首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The regulation of human plasma lecithin:cholesterol acyltransferase (LCAT) by changes in bilayer fluidity of substrate egg phosphatidylcholine (egg PC) unilamellar vesicles was investigated using pyrene excimer fluorescence to measure fluidity. Fluidity was decreased by adding up to 20% cholesterol or increased by adding up to 10% egg 2-lysophosphatidylcholine (lysoPC). The fluidizing effect of lysoPC was suppressed by the addition of cholesterol. LCAT activity with 10% cholesterol vesicles was decreased by adding 5% lysoPC, yet activity with 5% cholesterol vesicles was unaffected by adding 5% lysoPC. This difference may be explained by a balance between the known LCAT inhibitory effect of lysoPC and its ability to increase bilayer fluidity and thereby increase LCAT activity. LCAT esterification of up to 37% of vesicle cholesterol failed to alter the lysoPC/cholesterol balance sufficiently to influence activity in this system. The findings of our studies are in keeping with modulation of LCAT activity by bilayer fluidity, but fluidity changes caused by enzyme action are not sufficient to regulate that activity.  相似文献   

2.
  • 1.1. Human endothelial cells (EA.hy 926 line) were loaded with cholesterol, using cationized LDL, and the effect of lecithin:cholesterol acyltransferase (LCAT) on cellular cholesterol efflux mediated by high density lipoproteins (HDL) was measured subsequently.
  • 2.2. In plasma, lecithin:cholesterol acyltransferase (LCAT) converts unesterified HDL cholesterol into cholesteryl esters, thereby maintaining the low UC/PL ratio of HDL. It was tested if further decrease in UC/PL ratio of HDL by LCAT influences cellular cholesterol efflux in vitro.
  • 3.3. Efflux was measured as the decrease of cellular cholesterol after 24 hr of incubation with various concentrations of HDL in the presence and absence of LCAT. LCAT from human plasma (about 3000-fold purified) was added to the cell culture, resulting in activity levels in the culture media of 60–70% of human serum.
  • 4.4. Although LCAT had a profound effect on HDL structure (UC/TC and UC/PL ratio's decreased), the enzyme did not enhance efflux of cellular cholesterol, using a wide range of HDL concentrations (0.05–2.00 mg HDL protein/ml).
  • 5.5. The data indicate that the extremely low unesterified cholesterol content of HDL, induced by LCAT, does not enhance efflux of cholesterol from loaded EA.hy 926 cells. It is concluded that the HDL composition (as isolated from plasma by ultracentrifugation) is optimal for uptake of cellular cholesterol.
  相似文献   

3.
Pregnenolone- (PREG-), and dehydroepiandrosterone- (DHEA-) fatty acid esters (FA) are present in human plasma, where they are associated with lipoproteins. Because plasma has the ability to form PREG-FA and DHEA-FA in vitro from their unconjugated steroid counterparts, we postulated that the LCAT enzyme might be responsible for their formation. Here we show that lecithin-cholesterol acyltransferase (LCAT) has PREG and DHEA esterifying activities. First, VLDL, IDL, LDL, and HDL were isolated by the sequential ultracentrifugation micromethod from the plasma of fasting men and women and tested for their ability to form PREG-FA, DHEA-FA, and cholesteryl esters in vitro from their respective unconjugated counterparts. The results showed that the three steroids were esterified only in HDL subfractions. The rate of tritiated PREG esterification was clearly higher than that of tritiated cholesterol and DHEA, both in total plasma and isolated HDL, and no gender difference was observed. Second, human and guinea pig LCAT were purified and used in phosphatidylcholine-reconstituted vesicles containing human apoAI to show their ability to esterify tritiated cholesterol, PREG, and DHEA in the absence of unlabeled steroid. The amount of cholesteryl ester, PREG-FA, and DHEA-FA increased after incubation as a function of time and amount of purified LCAT, showing that PREG is preferentially acylated by LCAT compared to cholesterol and DHEA. The PREG and DHEA esterifying activities of LCAT were cofactor-dependent, as shown by the absence of acylation without apoAI. Finally, we determined by HPLC the fatty acid moiety of PREG-GA and DHEA-FA formed in human plasma and guinea pig and rat sera in vitro after incubation with unconjugated tritiated PREG and DHEA. We showed that the fatty acid moieties of newly formed tritiated PREG-FA and DHEA-FA were similar to that reported for cholesteryl esters in the plasma of the three species. We conclude that LCAT has a lecithin-steroid acyltransferase activity and that PREG is probably the preferential substrate of this enzyme. In addition, the fact that the differences in the fatty acid moieties of cholesteryl esters of human, guinea pig, and rat plasmas are also observed for PREG-FA and DHEA-FA suggests that the LCAT is the sole circulating enzyme that has PREG and DHEA esterifying activities.  相似文献   

