首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Studies with 75Se have shown the existence of a rat plasma selenoprotein in addition to glutathione peroxidase. Because the function of the protein is not known, it has been referred to as selenoprotein P. A partially purified preparation was used to produce a monoclonal antibody to selenoprotein P. The antibody did not bind glutathione peroxidase as evidenced by its failure to remove glutathione peroxidase activity from rat plasma by immunoprecipitation. An immunoaffinity column was prepared with the monoclonal antibody, and selenoprotein P was purified 1270-fold from rat plasma in a two-step procedure. The purified selenoprotein P migrated in a single band with an Mr of 57,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography demonstrated that this band contained 75Se when the protein was purified from rats which had received 75SeO2-(3). A competitive radioimmunoassay for selenoprotein P was developed. The selenoprotein P concentration in plasma of selenium-replete rats was determined with this assay to be 51 +/- 3.7 micrograms/ml. It was less than 5 micrograms/ml in plasma from selenium-deficient rats. Injection of 50 micrograms of selenium into selenium-deficient rats caused an increase in selenoprotein P from less than 10% of control to 52% of control in 6 h. Plasma glutathione peroxidase activity increased only from 2.2 to 3.1% of control. These experiments demonstrate that rat plasma contains a selenoprotein distinct from glutathione peroxidase. The concentration of this selenoprotein is depressed in selenium deficiency, as is glutathione peroxidase activity, but selenoprotein P increases more rapidly when selenium is supplied than does glutathione peroxidase activity.  相似文献   

2.
Deletion of the mouse selenoprotein P gene (Sepp1) lowers selenium concentrations in many tissues. We examined selenium homeostasis in Sepp1(-/-) and Sepp1(+/+) mice to assess the mechanism of this. The liver produces and exports selenoprotein P, which transports selenium to peripheral tissues, and urinary selenium metabolites, which regulate whole-body selenium. At intakes of selenium near the nutritional requirement, Sepp1(-/-) mice had whole-body selenium concentrations 72 to 75% of Sepp1(+/+) mice. Genotype did not affect dietary intake of selenium. Sepp1(-/-) mice excreted in their urine approximately 1.5 times more selenium in relation to their whole-body selenium than did Sepp1(+/+) mice. In addition, Sepp1(-/-) mice gavaged with (75)SeO(2-)(3) excreted 1.7 to 2.4 times as much of the (75)Se in the urine as did Sepp1(+/+) mice. These findings demonstrate that deletion of selenoprotein P raises urinary excretion of selenium. When urinary small-molecule (75)Se was injected intravenously into mice, over 90% of the (75)Se appeared in the urine within 24 h, regardless of selenium status. This shows that urinary selenium is dedicated to excretion and not to utilization by tissues. Our results indicate that deletion of selenoprotein P leads to increased urinary selenium excretion. We propose that the absence of selenoprotein P synthesis in the liver makes more selenium available for urinary metabolite synthesis, increasing loss of selenium from the organism and causing the decrease in whole-body selenium and some of the decreases observed in tissues of Sepp1(-/-) mice.  相似文献   

3.
Rat plasma selenoprotein P properties and purification   总被引:1,自引:0,他引:1  
A selenoprotein in rat plasma, selenoprotein P, was fractionated and characterized. Plasma collected from rats 3 h post injection of 75SeO3(2-) contained one 75Se-labeled protein, selenoprotein P. Selenoprotein P was fractionated using salt precipitation, Affi-Gel Blue, and DEAE chromatography. The 75Se-containing subunit of selenoprotein P was purified to 90% homogeneity using SDS-polyacrylamide gel electrophoresis followed by electroelution. This isolation resulted in an 850-fold purification of the 75Se-containing subunit of selenoprotein P with a 15% yield of 75Se radioactivity. The molecular weight of selenoprotein P in plasma was 98,000. The 75Se-containing subunit of selenoprotein P had a molecular mass of 57 kDa as determined by SDS-polyacrylamide gel electrophoresis. Isoelectric focusing under nondenaturing conditions resulted in a band of 75Se radioactivity at pH 5.4. A comparison of Coomassie Blue- and silver-staining properties of selenoprotein P in SDS-polyacrylamide gels was made. Reverse-phase HPLC and Sephadex G-50 chromatography of tryptic peptides of the 57 kDa subunit of selenoprotein P yielded several peaks of 75Se radioactivity. These results indicate that 75Se is present in several locations within the 57 kDa subunit of selenoprotein P.  相似文献   

