However, how synaptic plasticity is induced and regulated remains poorly understood. In this issue of The EMBO Journal, Yang and colleagues present sets of exciting data, suggesting that G-protein-coupled receptors (GPCRs) selectively execute distinct signalling pathways to differentially regulate induction thresholds of hippocampal long-term potentiation (LTP) and long-term depression (LTD), thereby governing the direction of synaptic plasticity. These results shed significant light on our current understanding of how bidirectional synaptic plasticity is regulated.Synaptic plasticity has been demonstrated at synapses in various brain regions; the most well-characterized forms are LTP and LTD at hippocampal CA1 glutamatergic synapses (Collingridge et al, 2004). In experimental models, LTP and LTD can be, respectively, induced by high-frequency stimulation (HFS) and low-frequency stimulation (LFS) via activation of the N-methyl-D-aspartic acid (NMDA) subtype ionotropic glutamate receptor (NMDAR). However, how HFS and LFS activate NMDARs and thereby lead to synaptic plasticity remains poorly understood and highly controversial. It is even more unclear how the bidirectional synaptic plasticity is produced and regulated in response to physiological or pathological changes.Functional NMDARs consist primarily of two GluN1 subunits and two GluN2 subunits, with GluN2A and GluN2B subunits being the most common NMDAR subunits found in the cortical and hippocampal regions of the adult brain (Cull-Candy et al, 2001). GluN2A and GluN2B subunits may confer distinct gating and pharmacological properties to NMDARs and couple them to distinct intracellular signalling machineries (Cull-Candy et al, 2001). Moreover, the ratio of these two subpopulations of NMDARs at the glutamatergic synapse is dynamically regulated in an activity-dependent manner (Bellone and Nicoll, 2007; Cho et al, 2009; Xu et al, 2009). Although controversial, GluN2A- and GluN2B-containing NMDARs have been suggested to have differential roles in regulating the direction of synaptic plasticity (Collingridge et al, 2004; Morishita et al, 2007). Among the factors shown to regulate NMDAR function, Src family tyrosine kinases may be the best characterized, with both Src and Fyn able to upregulate NMDAR function, and thus LTP induction (Salter and Kalia, 2004). However, if these kinases modulate NMDAR function in a NMDAR subunit-specific manner remains unknown. To explore this concept, Yang et al (2012) investigated the potential subunit-specific regulation of NMDARs by Src and Fyn using whole-cell patch clamp recording of NMDAR-mediated currents from acutely dissociated CA1 hippocampal neurons or from rat hippocampal slices. They found that intracellular perfusion of recombinant Src or Fyn increased the NMDAR-mediated currents. By applying subunit-preferential antagonists of GluN2A- or GluN2B-containing NMDARs, or by using neurons obtained from GluN2A knockout mice, they discovered that Src and Fyn differentially enhanced currents gated through GluN2A- and GluN2B-containing NMDARs, respectively.Can physiological or pathological factors differentially activate Src or Fyn, thereby exerting subunit-specific regulation of NMDAR function? To answer this question, Yang et al focused their investigation on the role of GPCRs, specifically pituitary adenylate cyclase activating peptide receptor (PAC1R) and dopamine D1 receptor (D1R), both of which have recently been shown to potentiate NMDARs through Src family kinases (Macdonald et al, 2005; Hu et al, 2010). Indeed, they found that activation of PAC1R specifically increased GluN2A-NMDAR-mediated currents without affecting currents gated through GluN2B-NMDARs, and this potentiation was prevented by the Src-specific inhibitory peptide Src(40–58) (Salter and Kalia, 2004). To rule out the contribution of Fyn, the