4.
Reduction of plasma LCAT activity has been observed in several conditions in which the size of HDL particles is increased; however, the mechanism of this reduction remains elusive. We investigated the plasma activity, mass, and in vivo catabolism of LCAT and its association with HDL particles in human apolipoprotein A-I transgenic, scavenger receptor class B type I knockout (hA-ITg SR-BI-/-) mice. Compared with hA-ITg mice, hA-ITg SR-BI-/- mice had a 4-fold higher total plasma cholesterol concentration, which occurred predominantly in 13-18 nm diameter HDL particles, a significant reduction in plasma esterified cholesterol-total cholesterol (EC/TC) ratio, and significantly lower plasma LCAT activity, suggesting a decrease in LCAT protein. However, LCAT protein in plasma, hepatic mRNA for LCAT, and in vivo turnover of 35S-radiolabeled LCAT were similar in both genotypes of mice. HDL from hA-ITg SR-BI-/- mice was enriched in sphingomyelin (SM), relative to phosphatidylcholine, and had less associated [35S]LCAT radiolabel and endogenous LCAT activity compared with HDL from hA-ITg mice. We conclude that the decreased EC/TC ratio in the plasma of hA-ITg SR-BI-/- mice is attributed to a reduction in LCAT reactivity with SM-enriched HDL particles.  相似文献   

5.
A recent population-based study showed that cholesteryl ester transfer protein (CETP) gene variations, which relate to lower plasma CETP, may predict increased cardiovascular risk, in spite of higher HDL cholesterol. Among other functions, CETP activity contributes to cellular cholesterol efflux, an early step in the anti-atherogenic reverse cholesterol transport (RCT) process. We hypothesized that cellular cholesterol efflux stimulating capacity of plasma could be associated with CETP gene variation. In this study, we tested the extent to which the ability of plasma to promote cholesterol efflux from cultured human fibroblasts is associated with CETP gene variation. In 223 men, the -629C-->A CETP promoter polymorphism, plasma lipids, CETP mass, cholesteryl ester transfer (CET), lecithin:cholesterol acyltransferase (LCAT) activity and the ability of plasma to promote cholesterol efflux from human skin fibroblasts, obtained from a single normolipidemic donor, were determined. In -629CC homozygotes (n=52), cholesterol efflux, plasma CETP mass, CET and LCAT activity were higher, whereas HDL cholesterol was lower compared to -629 AA homozygotes (n=62) and -629CA+AA carriers (n=171) (P<0.05 to P<0.001). Univariate correlation analysis showed that cellular cholesterol efflux was related to CETP genotype (P=0.04), plasma CET (P<0.05), LCAT activity (P<0.001) and apo A-I (P<0.05). Multiple linear regression analysis confirmed the independent association of cellular cholesterol efflux to plasma with CETP genotype. In conclusion, an association of cellular cholesterol efflux with the -629C-->A CETP polymorphism, possibly also involving LCAT activity, could provide a mechanism explaining why CETP gene variation, which relates to lower plasma CETP, does not confer diminished cardiovascular risk.  相似文献   