4.
A reported association between estrogen and selenium status may be important in the regulation of selenium metabolism. In this study, the effect of estrogen status on the metabolism of orally administered (75)Se-selenite and tissue selenium status was investigated. Female Sprague-Dawley rats were bilaterally ovariectomized at 7 weeks of age and implanted with either a placebo pellet (OVX) or pellet containing estradiol (OVX+E2), or were sham operated (Sham). At 12 weeks of age, 60 μCi of (75)Se as selenite was orally administered to OVX and OVX+E2 rats. Blood and organs were collected 1, 3, 6 and 24 h after dosing. Estrogen status was associated with time-dependent differences in distribution of (75)Se in plasma, red blood cell (RBC), liver, heart, kidney, spleen, brain and thymus and incorporation of (75)Se into plasma selenoprotein P (Sepp1) and glutathione peroxidase (GPx). Estrogen treatment also significantly increased selenium concentration and GPx activity in plasma, liver and brain, selenium concentration in RBC and hepatic Sepp1 and GPx1 messenger RNA. These results suggest that estrogen status affects tissue distribution of selenium by modulating Sepp1, as this protein plays a central role in selenium transport.  相似文献   

5.
Multiple selenocysteine content of selenoprotein P in rats   总被引:2,自引:0,他引:2  
Partially purified selenoprotein P from rat plasma was digested with either trypsin, endoprotease Lys-C, or endoprotease Arg-C and analyzed by high pressure liquid chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Several 75Se-labeled peptides were detected. The moles of selenium in selenoprotein P were estimated based on the 75Se content of the 75Se-labeled peptide fragments. Using this method, selenoprotein P was shown to contain approximately 9 moles of selenium. This is the first report of a selenoprotein containing more than one selenium per polypeptide. These findings support the proposed function of this protein in selenium transport.  相似文献   

6.
Radioreceptor assay technology was used to show the presence in the rat of a receptor that binds selenoprotein P, a selenocysteine-containing rat plasma protein. 75Se-labeled selenoprotein P bound to testis, kidney, and liver membranes. The binding was specific in that increasing amounts of partially-fractionated rat plasma specifically displaced the binding of 75Se-labeled selenoprotein P to testis membrane in a competitive manner. 75Se-labeled selenoprotein P binding was saturable in the presence of increasing amounts of testis membranes. The binding of 75Se-labeled selenoprotein P was optimal at about pH 4.2. Several proteins and blood fractions had little or no significant effect on binding of 75Se-labeled selenoprotein P to testis membranes. All plasma sources tested specifically displaced 75Se-labeled selenoprotein P from testis membrane, indicating that selenoprotein P-related proteins may be widespread in nature. The study indicated that selenoprotein P has a receptor and is involved in selenium transport.  相似文献   

7.
Selenoprotein P was partially purified (> 1000-fold) from human plasma in four chromatographic steps using 75Se-labeled selenoprotein P secreted by HepG2 cells in culture as a marker. The purified preparation was injected into mice and monoclonal antibodies, which precipitated the labeled protein, were generated. Neither of two different monoclonal antibodies had cross-reactivity with plasma from five animal species. Antibodies were coupled to agarose, and selenoprotein P was purified from human plasma by immunoaffinity chromatography followed by chromatography on heparin agarose. With two different matrix-bound monoclonal antibodies, the purification procedure gave two bands on SDS-PAGE with mobilities corresponding to 61 and 55 kDa. Both bands stained for carbohydrate and showed increased electrophoretic mobility after enzymatic deglycosylation. Immunoaffinity chromatography removed approx. one-third of the selenium from plasma or 0.4 μmol Se/l at a total selenium concentration of 1.1 μmol/l, indicating that selenoprotein P constituted this proportion of total plasma selenium in healthy US blood donors.  相似文献   

