首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sporophyte-gametophyte junction in Acaulon muticum is composed of the sporophyte foot, the surrounding gametophyte vaginula, and an intervening placental space. At an early stage of development the foot has a large basal cell, characterized by extensive wall ingrowths beginning at the lowermost tip of the basal cell and extending along its tangential walls. Sporophyte cells in contact with the basal cell develop ingrowths on their outer tangential walls and on radial walls in contact with the basal cell. All sporophyte cells at this stage are characterized by numerous mitochondria, strands of endoplasmic reticulum, and dictyosomes, particularly in the cytoplasm adjacent to areas of extensive wall development. Plastids typically contain abundant starch reserves. As development proceeds, wall ingrowths become more extensive on all walls in the sporophyte foot but are never found on the upper wall of the basal cell in contact with the remainder of the sporophyte. Plastids in the foot contain fewer starch reserves later in development. Wall ingrowths are not visible in the cells of the gametophyte vaginula until well after extensive development has occurred in the sporophyte foot. Stacks or layers of endoplasmic reticulum are characteristic of the cells of the gametophyte vaginula, along with numerous mitochondria, dictyosomes, and well-developed plastids. Starch reserves typically are less abundant in cells of the gametophyte. The early development of extensive wall elaborations in the cells of the sporophyte foot, and particularly in the basal cell, may favor the rapid movement of water and nutrients from the gametophyte into the sporophyte at a time when rapid development in this minute, ephemeral moss is critical.  相似文献   

2.
Summary Cells of the root epidermis ofPisonia grandis R. Br. at the interface with the mycorrhizal fungus are modified as transfer cells. The length of wall profile in transverse section is increased 1.7-fold by the wall ingrowths, on average, over the outer tangential wall and the outer third of the radial walls; this corresponds to a 1.3—fold increase in wall profile length over the whole cell. These increases in length of wall profile approximate—slightly underestimating-the amplification of surface area of the epidermal cells that results from the ingrowths. The surface area between the symbionts in thePisonia mycorrhiza is less amplified than in classical ectomycorrhizas with a Hartig net: this may be functionally adequate because of the extremely high nutrient status of theP. grandis habitat.  相似文献   

3.
Summary The stigmatic surface of the orchid Dendrobium speciosum is a cup containing detached cells suspended in a mainly carbohydrate mucilage. The fine structure of the detached cells and their organelles is indicative of secretory cells. The cells contain numerous mitochondria with well-developed cristae, dictyosomes containing extensive cisternae, an extensive network of rough and smooth endoplasmic reticulum and free polysomes throughout. There are many amyloplasts in the vicinity of the nucleus. Vesicles are seen arising from the dictyosomes and endoplasmic reticulum. The plasmalemma is undulating, and vesicles can be seen in its vicinity, giving the typical appearance of a granulocrine secretory system. Cetylpyridinium chloride (CPC) fixation to immobilise acidic carbohydrates detected a highly electron-opaque layer surrounding each cell and globules dispersed through the cell wall. The walls of the detached cells show irregular surface projections which are the remains of pitfields. Biochemical analysis showed that carbohydrates and arabinogalactan proteins are major components of the mucilage.  相似文献   

4.
Karl J. Oparka 《Planta》1980,150(3):249-254
Polysomes in sieve elements of rice (Oryza sativa L.) were studied with the electron microscope. The polysomes were found on the rough endoplasmic reticulum (ER) present in immature sieve elements and also on the cisternae of aggregated ER in the parietal layer of mature, enucleate sieve elements. In the immature sieve elements the ER cisternae existed as narrow profiles while in the mature sieve elements the ER cisternae were considerably dilated and contained a fibrillar material and, occasionally, electron-opaque inclusions. In addition to the aggregated ER, single profiles of ER were found applied to the lateral walls and also the sieve plates. These cisternae also bore ribosomes and were separated from the plasmalemma by a narrow, dense space. In the mature sieve elements much of the surface of the ER membranes was covered with polysomes. The dimensions of the polysomes are described and the possibility that they contribute to the formation of the fibrillar material in the intracisternal space is discussed.Abbreviations ER endoplasmic reticulum  相似文献   