6.
Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for generation of the majority of the cholesteryl esters (CE) in human plasma. Although most plasma cholesterol esterification occurs on high-density lipoprotein (HDL), via alpha-LCAT activity, esterification also occurs on low-density lipoprotein (LDL) via the beta-activity of the enzyme. Computer threading techniques have provided a three-dimensional model for use in the structure-function analysis of the core and catalytic site of the LCAT protein, but the model does not extend to the N-terminal region of the enzyme, which may mediate LCAT interaction with lipoprotein substrates. In the present study, we have examined the functional consequences of deletion of the highly conserved hydrophobic N-terminal amino acids (residues 1-5) of human LCAT. Western blot analysis showed that the mutant proteins (Delta 1-Delta 5) were synthesized and secreted from transfected COS-7 cells at levels approximately equivalent to those of wild-type hLCAT. The secreted proteins had apparent molecular weights of 67 kDa, indicating that they were correctly processed and glycosylated during cellular transit. However, deletion of the first residue of the mature LCAT protein (Delta 1 mutant) resulted in a dramatic loss of alpha-LCAT activity (5% of wild type using reconstituted HDL substrate, rHDL), although this mutant retained full beta-LCAT activity (108% of wild-type using human LDL substrate). Removal of residues 1 and 2 (Delta 2 mutant) abolished alpha-LCAT activity and reduced beta-LCAT activity to 12% of wild type. Nevertheless, LCAT Delta 1 and Delta 2 mutants retained their ability to bind to rHDL and LDL lipoprotein substrates. The dramatic loss of enzyme activity suggests that the N-terminal residues of LCAT may be involved in maintaining the conformation of the lid domain and influence activation by the alpha-LCAT cofactor apoA-I (in Delta 1) and/or loss of enzyme activity (in Delta 1-Delta 5). Since the Delta 1 and Delta 2 mutants retain their ability to bind substrate, other factor(s), such as decreased access to the substrate binding pocket, may be responsible for the loss of enzyme activity.  相似文献   

7.
Koukos G  Chroni A  Duka A  Kardassis D  Zannis VI 《Biochemistry》2007,46(37):10713-10721
To explain the etiology and find a mode of therapy of genetically determined low levels of high-density lipoprotein (HDL), we have generated recombinant adenoviruses expressing apolipoprotein A-I (apoA-I)(Leu141Arg)Pisa and apoA-I(Leu159Arg)FIN and studied their properties in vitro and in vivo. Both mutants were secreted efficiently from cells but had diminished capacity to activate lecithin/cholesterol acyltransferase (LCAT) in vitro. Adenovirus-mediated gene transfer of either of the two mutants in apoA-I-deficient (apoA-I-/-) mice resulted in greatly decreased total plasma cholesterol, apoA-I, and HDL cholesterol levels. The treatment also decreased the cholesteryl ester to total cholesterol ratio (CE/TC), caused accumulation of prebeta1-HDL and small size alpha4-HDL particles, and generated only few spherical HDL particles, as compared to mice expressing wild-type (WT) apoA-I. Simultaneous treatment of the mice with adenoviruses expressing either of the two mutants and human LCAT normalized the plasma apoA-I, HDL cholesterol levels, and the CE/TC ratio, restored normal prebeta- and alpha-HDL subpopulations, and generated spherical HDL. The study establishes that apoA-I(Leu141Arg)Pisa and apoA-I(Leu159Arg)FIN inhibit an early step in the biogenesis of HDL due to inefficient esterification of the cholesterol of the prebeta1-HDL particles by the endogenous LCAT. Both defects can be corrected by treatment with LCAT.  相似文献   

8.
Lecithin:cholesterol acyltransferase (LCAT), the major cholesterol esterifying enzyme in plasma, plays an important role in the removal of cholesterol from peripheral tissues. This study in rat focuses upon the effects of hypothyroidism and cholesterol feeding on serum activity and hepatic LCAT secretion. To obviate the effect that inclusion of high concentrations of cholesterol in the rat serum may have on the proteoliposome used in the assay of LCAT, very low and low density lipoproteins (VLDL and LDL) were removed by ultracentrifugation at d 1.063 g/ml. The molar esterification rate in the euthyroid VLDL + LDL-free serum was found to be 0.94 +/- 0.06 compared to 0.67 +/- 0.05 in hypothyroid rats and 1.56 +/- 0.14 in hypercholesterolemic rats. LCAT secretion by suspension cultures of hepatocytes from hypercholesterolemic rats was found to be significantly depressed when compared to that for euthyroid and hypothyroid animals. Secretion by hepatocytes from hypothyroid rats was depressed for the first 0-4 hr, but rapidly recovered. The depressed secretion of LCAT by hepatocytes from hypercholesterolemic rats correlates with the appearance in the media of apoE-rich, discoidal HDL. Discoidal HDL was six times more effective as a substrate for purified human LCAT than HDL from hypercholesterolemic serum, and twice as effective as serum and nascent HDL from euthyroid animals. It is concluded that the depressed LCAT activity in serum from hypothyroid rats is due to a depressed hepatic secretion of the enzyme and that the elevated serum activity of hypercholesterolemic rats may be related to a defect in LCAT clearance. Finally, the appearance of discoidal HDL in the medium upon culture of hepatocytes from hypercholesterolemic rats appears to be due to an inhibition of LCAT secretion by these cells.  相似文献   