8.
Radioactive inorganic selenium, administered intraperitoneally at 1 mg/kg body weight to young adult rats, acculumulates in testes for 7 days or longer, whereas liver, kidney and serum levels fall more rapidly. 3–4 h after administration of [75Se]selenite, 55–60% of the radioactivity in the testes was found in the cytosol, associated with protein. Ultragel ACA-22 chromatography of testis cytosol prepared 4 h after 75Se treatment revealed a major selenoprotein having an apparent molecular weight of 59 000. Sodium dedecyl sulfate polyacrylamide gel electrophoresis indicated extensive heterogeneity of radioactivity with apparent molecular weights of about 57 000 and 45 000 and 15 000. Cytosol from rats treated 4 weeks earlier showed predominance of the 15 000 molecular weight [75Se]selenoprotein. Sucrose density gradient ultracentrifugation at either low or high ionic strength demonstrated a single 7 S selenoprotein. Chromatography with Blue-Sepharose indicated that the radioactivity was not associated with albumin. Strong 75Se binding to protein was demonstrated by overnight dialysis against water, 2 M NaCl, β-mercaptoethanol, 8 M urea, selenite. However, 85% of the 75Se was removed by dialysis against 0.5 M NaOh. This stability contrasts with the lability of disulfide reagents of selenite-protein complexes formed in vitro. The fact that selenium is incorporated in substantial amounts into a discrete and stable protein suggests a physiological role for this essential trace element in the testes.  相似文献   

9.
Selenium (Se)-containing proteins in microsomal fractions of rat kidney and liver were investigated after isotopic labeling of rats with [75Se]selenite. More than 85% of the 75Se in the solubilized microsomal extracts precipitated with protein after trichloroacetic acid treatment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), used to separate the labeled protein subunits in the solubilized microsomal extracts, revealed several 75Se-containing proteins in addition to glutathione peroxidase. 75Se-labeled subunits with molecular weights of 55, 30, 26, 22, 19, and 17 kDa were present in microsomal fractions of kidney and liver. The 75Se-labeled tryptic peptide of the 55 kDa subunit had the same Rf value on a 17% SDS-PAGE gel as the peptide from plasma selenoprotein P. A time-course study of the labeling of individual protein subunits in kidney and liver microsomes from Se-supplemented and Se-deficient rats showed that most of the 75Se was associated with the 55 kDa subunit 3 hr after injection. The amount of 75Se associated with this protein subunit decreased by 12 hr, with a concurrent increase in the labeling of lower molecular-weight subunits. The results support the hypothesis that there is a mechanism for transfer of Se from the 55 kDa subunit to other Se-containing proteins.  相似文献   

10.
The selenoenzyme glutathione peroxidase cannot account for all the physiological effects of selenium in rat liver. Therefore, a study was carried out with the ultimate aim of identifying selenoproteins other than glutathione peroxidase. The incorporation of 75Se, given as 75SeO32?, into centrifugally separated fractions of selenium-deficient and control rat livers was determined. In selenium-deficient liver much less 75Se was incorporated into the 105,000g supernatant fraction than in controls, so this fraction was studied further by gel filtration, ion-exchange, and hydroxylapatite chromatography. Selenoglutathione peroxidase and another selenoprotein, called 75Se-P, were separated and identified. Both these selenoproteins were also found in plasma. Selenium deficiency had opposite effects on incorporation of 75Se by these proteins. It decreased 75Se incorporation by glutathione peroxidase at 3 and 72 h after 75Se injection but increased 75Se incorporation by 75Se-P. This suggests that 75Se-P competes for available selenium better than does glutathione peroxidase when the element is in short supply. Apparent molecular weights of 75Se-P from liver and plasma determined by gel filtration were, respectively, 83,000 and 79,000, which indicate proteins smaller than glutathione peroxidase. Cycloheximide pretreatment of the rat blocked 75Se incorporation into plasma 75Se-P. These experiments establish the existence of a selenoprotein, 75Se-P, in rat liver and plasma which is chromatographically distinct from glutathione peroxidase and which incorporates 75Se differently from glutathione peroxidase. 75Se-P may account for some of the physiological effects of selenium.  相似文献   