authors developed a novel-specific Fyn inhibitory peptide Fyn(39–57), and demonstrated that it had little effect on PAC1R potentiation. In contrast, activation of D1R potentiated GluN2B- (but not GluN2A-) NMDAR-mediated currents, and this potentiation was specifically eliminated by Fyn(39–57), but not by Src(40–58). The authors further demonstrated that stimulation of PAC1Rs resulted in a selective activation of Src kinase and consequent tyrosine phosphorylation of the GluN2A subunit, whereas activation of D1Rs led to a specific increase in Fyn-mediated tyrosine phosphorylation of the GluN2B subunit. To provide convincing evidence that these subunit-differential modulations are indeed the result of tyrosine phosphorylation of the respective NMDAR subunits, the authors then performed electrophysiological experiments using neurons from two knockin mouse lines GluN2A(Y1325F) and GluN2B(Y1472F), in which the tyrosine phosphorylation residues in native GluN2A and GluN2B subunits were, respectively, replaced with non-phosphorylatable phenylalanine residues. As expected, the authors found that PAC1R-mediated potentiation of NMDA currents was lost in neurons from GluN2A(Y1325F) mice (but maintained in neurons from GluN2B(Y1472F) mice), while D1R-mediated enhancement of NMDA currents was only observed in neurons from GluN2A(Y1325F) mice. Together, as illustrated in Figure 1, the authors have made a very convincing case that PAC1R and D1R, respectively, enhance function of GluN2A- and GluN2B-containing NMDARs by differentially activating Src- and Fyn-mediated phosphorylation of respective NMDAR subunits.Open in a separate windowFigure 1GPCRs regulate the direction of synaptic plasticity via activating distinct signalling pathways. Synaptic NMDA receptors, both GluN2A- and GluN2B-containing, play key roles in the induction of various forms of synaptic plasticity at the hippocampal CA1 glutamatergic synapse. Under the basal level of GluN2A and GluN2B ratio, stimulation with a train of pulses at frequencies from 1 to 100 Hz produces a frequency and plasticity (LTD–LTP) curve, with maximum LTD and LTP being, respectively, induced at 1 and 100 Hz. Activation of PAC1R with its agonist PACAP38 activates Src and thereby results in tyrosine phosphorylation and consequent functional upregulation of GluN2A-containing NMDARs, resulting in an increase in the ratio of functional GluN2A and GluN2B. The increased ratio in turn causes a left shift of frequency and plasticity curve, favouring LTP induction. In contrast, activation of D1R by the receptor agonist SKF81297 triggers Fyn-specific tyrosine phosphorylation and functional upregulation of GluN2B, causing a reduction of GluN2A and GluN2B ratio. This decreased ratio results in a right shift of the curve, favouring LTD induction. The ability of GPCRs to differentially activate distinct downstream signalling pathways involved in synaptic plasticity suggests the potential roles of GPCRs in governing the direction of synaptic plasticity.Given the coupling of NMDARs to the induction of synaptic plasticity, it is then reasonable to ask if activation of the two GPCRs can selectively affect the induction of LTP or LTD at CA1 synapses. Yang and colleagues investigated the effects of pharmacological activation of PAC1R and D1R on the induction of LTP and LTD by recording the field excitatory postsynaptic potentials from hippocampal slices. Consistent with differential roles of NMDAR subunits in governing directions of synaptic plasticity, the authors observed that activation of PAC1Rs reduces the induction threshold of LTP, while stimulation of D1Rs favours LTD induction (Figure 1). Facilitation of LTP by PAC1R and LTD by D1R were, respectively, prevented in the brain slices obtained from GluN2A(Y1325F) and GluN2B(Y1472F) knockin mice, supporting the differential involvements