9.
The enzyme cholesterol lecithin acyl transferase (LCAT) shares the Ser/Asp-Glu/His triad with lipases, esterases and proteases, but the low level of sequence homology between LCAT and these enzymes did not allow for the LCAT fold to be identified yet. We, therefore, relied upon structural homology calculations using threading methods based on alignment of the sequence against a library of solved three-dimensional protein structures, for prediction of the LCAT fold. We propose that LCAT, like lipases, belongs to the alpha/beta hydrolase fold family, and that the central domain of LCAT consists of seven conserved parallel beta-strands connected by four alpha-helices and separated by loops. We used the conserved features of this protein fold for the prediction of functional domains in LCAT, and carried out site-directed mutagenesis for the localization of the active site residues. The wild-type enzyme and mutants were expressed in Cos-1 cells. LCAT mass was measured by ELISA, and enzymatic activity was measured on recombinant HDL, on LDL and on a monomeric substrate. We identified D345 and H377 as the catalytic residues of LCAT, together with F103 and L182 as the oxyanion hole residues. In analogy with lipases, we further propose that a potential "lid" domain at residues 50-74 of LCAT might be involved in the enzyme-substrate interaction. Molecular modeling of human LCAT was carried out using human pancreatic and Candida antarctica lipases as templates. The three-dimensional model proposed here is compatible with the position of natural mutants for either LCAT deficiency or Fish-eye disease. It enables moreover prediction of the LCAT domains involved in the interaction with the phospholipid and cholesterol substrates.  相似文献   

10.
Recent investigations suggest that high-density lipoprotein (HDL) may play an anti-atherogenic role as an antioxidant and inhibit the oxidative modification of low-density lipoprotein (LDL). The antioxidant activity of HDL has been proposed to be associated with several HDL-bound proteins. We have purified one HDL-associated protein, lecithin:cholesterol acyltransferase (LCAT), to apparent homogeneity and have found that LCAT is not only capable of esterifying cholesterol in the plasma, but can also prevent the accumulation of oxidized lipids in LDL. Addition of pure human LCAT to LDL or palmitoyl-linoleoyl phosphatidylcholine/sodium cholate (PLPC) micelles inhibits the oxidation-dependent accumulation of both conjugated dienes and lipid hydroperoxides. LCAT also inhibits the increase of net negative charge that occurs during oxidation of LDL. LCAT has the ability to prevent spontaneous oxidation and Cu2+ and soybean lipoxygenase-catalyzed oxidation of lipids. The antioxidant activity of LCAT appears to be enzymatic, since the enzyme is active for up to 10 h in the presence of mild free-radical generators. The catalytic serine, residue 181, may mediate this activity and act as a reusable proton donor. Chemical modification of the active serine residue with diisopropylfluorophosphate completely inhibits the ability of LCAT to prevent lipid oxidation. Thus, in addition to its well-characterized phospholipase and acyltransferase activities, LCAT can also act as an antioxidant and prevent the accumulation of oxidized lipid in plasma lipoproteins.  相似文献   

11.
Previous studies with the human hepatoblastoma-derived HepG2 cell line in this laboratory have shown that these cells produce high density lipoproteins (HDL) that are similar to HDL isolated from patients with familial lecithin:cholesterol acyltransferase (LCAT) deficiency. Experiments were, therefore, performed to determine whether HepG2 HDL could be transformed into plasma-like particles by incubation with LCAT. Concentrated HepG2 lipoproteins (d less than 1.235 g/ml) were incubated with purified LCAT or lipoprotein-deficient plasma (LPDP) for 4, 12, or 24 h at 37 degrees C. HDL isolated from control samples possessed excess phospholipid and unesterified cholesterol relative to plasma HDL and appeared as a mixed population of small spherical (7.8 +/- 1.3 nm) and larger discoidal particles (17.7 +/- 4.9 nm long axis) by electron microscopy. Nondenaturing gradient gel analysis (GGE) of control HDL showed major peaks banding at 7.4, 10.0, 11.1, 12.2, and 14.7 nm. Following 4-h LCAT and 12-h LPDP incubations, HepG2 HDL were mostly spherical by electron microscopy and showed major peaks at 10.1 and 8.1 nm (LCAT) and 10.0 and 8.4 nm (LPDP) by GGE; the particle size distribution was similar to that of plasma HDL. In addition, the chemical composition of HepG2 HDL at these incubation times approximated that of plasma HDL. Molar increases in HDL cholesteryl ester were accompanied by equimolar decreases in phospholipid and unesterified cholesterol. HepG2 low density lipoproteins (LDL) isolated from control samples showed a prominent protein band at 25.6 nm with GGE. Active LPDP or LCAT incubations resulted in the appearance of additional protein bands at 24.6 and 24.1 nm. No morphological changes were observed with electron microscopy. Chemical analysis indicated that the LDL cholesteryl ester formed was insufficient to account for phospholipid lost, suggesting that LCAT phospholipase activity occurred without concomitant cholesterol esterification.  相似文献   