5.
Caltha palustris L. carpels obtained from closed flower buds, from flowers that had just reached anthesis, and from older flowers were examined by light and electron microscopy. Trichomes located on either side of the cleft towards the base of each carpel, cells along the margins of the carpel cleft, and transfer cells along the locule lining immediately beneath the micropyle of the anatropous ovule were examined. Numerous, smooth endoplasmic reticulum cisternae and dictyosomes, the presence of material between the cell wall and cuticle, and droplets of material in the region of trichomes is evidence that the trichomes are nectaries. The cells lining the cleft and the transfer cells which have wall ingrowths along the tangential wall facing the locule may be involved in the secretion of substances for pollen tube growth.  相似文献   

6.
Summary An achlorophyllus isoline originated spontaneously from a green callus line derived from a genotype ofLotus corniculatus L. cv. Leo. This isoline is characterized by significantly faster callus growth than the green line and by differentiating significantly fewer plants per gram of callus when subcultured on a shoot differentiating medium. The isoline does, however, develop loci of meristematic cells when transferred from a medium containing 2,4-D to one containing benzyl adenine. After this transfer, plastids, mitochondria, dictyosomes, and endoplasmic reticulum appear to be more prevalent in many cells. Nuclei and nucleoli become more prominent in these cells. Ingrowths, lined with plasmalemma, develop along the outer tangential cell wall of many cells in contact with the culture medium and along various walls of cells found in the interior of the callus. These cells have characteristics of transfer cells. A few cells at the periphery of meristematic groups of cells elaborate lamellar structures similar to suberin lamellae in their cell walls.  相似文献   

7.
Summary The underground portion (rhizome) of the gametophytic axis ofD. dendroides bears anatomical resemblances to a triarch dicotyledonous root. The similarities include: 1. an epidermis producing epidermal appendages; 2. a cortex with endodermoid layer; and 3. a tri-radiate arrangement of the food and water-conducting tissue. Histochemical observations reveal that the entire radial and transverse walls of the endodermoid cells are encrusted with amorphous deposits, probably of polyphenolic nature. Casparian bands are not present as reported by earlier workers. The radial walls exhibit a fine structure of alternating electron-dense and electron-opaque lamellae. In plasmolyzed cells the plasmalemma does not adhere to the radial wall. Plasmodesmatal connections were observed in the radial and outer tangential walls of the endodermoid cells, but not in the inner tangential walls. These features of the endodermoid layer ofD. dendroides are discussed in relationship to the structure and function of the endodermis of vascular plants.  相似文献   

8.
In leaf blades of Zea mays L. plasmodesmata between mesophyll cells are aggregated in numerous thickened portions of the walls. The plasmodesmata are unbranched and all are characterized by the presence of electron-dense structures, called sphincters by us, near both ends of the plasmodesmatal canal. The sphincters surround the desmotubule and occlude the cytoplasmic annulus where they occur. Plasmodesmata between mesophyll and bundle-sheath cells are aggregated in primary pit-fields and are constricted by a wide suberin lamella on the sheath-cell side of the wall. Each plasmodesma contains a sphincter on the mesophyll-cell side of the wall. The outer tangential and radial walls of the sheath cells exhibit a continuous suberin lamella. However, on the inner tangential wall only the sites of plasmodesmatal aggregates are consistently suberized. Apparently the movement of photosynthetic intermediates between mesophyll and sheath cells is restricted largely or entirely to the plasmodesmata (symplastic pathway) and transpirational water movement to the cell walls (apoplastic pathway).Abbreviation ER endoplasmic reticulum  相似文献   