of Src-mediated GluN2A phosphorylation and Fyn-mediated GluN2B phosphorylation.Taken together, the authors'' results have demonstrated that activation of PAC1R and D1R can control the direction of synaptic plasticity at the hippocampal CA1 synapse by differentially regulating NMDAREPSCs in a subunit-specific fashion (Figure 1). Specifically, PAC1R enhances the function of GluN2A-containing NMDARs by increasing Src phosphorylation of GluN2A subunit at Y1325, whereas D1R upregulates GluN2B-containing NMDARs through increased Fyn phosphorylation of GluN2B at Y1472. Moreover, by regulating the ratio of functional GluN2A- and GluN2B-containing NMDARs, PAC1R and D1R in turn modulate the direction of synaptic plasticity, favouring the production of LTP and LTD, respectively.While consistent with the recently proposed hypothesis that GluN2A and GluN2B may have preferential roles in the induction of hippocampal CA1 LTP and LTD (Collingridge et al, 2004; but see also Morishita et al, 2007), the current study further emphasizes the importance of GluN2A/GluN2B ratios in regulating LTP and LTD thresholds: increased ratio favours LTP, while reduced ratio promotes LTD. However, this seems to contradict some recent studies where the reduction and increase in the GluN2A/GluN2B ratio appeared to, respectively, favour LTP (Cho et al, 2009; Xu et al, 2009) and LTD (Xu et al, 2009). Therefore, the direction of plasticity change is likely modulated not only by the GluN2A/GluN2B ratio, but also by additional factors such as experimental conditions, developmental stages, and brain regions.Under many experimental conditions, LTP and LTD are usually induced by HFS and LFS stimulating protocols, respectively, but it remains essentially unknown how LTP and LTD are physiologically or pathologically generated in animals. To this end, the identification of different GPCRs as the endogenous upstream regulators of NMDA receptor subpopulations, and hence regulators of synaptic plasticity, is the major novelty of Yang and colleagues'' work. Future studies are needed to investigate if and how PAC1R and/or D1R are critically involved in the production of LTP or LTD in animals under physiological or pathological conditions. Given the fact that Src family kinases may be required for LTP induced by HFS in hippocampal slices (Salter and Kalia, 2004), an equally intriguing question would be whether these GPCRs are actually required for LTP/LTD induced by HFS/LFS experimental paradigms. In line with this conjecture, it would be interesting to determine if ligands for various GPCRs co-exist in the glutamatergic presynaptic terminals and, if so, can be differentially co-released with glutamate in a frequency-dependent manner, thereby contributing to either HFS-induced LTP or LFS-induced LTD.The findings by Yang and colleagues establish an exciting mechanistic model by which GPCRs can govern the direction of synaptic plasticity by determining the contributions of GluN2A- and GluN2B-NMDARs through differential tyrosine phosphorylation of respective NMDA receptor subtypes. Additional studies further validating this model under physiological and pathological conditions will greatly improve our understanding of the molecular mechanisms underlying synaptic plasticity and cognitive brain functions. In addition, NMDARs, depending on their subunit composition and/or subcellular localization, may also have complex roles in mediating neuronal survival and death (Lai et al, 2011). Considering that neurotoxicity produced by over-activation of NMDARs is widely accepted to be a common mechanism for neuronal loss in a number of acute brain injuries and chronic neurodegenerative diseases, Yang and colleagues'' finding of the differential regulation of NMDAR subunits by different GPCRs could have wider implications beyond synaptic plasticity.  相似文献   