11.
Selenium and selenoproteins in the rat kidney   总被引:1,自引:0,他引:1  
Kidney tissue contains a high concentration of selenium that is not accounted for by the known selenoprotein glutathione peroxidase (glutathione: hydrogen-peroxide oxidoreductase, EC 1.11.1.9). In order to investigate the nonglutathione peroxidase selenium, rats were isotopically labeled with [75Se]selenite over a 10-day period. After this time half of the 75Se in kidney homogenate was found in the particulate subcellular fractions. The kidney lysosomes contained unusually high levels of 75Se, yet they did not contain correspondingly high levels of glutathione peroxidase activity. Two selenoproteins having molecular weights less than 40 000 were resolved by gel filtration from a kidney supernatant fraction. A third selenoprotein exhibited a molecular weight of 75 000. This protein contained one 75 000 molecular-weight subunit, and its selenium was in the amino acid selenocysteine. The 75 000 molecular-weight protein was chromatographically distinct from glutathione peroxidase. In order to determine if these selenoproteins protect against cadmium toxicity, 109CdCl2 was administered to rats that were isotopically prelabeled with 75Se. At 3, 25 and 72 h after 109Cd administration, no 109Cd was associated with selenium-containing proteins. Two of the nonglutathione peroxidase selenoproteins were apparently unique to the kidney.  相似文献   

12.
Selenoprotein P is the second plasma selenoprotein to be purified. It is a glycoprotein and has been shown to be distinct from plasma glutathione peroxidase. This study characterizes selenoprotein P further. Deglycosylation of the protein shifts its migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis from Mr 57,000 to Mr 43,000, indicating it has a substantial carbohydrate component. Measurement of selenium indicates a selenium content of 7.5 +/- 1.0 atoms/molecule based on a polypeptide weight of 43,000. Amino acid analysis accounts for all the selenium as selenocysteine. The protein is also rich in cysteine (17 residues) and histidine (23 residues). Fragmentation of selenoprotein P by trypsin and by cyanogen bromide produces peptides with varying selenium content. This indicates that selenium-rich regions of the protein exist. The concentration of selenoprotein P determined by radioimmunoassay in serum from control rats is 26.3 +/- 4.5 micrograms/ml and in serum from selenium-deficient rats it is 2.7 +/- 0.8 micrograms/ml. Depletion of selenoprotein P from control serum using an immunoaffinity column indicates that over 60% of serum selenium in the rat is contained in this protein. These results demonstrate that selenoprotein P is the major form of selenium in rat serum. It is the first selenoprotein described which has more than one selenium atom/polypeptide chain.  相似文献   

13.
Selenoprotein P is a plasma protein recently purified and characterized as containing 7.5 +/- 1.0 selenium atoms/molecule as selenocysteine. In rats maintained on a defined diet containing nutritionally adequate amounts of selenate as the sole selenium source, over half the selenium in plasma is accounted for by selenoprotein P. Its cDNA has been cloned from a rat liver library and sequenced. The sequence is highly unusual, containing 10 TGA codons in its open reading frame prior to the TAA termination codon. TGA designates selenocysteine in other selenoproteins, and limited peptide sequencing that included the amino acids encoded by two of the TGA codons verified that they correspond to selenocysteine. The deduced 366-amino acid sequence is histidine- and cysteine-rich and contains 9 of its selenocysteines in the terminal 122 amino acids. Comparison of the deduced amino acid sequence of selenoprotein P with those of other selenoprotein reveals no significant similarities. Selenoprotein P represents a new class of selenoproteins and is the first protein described with more than 1 selenocysteine in a single polypeptide chain. The primary structure of selenoprotein P suggests that it might be responsible for some of the antioxidant properties of selenium.  相似文献   