12.
The transport of HDL cholesteryl esters (CE) from plasma to the liver involves a direct uptake pathway, mediated by hepatic scavenger receptor B-I (SR-BI), and an indirect pathway, involving the exchange of HDL CE for triglycerides (TG) of TG-rich lipoproteins by cholesteryl ester transfer protein (CETP). We carried out HDL CE turnover studies in mice expressing human CETP and/or human lecithin:cholesterol acyltransferase (LCAT) transgenes on a background of human apoA-I expression. The fractional clearance of HDL CE by the liver was delayed by LCAT transgene, while the CETP transgene increased it. However, there was no incremental transfer of HDL CE radioactivity to the TG-rich lipoprotein fraction in mice expressing CETP, suggesting increased direct removal of HDL CE in the liver. To evaluate the possibility that this might be mediated by SR-BI, HDL isolated from plasma of the different groups of transgenic mice was incubated with SR-BI transfected or control CHO cells. HDL isolated from mice expressing CETP showed a 2- to 4-fold increase in SR-BI-mediated HDL CE uptake, compared to HDL from mice lacking CETP. The addition of pure CETP to HDL in cell culture did not lead to increased selective uptake of HDL CE by cells. However, when human HDL was enriched with TG by incubation with TG-rich lipoproteins in the presence of CETP, then treated with hepatic lipase, there was a significant enhancement of HDL CE uptake. Thus, the remodeling of human HDL by CETP, involving CE;-TG interchange, followed by the action of hepatic lipase (HL), leads to the enhanced uptake of HDL CE by cellular SR-BI.These observations suggest that in animals such as humans in which both the selective uptake and CETP pathways are active, the two pathways could operate in a synergistic fashion to enhance reverse cholesterol transport.  相似文献   

13.
The first step in the reaction of lecithin cholesterol acyltransferase (LCAT) with lipoproteins is the interfacial binding of the enzyme to the lipid surfaces. In this study the equilibrium dissociation constants (Kds) for the interaction of pure human plasma LCAT with LDL, HDL2, HDL3, and a reconstituted discoidal HDL (rHDL) were determined by the activity-inhibition method. In addition, enzyme kinetics were measured with each of the lipoprotein substrates. Based on phospholipid concentrations, the Kd values (0.9 x 10(-5) to 4.6 x 10(-5) M) increased in the order rHDL = HDL3 相似文献   

14.
Summary The enzyme, lecithin cholesterol acyltransferase (LCAT), is responsible for the esterification of plasma cholesterol mediating the transfer of an acyl group from lecithin to the 3-hydroxy group of cholesterol. Deficiency of the enzyme is a well-known syndrome with a widespread geographic occurrence. We have cloned an allele from a patient homozygous for the LCAT deficiency. The only change that we could detect is a C to T transition in the fourth exon of the gene; this causes a substitution of Arg for Trp at position 147 of the mature protein. The functional significance of such a substitution with respect to the enzyme defect was demonstrated by transfecting the mutated LCAT gene in the cell line COS-1.  相似文献   

15.
We have characterized the molecular defect causing lecithin:cholesterol acyltransferase (LCAT)-deficiency (LCAT-D) in the LCAT gene in three siblings of Austrian descent. The patients presented with typical symptoms including corneal opacity, hemolytic anemia, and kidney dysfunction. LCAT activities in the plasma of these three patients were undetectable. DNA sequence analysis of polymerase chain reaction (PCR)-amplified DNA of all six LCAT exons revealed a new point mutation in exon IV of the LCAT gene, i.e., a G to A substitution in codon 140 converting Arg to His. This mutation caused the loss of a cutting site for the restriction endonuclease HhaI within exon IV: Upon digestion of a 629-bp exon IV PCR product with HhaI, the patients were found to be homozygous for the mutation. Eight of 11 family members were identified as heterozygotes. Transfection studies of COS-7 cells with plasmids containing a wildtype or a mutant LCAT cDNA revealed that, in contrast to the cell medium containing wild-type enzyme, no enzyme activity was detectable upon expression of the mutant protein. This represents strong evidence for the causative nature of the observed mutation for LCAT deficiency in affected individuals and supports the conclusion that Arg140 is crucial for the structure of an enzymatically active LCAT protein.  相似文献   