2.
Long-term depression of kainate receptor-mediated synaptic transmission   总被引:3,自引:0,他引:3  
Park Y  Jo J  Isaac JT  Cho K 《Neuron》2006,49(1):95-106
Kainate receptors (KARs) have been shown to be involved in hippocampal mossy fiber long-term potentiation (LTP); however, it is not known if KARs are involved in the induction or expression of long-term depression (LTD), the other major form of long-term synaptic plasticity. Here we describe LTD of KAR-mediated synaptic transmission (EPSC(KA) LTD) in perirhinal cortex layer II/III neurons that is distinct from LTD of AMPAR-mediated transmission, which also coexists at the same synapses. Induction of EPSC(KA) LTD requires a rise in postsynaptic Ca(2+) but is independent of NMDARs or T-type voltage-gated Ca(2+) channels; however, it requires synaptic activation of inwardly rectifying KARs and release of Ca(2+) from stores. The synaptic KARs are regulated by tonically activated mGluR5, and expression of EPSC(KA) LTD occurs via a mechanism involving mGluR5, PKC, and PICK1 PDZ domain interactions. Thus, we describe the induction and expression mechanism of a form of synaptic plasticity, EPSC(KA) LTD.  相似文献   

3.
Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Realtime PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.  相似文献   

4.
Yu SY  Wu DC  Liu L  Ge Y  Wang YT 《Journal of neurochemistry》2008,106(2):889-899
Stimulated exocytosis and endocytosis of post-synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors (AMPARs) have been proposed as primary mechanisms for the expression of hippocampal CA1 long-term potentiation (LTP) and long-term depression (LTD), respectively. LTP and LTD, the two most well characterized forms of synaptic plasticity, are thought to be important for learning and memory in behaving animals. Both LTP and LTD can also be induced in the lateral amygdala (LA), a critical structure involved in fear conditioning. However, the role of AMPAR trafficking in the expression of either LTP or LTD in this structure remains unclear. In this study, we show that NMDA receptor-dependent LTP and LTD can be reliably induced at the synapses of the auditory thalamic inputs to the LA in brain slices. The expression of LTP was prevented by post-synaptic blockade of vesicle-mediated exocytosis with application of a light chain of Clostridium tetanus neurotoxin and was associated with increased cell-surface AMPAR expression. In contrast, the expression of LTD was prevented by post-synaptic application of a glutamate receptor 2-derived interference peptide, which specifically blocks the stimulated clathrin-dependent endocytosis of AMPARs, and was correlated with a reduction in plasma membrane-surface expression of AMPARs. These results strongly suggest that regulated trafficking of post-synaptic AMPARs is also involved in the expression of LTP and LTD in the LA.  相似文献   

5.
Insulin and its receptor are both present in the central nervous system and are implicated in neuronal survival and hippocampal synaptic plasticity. Here we show that insulin activates phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), and results in an induction of long-term depression (LTD) in hippocampal CA1 neurones. Evaluation of the frequency-response curve of synaptic plasticity revealed that insulin induced LTD at 0.033 Hz and LTP at 10 Hz, whereas in the absence of insulin, 1 Hz induced LTD and 100 Hz induced LTP. LTD induction in the presence of insulin required low frequency synaptic stimulation (0.033 Hz) and blockade of GABAergic transmission. The LTD or LTP induced in the presence of insulin was N-methyl-d-aspartate (NMDA) receptor specific as it could be inhibited by alpha-amino-5-phosphonopentanoic acid (APV), a specific NMDA receptor antagonist. LTD induction was also facilitated by lowering the extracellular Mg(2+) concentration, indicating an involvement of NMDA receptors. Inhibition of PI3K signalling or discontinuing synaptic stimulation also prevented this LTD. These results show that insulin modulates activity-dependent synaptic plasticity, which requires activation of NMDA receptors and the PI3K pathway. The results obtained provide a mechanistic link between insulin and synaptic plasticity, and explain how insulin functions as a neuromodulator.  相似文献   

6.
Conventional long-term potentiation (LTP) and long-term depression (LTD) are induced by different patterns of synaptic stimulation, but both forms of synaptic modification require calcium influx through NMDA receptors (NMDARs). A prevailing model (the “calcium hypothesis”) suggests that high postsynaptic calcium elevation results in LTP, whereas moderate elevations give rise to LTD. Recently, additional evidence has come to suggest that differential activation of NMDAR subunits also factors in determining which type of plasticity is induced. While the growing amount of data suggest that activation of NMDARs containing specific GluN2 subunits plays an important role in the induction of plasticity, it remains less clear which subunit is tied to which form of plasticity. Additionally, it remains to be determined which properties of the subunits confer upon them the ability to differentially induce long-term plasticity. This review highlights recent studies suggesting differential roles for the subunits, as well as findings that begin to shed light on how two similar subunits may be linked to the induction of opposing forms of plasticity.  相似文献   

7.
The brain is able to change the synaptic strength in response to stimuli that leave a memory trace. Long-term potentiation (LTP) and long-term depression (LTD) are forms of activity-dependent synaptic plasticity proposed to underlie memory. The induction of LTP appears mediated by glutamate acting on AMPA and then on NMDA receptors. Cholinergic muscarinic agonists facilitate learning and memory. Acetylcholine depolarizes pyramidal neurons, reduces inhibition, upregulates NMDA channels and activates the phosphoinositide cascade. Postsynaptic Ca2+ rises and stimulates Ca-dependent PK, promoting synaptic changes. Electroencephalographic desynchronization and hippocampal theta rhythm are related to learning and memory, are inducible by Cholinergic agonists and elicited by hippocampal Cholinergic terminals. Their loss results in memory deficits. Hence, Cholinergic pathways may act synergically with glutamatergic transmission, regulating and leading to synaptic plasticity. The stimulation that induces plasticity in vivo has not been established. The patterns for LTP/LTD induction in vitro may be due to the loss of ascending Cholinergic inputs. As a rat explores pyramidal cells fire bursts that could be relevant to plasticity.  相似文献   