9.
Early cellularization of the free-nuclear endosperm and subsequent differentation of the aleurone cells in the ventral region of the developing wheatgrain (Triticumaestivum L. cv. Heron) were examined using both light and electron microscopy. In ovules harvested 1 d after anthesis, irregular wall ingroths typical of transfer cells protrude into the multinucleate cytoplasm. Initital cellularization occurs by a process of free wall formation in much the same fashion as in the dorsal region of the grain. In places, sheets of endoplasmic reticulum and dictyosomes appear to be closely associated with the growing wall. Like the wall ingrowths noted earlier, the freely growing walls are intensely fluorescent after staining with aniline blue. Initiatal cellularization is complete 2–3 days after anthesis. Unlike the first-formed cells in the dorsal region of the developing grain, those in the ventral region are not meristematic. These amitotic cells become the groove aleurone cells which at an early stage of development are set apart from the rest of the endosperm by their irregularly thickened walls and dense cytoplasm. Autofluorescence is first apparent in the walls of those cells next to the degenerating nucellus. In contrast to the aleurone cells in the dorsal region of the grain, at maturity only the inner wall layer of each of the groove aleurone cells remains autofluorescent. The aleurone grains are highly variable in appearance and contain no Type II inclusions.  相似文献   

10.
Summary The process of microsporogenesis and microgametogenesis was studied at the ultrastructural level in wild-typeArabidopsis thaliana ecotype Wassilewskija to provide a basis for comparison with nuclear male-sterile mutants of the same ecotype. From the earliest stage studied to mature pollen just prior to anther dehiscence, microsporocyte/microspore/pollen development follows the general pattern seen in most angiosperms. The tapetum is of the secretory type with loss of the tapetal cell walls beginning at about the time of microsporocyte meiosis. Wall loss exhibits polarity with the tapetal protoplasts becoming located at a distance from the inner tangential walls first, followed by an increase in distance from the radial walls beginning at the interior edge and progressing outward. The inner tangential and radial tapetal walls are completely degenerated by the microspore tetrad stage. Unlike other members of the Brassicaceae that have been studied, the tapetal cells ofA. thaliana Wassilewskija also lose their outer tangential walls, and secretion occurs from all sides of the cells. Exine wall precursors are secreted from the tapetal cells in a process that appears to involve dilation of individual endoplasmic reticulum cisternae that fuse with the tapetal cell membrane and release their contents into the locule. Following completion of the exine, the tapetal cell plastids develop membranebound inclusions with osmiophilic and electron-transparent regions. The plastids undergo ultrastructural changes that suggest breakdown of the inclusion membranes followed by release of their contents into the locule prior to the complete degeneration of the tapetal cells.  相似文献   

11.
The cytochemical localization of ATPase in differentiating and mature phloem cells of Pisum sativum L. has been studied using a lead precipitation technique. Phloem transfer cells at early stages of differentiation exhibit strong enzyme activity in the endoplasmic reticulum (ER) and some reaction product is deposited on the vacuolar and plasma membranes. As the phloem transfer cells mature and develop their characteristic wall structures, strong enzyme activity can be observed in association with the plasma membranes and nuclear envelopes. Mature phloem transfer cells with elaborate cell-wall ingrowths show ATPase activity evenly distributed on plasma-membrane surfaces. Differentiating sieve elements show little or no enzyme activity. When sieve elements are fully mature they have reaction product in the parietal and stacked cisternae of the ER. There is no ATPase activity associated with P-protein at any stage of sieve-element differentiation or with the sieve-element plasma membranes. It is suggested that the intensive ATPase activity on the plasma membranes of the transfer cells is evidence for a transport system involved in the active movement of photosynthetic products through these cells.Key to labeling in the figures ER endoplasmic reticulum - P parenchyma cell - PP P-protein - SE sieve element - SPP sieve-plate pore - TC transfer cell  相似文献   