16.
Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis?   总被引:1,自引:0,他引:1  
Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme that catalyzes the esterification of free cholesterol in plasma lipoproteins and plays a critical role in high-density lipoprotein (HDL) metabolism. Deficiency leads to accumulation of nascent preβ-HDL due to impaired maturation of HDL particles, whereas enhanced expression is associated with the formation of large, apoE-rich HDL(1) particles. In addition to its function in HDL metabolism, LCAT was believed to be an important driving force behind macrophage reverse cholesterol transport (RCT) and, therefore, has been a subject of great interest in cardiovascular research since its discovery in 1962. Although half a century has passed, the importance of LCAT for atheroprotection is still under intense debate. This review provides a comprehensive overview of the insights that have been gained in the past 50 years on the biochemistry of LCAT, the role of LCAT in lipoprotein metabolism and the pathogenesis of atherosclerosis in animal models, and its impact on cardiovascular disease in humans.  相似文献   

17.
18.
Lecithin–cholesterol acyltransferase (LCAT) is a key enzyme in reverse cholesterol transport and catalyzes the esterification of cholesterol in human plasma. Human LCAT is a glycosylated protein, containing 416 amino acids and a proline-rich region at the C-terminus. To address the function of the C-terminal region of LCAT as well as that of the proline-rich region, we constructed and expressed LCAT mutants with C-terminal truncations at different positions. The expression of wild-type LCAT in COS-1 cells resulted in an enzymatically active protein that was secreted by the cells. The mutants lacking the proline-rich region at the C-terminus were expressed and secreted at levels comparable to those of wild-type (∼50% of wild-type concentrations in cell media). The proline-deletion mutants were similar to wild-type LCAT in terms of phospholipase or transferase activities with various interfacial substrates, including reconstituted HDL, proteoliposomes, LDL, and micelles of platelet activating factor. Thus, the binding of LCAT to the diverse interfaces is not affected by the removal of its C-terminal region. Also, the activation by apolipoproteins and access of water-insoluble substrates to the active site are not significantly affected by the deletion of the proline-rich region. However, deletions of the proline-rich region, including the five amino acids nearest to the C-terminus, resulted in approximately an 8-fold increase in the specific activity of LCAT towards the water-soluble substrate, p-nitrophenylbutyrate. This suggests that the C-terminal proline-rich region may interfere with the access of this water-soluble substrate to the active site of LCAT, and may form part of a protective covering of the active site of LCAT while in solution. Further deletions at the C-terminus, beyond the proline-rich region, impaired the secretion of the enzyme, implying that this region may play a critical role in either the secretion or folding of LCAT in COS-1 cells.  相似文献   

19.
Lecithin:cholesterol acyltransferase (LCAT) catalyzes the esterification of cholesterol in high density lipoproteins, thereby facilitating transport of excess cholesterol from peripheral tissues to liver. We report here studies of the developmental, dietary, and genetic control of LCAT gene expression. In adult male Sprague-Dawley rats fed a standard chow diet LCAT mRNA was most abundant in liver, a major source of the plasma enzyme, but appreciable levels were also present in brain and testes. Since both brain and testes are isolated from blood by tight cellular barriers, undoubtedly greatly reducing the level of plasma-derived LCAT in cerebrospinal fluid and testes, the production of LCAT in these tissues may be important for removal of excess cholesterol. Noteworthy changes in the expression of LCAT mRNA were observed during development of both rodents and humans. On the other hand, LCAT mRNA levels were relatively resistant to dietary challenge or to drugs affecting cholesterol metabolism. Since human epidemiological studies have suggested an association between LCAT levels and variations of high density lipoprotein cholesterol, we examined LCAT gene polymorphisms in a mouse animal model. Mapping of the LCAT gene (Lcat) to mouse Chromosome 8 within 2 centimorgans of the Es-2 locus indicates that it does not correspond to any previously mapped loci affecting high density lipoprotein phenotypes in the mouse.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号