8.
The number and subunit composition of synaptic N-methyl-d-aspartate receptors (NMDARs) play critical roles in synaptic plasticity, learning, and memory and are implicated in neurological disorders. Tyrosine phosphorylation provides a powerful means of regulating NMDAR function, but the underling mechanism remains elusive. In this study we identified a tyrosine site on the GluN2B subunit, Tyr-1070, which was phosphorylated by a proto-oncogene tyrosine-protein (Fyn) kinase and critical for the surface expression of GluN2B-containing NMDARs. The phosphorylation of GluN2B at Tyr-1070 was required for binding of Fyn kinase to GluN2B, which up-regulated the phosphorylation of GluN2B at Tyr-1472. Moreover, our results revealed that the phosphorylation change of GluN2B at Tyr-1070 accompanied the Tyr-1472 phosphorylation and Fyn associated with GluN2B in synaptic plasticity induced by both chemical and contextual fear learning. Taken together, our findings provide a new mechanism for regulating the surface expression of NMDARs with implications for synaptic plasticity.  相似文献   

9.
10.
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.  相似文献   

11.
NMDA‐type glutamate receptors (NMDAR) are central actors in the plasticity of excitatory synapses. During adaptive processes, the number and composition of synaptic NMDAR can be rapidly modified, as in neonatal hippocampal synapses where a switch from predominant GluN2B‐ to GluN2A‐containing receptors is observed after the induction of long‐term potentiation (LTP). However, the cellular pathways by which surface NMDAR subtypes are dynamically regulated during activity‐dependent synaptic adaptations remain poorly understood. Using a combination of high‐resolution single nanoparticle imaging and electrophysiology, we show here that GluN2B‐NMDAR are dynamically redistributed away from glutamate synapses through increased lateral diffusion during LTP in immature neurons. Strikingly, preventing this activity‐dependent GluN2B‐NMDAR surface redistribution through cross‐linking, either with commercial or with autoimmune anti‐NMDA antibodies from patient with neuropsychiatric symptoms, affects the dynamics and spine accumulation of CaMKII and impairs LTP. Interestingly, the same impairments are observed when expressing a mutant of GluN2B‐NMDAR unable to bind CaMKII. We thus uncover a non‐canonical mechanism by which GluN2B‐NMDAR surface dynamics plays a critical role in the plasticity of maturing synapses through a direct interplay with CaMKII.  相似文献   

12.
The acute hippocampal slice preparation has been widely used to study the cellular mechanisms underlying activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although protein phosphorylation has a key role in LTP and LTD, little is known about how protein phosphorylation might be altered in hippocampal slices maintained in vitro. To begin to address this issue, we examined the effects of slicing and in vitro maintenance on phosphorylation of six proteins involved in LTP and/or LTD. We found that AMPA receptor (AMPAR) glutamate receptor 1 (GluR1) subunits are persistently dephosphorylated in slices maintained in vitro for up to 8 h. alpha calcium/calmodulin-dependent kinase II (alphaCamKII) was also strongly dephosphorylated during the first 3 h in vitro but thereafter recovered to near control levels. In contrast, phosphorylation of the extracellular signal-regulated kinase ERK2, the ERK kinase MEK, proline-rich tyrosine kinase 2 (Pyk2), and Src family kinases was significantly, but transiently, increased. Electrophysiological experiments revealed that the induction of LTD by low-frequency synaptic stimulation was sensitive to time in vitro. These findings indicate that phosphorylation of proteins involved in N-methyl-D-aspartate (NMDA) receptor-dependent forms of synaptic plasticity is altered in hippocampal slices and suggest that some of these changes can significantly influence the induction of LTD.  相似文献   

13.
Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors   总被引:1,自引:0,他引:1  
Homeostatic plasticity may compensate for Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), by scaling neuronal output without changing the relative strength of individual synapses. This delicate balance between neuronal output and distributed synaptic weight may be necessary for maintaining efficient encoding of information across neuronal networks. Here, we demonstrate that Arc/Arg3.1, an immediate-early gene (IEG) that is rapidly induced by neuronal activity associated with information encoding in the brain, mediates homeostatic synaptic scaling of AMPA type glutamate receptors (AMPARs) via its ability to activate a novel and selective AMPAR endocytic pathway. High levels of Arc/Arg3.1 block the homeostatic increases in AMPAR function induced by chronic neuronal inactivity. Conversely, loss of Arc/Arg3.1 results in increased AMPAR function and abolishes homeostatic scaling of AMPARs. These observations, together with evidence that Arc/Arg3.1 is required for memory consolidation, reveal the importance of Arc/Arg3.1's dynamic expression as it exerts continuous and precise control over synaptic strength and cellular excitability.  相似文献   