14.
The metabolism of selenium (Se) in the bloodstream of rats was studied using HPLC–ICP-MS with an enriched Se stable isotope, and the results were used as Se-specific indicators for Se nutritional status. Concentration of endogenous Se in plasma depended on dietary Se, while changes in concentrations and distributions of exogenous Se revealed its metabolic pathway. Namely, selenite was taken up by red blood cells and reduced to selenide, and then reappeared in plasma in a form bound selectively to albumin within 10 min, disappeared from plasma again within 30 min after injection. Then, the concentration of labelled Se started to increase slowly as selenoprotein P and extracellular glutathione peroxidase, and attained a maximum level at about 6 h after injection. The isotope ratio of endogenous to exogenous Se concentrations in plasma after 48 h post-injection was proposed to represent the Se-specific indicator in plasma reflecting the nutritional status of Se.  相似文献   

15.
Essentially all of the selenium in the rat spermatozoon is bound to a polypeptide of Mr 15,000-17,000 confined to the capsule that surrounds the sperm mitochondria. Isoelectric focussing of isolated 75Se-labelled, carboxymethylated mitochondrial capsule protein (MCP) reveals the presence of at least four radioactive components, with a predominant charge isomer at pI4.6. The sperm selenoprotein appears to be identical with MCP, as judged by the exact coincidence of radioactivity and protein stain during two-dimensional electrophoresis. The temporal pattern of 75Se-labelling of rat caput epididymal spermatozoa after intratesticular 75Se injection suggests that maximum incorporation of 75Se into MCP occurs in step 7-step 12 spermatids and that 75Se uptake ceases during step 15 of spermiogenesis. The developmental appearance of sperm selenoprotein in rat testis therefore appears to lag several days behind that reported for MCP in mouse testis, suggesting the presence of selenium-free MCP in immature germ cells. SDS gel electrophoretic analysis of testis subcellular fractions 24 h after 75Se injection into rat testis at 21, 28 and 90 days of age indicates that sperm selenoprotein first appears in very low concentration during late meiosis and that its concentration increases sharply during early spermiogenesis. Additional 75Se-labelled polypeptides were detected on the gels, most of them of higher molecular weight than MCP. At least two of these (Mr 47,000 and 54,000) displayed a marked decrease in labelling between 5 and 24 h after injection into adult testis, coincident with a comparable increase in 75Se-labelled MCP, indicating that they may be precursors of MCP.  相似文献   

16.
17.
The subcellular distribution of selenium in rat tissues was studied by measuring 75Se in animals provided for 5 months with [75Se]selenite as the main dietary source of selenium. Equilibration of the animals to a constant specific activity allowed the measurement of 75Se to be used as a specific elemental assay for selenium. Of the whole-body selenium, 51% was in the soluble fractions and 48% was bound to the particulate fractions as follows: 21% in plasma membranes, 11% in microsomes, and 16% in mitochondria. Glutathione peroxidase was primarily a soluble enzyme, but part of the activity was associated with plasma membrane in liver, mitochondria in liver and kidney, and microsomes in testes. Selenium in glutathione peroxidase accounted for about one-third of the particulate-associated selenium. These results indicate that other selenium-containing proteins besides glutathione peroxidase are present in membranes.  相似文献   

18.
A selenoprotein, with an approximate molecular weight of 2000, was isolated from yellowfin tuna (Thunnus albacares) liver. The selenium (Se) content of this selenoprotein fraction represented greater than 50% of the Se in the original liver extract. Most of the unrecovered Se was left in the pellet following homogenization. Although the protein was very sensitive to oxidizing conditions, it remained stable in the presence of reducing agents such as glutathione and dithiothreitol under a nitrogen atmosphere. After preparative isoelectric focusing of the purified selenoprotein, selenium was detected in three distinct bands, with the predominant band occurring at pH 6.2.  相似文献   