12.
Summary Undifferentiated ordinary epidermal cells (ECs) ofVigna sinensis leaves possess straight anticlinal walls and cortical microtubules (Mts) scattered along them. At an early stage of EC differentiation cortical Mts adjacent to the above walls form bundles normal to the leaf plane, loosely interconnected through the cortical cytoplasm of the internal periclinal wall. At the upper ends of the Mt bundles, Mts fan out towards the external periclinal wall and form radial arrays. Mt bundles and radial arrays exhibit strict alternate disposition between neighbouring ECs. An identical reticulum of cellulose microfibril (CM) bundles is deposited outside the Mt bundles. Local wall pads rise at the junctions of anticlinal walls with the external periclinal one, where the CM bundles terminate. They display radial CMs fanning towards the external periclinal wall. The CM bundles and radial CM systems prevent local cell bulging, but allow it in the intervening wall areas. In particular, the radial CM systems dictate the pattern of EC waviness by favouring local tangential expansion of external periclinal wall. As a result, ECs obtain an undulate appearance. Constrictions in one EC correspond with protrusions of adjacent ECs. ECs affected by colchicine entirely lose their Mts and do not develop wavy walls, an observation substantiating the role of cortical Mts in EC morphogenesis.Abbreviations CM cellulose microfibril - DTT dithiothreitol - EC epidermal cell - MSB microtubule stabilizing buffer - Mt microtubule - PBS phosphate buffered saline - PMSF phenylmethylsulfonyl fluoride  相似文献   

13.
By microinjecting rhodamine-conjugated pig brain tubulin into living pea stem epidermal cells it has been possible to follow cortical microtubules beneath the outer tangential wall (OTW) as they re-orientate from a transverse to a longitudinal alignment. Earlier immunofluorescence studies on fixed material have shown that parallel cortical microtubules circumnavigate the cell forming apparently continuous arrays which are transverse, oblique or longitudinal to the cell's long axis. If the array re-orientates as a whole then microtubules along the radial walls would be expected to share the alignment of those on the tangential walls. There are, however, reports that microtubules beneath the outer tangential wall have a different orientation from microtubules at the radial cell walls, raising important questions about the construction and behaviour of the array. Using computer-rotated stacks of optical sections collected by confocal scanning laser microscopy it has been possible to display the microtubules along radial as well as tangential walls of the same microinjected cells. These observations demonstrate for living epidermal cells that when microtubules are aligned longitudinally at the outer epidermal wall they remain oblique or transverse at the radial walls. The array may not therefore re-orientate as a whole but seems to undergo re-organization on only one cell face. However, despite the differing angles between the OTW and radial walls microtubules still form patterns which at the level of the confocal microscope are continuous from one cell face to another, around the cell.
It is concluded that some organizing principle attempts to establish overall organization at the cellular level but that this can be perturbed by local re-organization of dynamic microtubules in subcellular domains. This study emphasizes the importance of the outer epidermal wall and its associated cytoskeleton in initiating changes in the direction of cell expansion.  相似文献   

14.
Summary During imbibition ofPhoenix dactylifera embryos, all cotyledon cells show the same changes: protein and lipid bodies degrade, smooth endoplasmic reticulum (ER) increases in amount, and dictyosomes appear. At germination, the distal portion of the cotyledon expands to form the haustorium. At this time, epithelial cells have a dense cytoplasm with many extremely small vacuoles. Many ribosomes are present along with ER, dictyosomes, and mitochondria. The parenchyma cells have large vacuoles and a small amount of peripheral cytoplasm. Between 2 and 6 weeks after germination, epithelial cells still retain the dense cytoplasm and many organelles appear: glyoxysomes, large lipid bodies, amyloplasts, large osmiophilic bodies, and abundant rough and smooth ER which appear to merge into the plasmalemma. A thin electron-transparent inner wall layer with many small internal projections is added to the cell walls. Starch grains appear first in the subsurface and internal parenchyma and subsequently in the epithelium. Lipid bodies, glyoxysomes, protein, and osmiophilic bodies occur in the epithelial and subepithelial cell layers but not in the internal parenchyma. At 8 weeks after germination, the cytoplasm becomes electron transparent, vacuolation occurs, lipid bodies and osmiophilic bodies degrade, and the endomembranes disassemble. After 10 weeks, the cells are empty. These data support the hypothesis that the major functions of the haustorium are absorption and storage.  相似文献   