14.
It is becoming apparent that the hormone leptin plays an important role in modulating hippocampal function. Indeed, leptin enhances NMDA receptor activation and promotes hippocampal long-term potentiation (LTP). Furthermore, obese rodents with dysfunctional leptin receptors display impairments in hippocampal synaptic plasticity. Here we demonstrate that under conditions of enhanced excitability (evoked in Mg2+-free medium or following blockade of GABA(A) receptors), leptin induces a novel form of long-term depression (LTD) in area CA1 of the hippocampus. Leptin-induced LTD was markedly attenuated in the presence of D-(-)-2-Amino-5-Phosphonopentanoic acid (D-AP5), suggesting that it is dependent on the synaptic activation of NMDA receptors. In addition, low-frequency stimulus-evoked LTD occluded the effects of leptin. In contrast, metabotropic glutamate receptors (mGluRs) did not contribute to leptin-induced LTD as mGluR antagonists failed to either prevent or reverse this process. The signalling mechanisms underlying leptin-induced LTD were independent of the Ras-Raf-mitogen-activated protein kinase signalling pathway, but were markedly enhanced following inhibition of either phosphoinositide 3-kinase or protein phosphatases 1 and 2A. These data indicate that under conditions of enhanced excitability, leptin induces a novel form of homosynaptic LTD, which further underscores the proposed key role for this hormone in modulating NMDA receptor-dependent hippocampal synaptic plasticity.  相似文献   

15.
The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca2+-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation.  相似文献   

16.
Glutamate receptors play the key role in excitatory synaptic transmission in the central nervous system (CNS). N-methyl-D-aspartate-activated glutamate receptors (NMDARs) are ion channels permeable to sodium, potassium, and calcium ions that localize to the pre- and postsynaptic membranes, as well as extrasynaptic neuronal membrane. Calcium entry into dendritic spines is essential for long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission. Both LTP and LTD represent morphological and functional changes occurring in the process of memory formation. NMDAR dysfunction is associated with epilepsy, schizophrenia, migraine, dementia, and neurodegenerative diseases. Prolonged activation of extrasynaptic NMDARs causes calcium overload and apoptosis of neurons. Here, we review recent findings on the molecular mechanisms of calcium-dependent NMDAR desensitization that ensures fast modulation of NMDAR conductance in the CNS and limits calcium entry into the cells under pathological conditions. We present the data on molecular determinants related to calcium-dependent NMDAR desensitization and functional interaction of NMDARs with other ion channels and transporters. We also describe association of NMDARs with lipid membrane microdomains.  相似文献   

17.
Considerable evidence indicates that neuroadaptations leading to addiction involve the same cellular processes that enable learning and memory, such as long-term potentiation (LTP), and that psychostimulants influence LTP through dopamine (DA)-dependent mechanisms. In hippocampal CA1 pyramidal neurons, LTP involves insertion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors into excitatory synapses. We used dissociated cultures to test the hypothesis that D1 family DA receptors influence synaptic plasticity in hippocampal neurons by modulating AMPA receptor trafficking. Brief exposure (5 min) to a D1 agonist increased surface expression of glutamate receptor (GluR)1-containing AMPA receptors by increasing their rate of externalization at extrasynaptic sites. This required the secretory pathway but not protein synthesis, and was mediated mainly by protein kinase A (PKA) with a smaller contribution from Ca2+-calmodulin-dependent protein kinase II (CaMKII). Prior D1 receptor stimulation facilitated synaptic insertion of GluR1 in response to subsequent stimulation of synaptic NMDA receptors with glycine. Our results support a model for synaptic GluR1 incorporation in which PKA is required for initial insertion into the extrasynaptic membrane whereas CaMKII mediates translocation into the synapse. By increasing the size of the extrasynaptic GluR1 pool, D1 receptors may promote LTP. Psychostimulants may usurp this mechanism, leading to inappropriate plasticity that contributes to addiction-related behaviors.  相似文献   