19.
The tissue uptake and distribution of injected [75Se]-sodium selenite as a variance with time and as influenced by dietary selenium status was followed in the tissues of Japanese quails,Coturnix coturnix japonica. Quails maintained on a low selenium semipurified (basal) diet and basal diets supplemented with 0.2 and 2.0 ppm selenium as sodium selenite were injected intraperitonially with75Se as sodium selenite (2.8 microcuries). The injected75Se was monitored in blood, liver, kidney, heart, and testis at 24, 72, and 144 h after injection. Maximal uptake of the injected75Se was observed in tissues of quails maintained on basal diet. The uptake of75Se in tissues in general was determined by the dietary Se status. Among the organs studied, kidney had the maximal level of75Se, 0.2 ppm (μg/g wet tissue) followed by liver, testis, and heart, but testis had the maximal level when the level per milligram of protein was considered, about 3.0 ng/mg protein, followed by liver, kidney, and heart. About 10–20% of the tissue75Se was located in the mitochondria and 50–60% in the post-mitochondrial supernatant fractions in all dietary Se levels. Significant incorporation of75Se in the mitochondrial membrane was observed. The percent distribution ratio between the membrane and matrix fractions of the mitochondria remained constant at all dietary Se levels which, in liver was 65∶35, in kidney 55∶45, and in testis 75∶25. However, in heart mitochondria, the distribution of75Se between membrane and matrix varied with dietary Se status, the ratio being 82∶18 in the basal group, and 72∶28 and 41∶59 in the 0.2 and 2.0 ppm Se-supplemented groups, respectively. This is indicative of a preferential uptake of75Se in the mitochondrial membrane in conditions of deficiency. About 40–60% of the mitochondrial membrane-associated75Se was released upon Triton treatment in all the organs. Of the membrane-bound75Se, about 10–15% was acid-labile in liver and kidney and 25% in the heart tissue. Possibilities of tissue specific roles, especially in the heart mitochondrial membrane-related processes, are indicated for selenium.  相似文献   

20.
Selenium-labeled proteins (SLP) distinct from glutathione peroxidase (GSH-PX) recently have been purified and partially characterized. Antisera to two SLP, a 56-kDa and a 14-kDa protein, were generated in rabbits and used to examine expression of these proteins as a consequence of dietary selenium concentration (0.02, 0.2, 2.0 ppm) in mice and rats. Additionally, the kinetics of 75Se labeling in plasma, liver, kidney, and mammary gland were examined over a 40-hr time period as a function of dietary selenium concentration. A plasma 57-kDa protein was labeled by 30 min after 75Se injection and reached maximum labeling by 4 hr. The cellular 56-kDa and 14-kDa proteins, as well as GSH-Px, labeled progressively over 40 hr starting between 1 and 4 hr after injection. In general, the 56-kDa and GSH-Px followed similar labeling patterns, whereas the 14-kDa protein was labeled less and was not labeled in discernible quantities until 40 hr. The extent of labeling of all proteins was inversely proportional to the dietary selenium concentration and was probably a reflection of different endogenous selenium body pools. The most important observation was generated by the immunoblot data. The amount of 56-kDa and 14-kDa proteins as detected and measured on immunoblots was not a function of dietary selenium concentration. This result suggests that the synthesis and maintenance of the 56-kDa and 14-kDa proteins are not selenium dependent, a characteristic which distinguishes the two proteins from GSH-Px. The single exception to the above results was the 40% decrease of liver 14-kDa protein concentration in carcinogen-treated rats fed 2.0 ppm of selenium. An organic selenium compound, selenobetaine, did not lead to a decrease under similar conditions. In 15 rat mammary tumors induced by 7,12-dimethylbenzanthracene and analyzed on immunoblots, the SLP-56 was undetected in 5 cases and appeared as two bands (56,000 Da, 50,000 Da) in 10 cases. This latter result raises the possibility that the expression of SLP-56 may be altered in mammary tumors as compared with normal mammary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号