15.
Summary Spontaneous nodules were formed on the primary roots of alfalfa plants in the absence ofRhizobium. Histologically, these white single-to-multilobed structures showed nodule meristems, cortex, endodermis, central zone, and vascular strands. Nodules were devoid of bacteria and infection threads. Instead, the larger cells were completely filled with many starch grains while smaller cells had very few or none. Xylem parenchyma and phloem companion cells exhibited long, filiform and branched wall ingrowths. The characteristic features of both types of transfer cells were polarity of wall ingrowths, high cytoplasmic density, numerous mitochondria, abundant ribosomes, well-developed nucleus and nucleolus, and vesicles originated from rough endoplasmic reticulum. These results were compared with normal nodules induced byRhizobium. Our results suggest that xylem parenchyma and phloem companion transfer cells are active and probably involved in the short distance transport of solutes in and out of spontaneous nodules. Since younger nodules showed short, papillate, and unbranched wall ingrowths, and older tissue showed elongated, filiform and branched wall ingrowths, the development of wall ingrowths seemed to be gradual rather then abrupt. The occurrence of both type-A and -B wall ingrowths suggests that phloem companion transfer cells may be active in loading and unloading of sieve elements. Since there were no symbiotic bacteria and thus no fixed nitrogen, it is tempting to speculate that xylem parenchyma transfer cells may be re-transporting accumulated carbon from starch grains to the rest of the plant body by loading xylem vessels. Fusion of ER-originated vesicles with wall ingrowth membrane indicated the involvement of ER in the membrane formation for elongating wall ingrowths. Since transfer cells were a characteristic feature of both spontaneous andRhizobium-induced nodules, their occurrence and development is controlled by the genetic make-up of alfalfa plant and not by a physiological source or sink emanating from symbiotic bacteria.Abbreviations ATP adenosine triphosphate - ATPase adenosine triphosphatase - EH emergent root hair - EM electron microscope - Nar nodulation in the absence of Rhizobium - RT root tip - RER rough endoplasmic reticulum - YEMG yeast extract mannitol-gluconate  相似文献   

16.
花生胚乳细胞化的超微结构观察   总被引:4,自引:1,他引:3  
花生(ArachishypogeaeL.)心形胚期的胚乳游离核多瓣裂,或具长尾状结构。胚乳细胞质内有大量线粒体、质体、高尔基体、小泡及少量内质网。中央细胞壁有壁内突。球胚及心形胚期常见胚乳瘤。心形胚晚期,胚乳开始细胞化,胚乳细胞壁形成有3种方式,分别存在于不同的胚珠中:(1)从胚囊壁产生自由生长壁形成初始垂周壁,具有明显的电子密度深的中层,其生长主要靠末端的高尔基体小泡及内质网囊泡的融合。两相邻的自由生长壁末端或其分枝末端相连形成胚乳细胞。(2)核有丝分裂后产生细胞板,细胞板向外扩展并可分枝。间期的非姊妹核间也观察到形成了细胞板。小泡与微管参与细胞板的扩展,高尔基体和内质网是小泡的主要来源。细胞板的扩展末端相互连接,形成胚乳细胞的前身。小泡继续加入细胞板的组成,以后形成胚乳细胞壁。(3)胚乳细胞质中,出现一些比较大的不规则形的片段性泡状结构,它们可能来源于高尔基体小泡,这些片段性泡状结构随机相连形成细胞壁,未见微管参与。胚乳细胞外切向壁及经向壁上有壁内突。  相似文献   