18.
NMDA receptors are calcium-permeable ionotropic receptors that detect coincident glutamate binding and membrane depolarization and are essential for many forms of synaptic plasticity in the mammalian brain. The obligatory GluN1 subunit of NMDA receptors is alternatively spliced at multiple sites, generating forms that vary in N-terminal N1 and C-terminal C1, C2, and C2' cassettes. Based on expression of GluN1 constructs in heterologous cells and in wild type neurons, the prevalent view is that the C-terminal cassettes regulate synaptic accumulation and its modulation by homeostatic activity blockade and by protein kinase C (PKC). Here, we tested the role of GluN1 splicing in regulated synaptic accumulation of NMDA receptors by lentiviral expression of individual GluN1 splice variants in hippocampal neurons cultured from GluN1 (-/-) mice. High efficiency transduction of GluN1 at levels similar to endogenous was achieved. Under control conditions, the C2' cassette mediated enhanced synaptic accumulation relative to the alternate C2 cassette, whereas the presence or absence of N1 or C1 had no effect. Surprisingly all GluN1 splice variants showed >2-fold increased synaptic accumulation with chronic blockade of NMDA receptor activity. Furthermore, in this neuronal rescue system, all GluN1 splice variants were equally rapidly dispersed upon activation of PKC. These results indicate that the major mechanisms mediating homeostatic synaptic accumulation and PKC dispersal of NMDA receptors occur independently of GluN1 splice isoform.  相似文献   

19.
Stress dramatically affects the induction of hippocampal synaptic plasticity; however, the molecular details of how it does so remain unclear. Phosphatidylinositol 3-kinase (PI3K) signaling plays a crucial role in promoting neuronal survival and neuroplasticity, but its role, if any, in stress-induced alterations of long term potentiation (LTP) and long term depression (LTD) is unknown. We found here that inhibitors of PI3K signaling blocked the effects of acute restraint-tail shock stress protocol on LTP and LTD. Therefore, the purpose of the present study is to explore the signaling events involving PI3K in terms of its role in mediating stress protocol-induced alterations of LTP and LTD. We found that stress protocol-induced PI3K activation can be blocked by various inhibitors, including RU38486 for glucocorticoid receptors, LY294002 for PI3K, and dl-2-amino-5-phosphonopentanoic acid for N-methyl-D-aspartate receptors or brain-derived neurotrophic factor antisense oligonucleotides. Also, immunoblotting analyses revealed that stress protocol induced a profound and prolonged phosphorylation of numbers of PI3K downstream effectors, including 3-phosphoinositide-dependent protein kinase-1, protein kinase B, mammalian target of rapamycin (mTOR), p70 S6 kinase, and eukaryotic initiation factor 4B in hippocampal CA1 homogenate, which was prevented by the PI3K inhibitor pretreatment. More importantly, we found that stress protocol significantly increased the protein expression of dendritic scaffolding protein PSD-95 (postsynaptic density-95), which is known to be involved in LTP and LTD, in an mTOR-dependent manner. These results identify a key role of PI3K signaling in mediating the stress protocol-induced modification of hippocampal synaptic plasticity and further suggest that PI3K may do so by invoking the protein expression of PSD-95.  相似文献   

20.
Glutathione (GSH), the major endogenous antioxidant produced by cells, can modulate the activity of N-methyl-D-aspartate receptors (NMDARs) through its reducing functions. During aging, an increase in oxidative stress leads to decreased levels of GSH in the brain. Concurrently, aging is characterized by calcium dysregulation, thought to underlie impairments in hippocampal NMDAR-dependent long-term potentiation (LTP), a form of synaptic plasticity thought to represent a cellular model for memory. Here we show that orally supplementing aged mice with N-acetylcysteine, a precursor for the formation of glutathione, reverses the L-type calcium channel-dependent LTP seen in aged animals to NMDAR-dependent LTP. In addition, introducing glutathione in the intrapipette solution during whole-cell recordings restores LTP obtained in whole-cell conditions in the aged hippocampus. We conclude that aging leads to a reduced redox potential in hippocampal neurons, triggering impairments in LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号