17.
Summary Parenchyma cells of the secondary phloem in Pinus strobus have all the cellular organelles common in other plant cells. They have mitochondria, endoplasmic reticulum, ribosomes, dictyosomes, and plastids. Parenchyma cells are very conspicuous because of their organic inclusions, starch and lipids. Plasmodesmata in transverse and tangential walls of axial parenchyma cells and in end walls of ray parenchyma cells are regularly distributed and of uniform size, about 500 Å in diameter. In radial walls of axial parenchyma cells and horizontal walls of ray parenchyma cells plasmodesmata are located in primary pit-fields; there they are of variable size and often divided into several branches. The branches are confluent into a median nodule. Perforation of the transverse wall between two axial parenchyma cells and the resultant union of the cellular material of the two connected cells is reported.This research has been supported by NSF Grant GB 3193.  相似文献   

18.
Characteristic features of rough endoplasmic reticulum (rER) distribution and proliferation were noted during olive pollen (Olea europaea L.) development, suggesting the physiological significance of this organelle. Initially scarce in the young microspore, ER increases as cytoplasmic vacuoles form. At the vacuolated microspore stage the cytoplasm contains numberous polysomes and elongated rER cisternae arranged preferentially in stacks, with an average intracisternal width of 0.07 µm. Stacks persist in the bicellular pollen grain but consist of fewer, shorter, dilated cisternae (mean intracisternal width 0.1 µm) containing a considerable electron-dense matrix. Cisternae in the mature grain are fragmented, leaving behind an ER of swollen pockets. Pockets of ER containing a material of greater electron density are evenly deposited along the plasmalemma, in close relation with it. A dense material is seen in the tubules of the apertural region, which was lacking in earlier stages. Our results show that ER may be involved in protein transport to the intine.  相似文献   

19.
In epidermal cells ofDrosera tentacles that have been preserved for ultrastructural analysis through high pressure freeze fixation and freeze substitution we describe the frequent occurrence of microfilament (MF)-endoplasmic reticulum (ER) complexes. These are found throughout the cytoplasm where they are observed in close association with the plasmalemma (PL), the tonoplast, nuclei, mitochondria, chloroplasts, and microbodies. The MF component of the complexes is identified as actin based on immunogold labelling with actin antibodies. The actin-ER complexes are prominent in the cortical cytoplasm. In this region a network of predominantly tubular ER occupies an intermediary position in which it associates closely with both the PL and the actin MFs. We suggest that the ER, especially those elements adjacent to the PL in the cortical cytoplasm, stabilizes the actin MFs and provides the necessary anchor against which the forces for cytoplasmic streaming are generated.Abbreviations CF chemical fixation - ER endoplasmic reticulum - FS freeze substitution - HPF high pressure freezing - MF microfilaments - MT microtubules - PL plasmalemma  相似文献   

20.
The physiological phloem equivalents, leptoids, of the polytrichaceous moss Atrichum undulatum appear to be similar to the nacreous sieve elements that occur in many higher plants. These leptoids are elongated cells with nacreous thickenings on their radial and tangential walls. Their oblique end walls, which lack such thickenings, are traversed by numerous pores through which the plasmalemma, endoplasmic reticulum, and cytoplasm are continuous between adjacent leptoids of a longitudinal file. These end walls closely resemble the simple sieve areas of the sieve elements found in Polypodium vulgare. The leptoid sieve pores have a median expanded area and frequently are occluded by small amorphous protein plugs at each end. Also, callose was observed as electron-luscent areas both on the faces of the end walls and as a thin cylinder surrounding the lateral area of each pore. Amorphous and granular cytoplasmic contents of the leptoids appear to be morphologically similar to the slime (P-protein) found in the sieve-tube elements of many angiosperms. Differentiating leptoids are characterized by the formation of numerous membrane-bound protein bodies in close association with polysomes and endoplasmic reticulum. As the leptoid matures, the contents of the protein bodies become dispersed in the cytoplasm. Ultrastructurally and ontogenetically the leptoids in the gametophores of A. undulatum appear almost identical to the sieve elements of P. vulgare and therefore should be considered sieve elements rather than phloem-like equivalents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号