首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the preceding paper (Lukas, Iverson, Schleicher, Watterson 1984 Plant Physiol 75: 788-795), we reported that the amino acid sequence of spinach calmodulin has at least 13 amino acid sequence differences from vertebrate calmodulin. In the present study, we investigated the effect of these amino acid sequence substitutions on the enzyme activator properties of vertebrate and plant calmodulins. Calmodulins from spinach and the green alga Chlamydomonas reinhardtii activate chicken gizzard myosin light chain kinase in a manner similar but not identical to chicken calmodulin. In contrast, these calmodulins have very different NAD kinase activator properties. The concentration required for half-maximal activation of pea seedling NAD kinase by spinach calmodulin (3-4 nanomolar) is lower than the corresponding concentrations of chicken (20 nanomolar) and Chlamydomonas (40 nanomolar) calmodulins. However, the maximum level of activation obtained with Chlamydomonas calmodulin is 4- to 6-fold higher than spinach or chicken calmodulin. These data indicate that the limited structural heterogeneity among calmodulins have differential effects on their biochemical activities.  相似文献   

2.
An amino acid sequence for a Chlamydomonas calmodulin has been elucidated with emphasis on the characterization of differences that are unique to Chlamydomonas and Dictyostelium calmodulin. While the concentration of calmodulin required for half-maximal activation of plant NAD kinase varies among vertebrate, higher plant, algal, and slime mold calmodulins, only calmodulins from the unicellular alga Chlamydomonas and the slime mold Dictyostelium show increased maximal activation of NAD kinase (Roberts, Burgess, Watterson 1984 Plant Physiol 75: 796-798; Marshak, Clarke, Roberts, Watterson 1984 Biochemistry 23: 2891-2899). The same preparations of calmodulin do not show major differences in phosphodiesterase or myosin light chain kinase activator activity.

We report here that a Chlamydomonas calmodulin has four primary structural features similar to Dictyostelium that are not found in other calmodulins characterized to date: an altered carboxy terminus including a novel 11-residue extension for Chlamydomonas calmodulin, unique residues at positions 81 and 118, and an unmethylated lysine at position 115. The only amino acid sequence identity unique to Chlamydomonas and Dictyostelium calmodulin is the presence of a lysine at position 115 instead of a trimethyllysine. These studies indicate that the methylation state of lysine 115 may be important in the maximal NAD kinase activator activity of calmodulin and support the concept that calmodulin has multiple functional domains in addition to multiple structural domains.

  相似文献   

3.
We report here that calmodulin isolated from the monocotyledon barley is indistinguishable by a variety of criteria from calmodulin isolated from the dicotyledon spinach. In contrast to previous reports, we find that barley (Hordeum vulgare) calmodulin has an amino acid composition similar to that of vertebrate and spinach calmodulins, including the presence of a single trimethyllysinyl residue, and that barley calmodulin quantitatively activates cyclic nucleotide phosphodiesterase. Furthermore, spinach and barley calmodulins are similar in terms of tryptic peptide maps and immunoreactivity with various antisera that differ in their molecular specificities for calmodulins. Limited amino acid sequence analysis demonstrates that the region around the single histidinyl and trimethyllysinyl residues is identical among barley, spinach, and vertebrate calmodulins and that barley calmodulin, like spinach calmodulin, has a novel glutamine residue at position 96. We conclude that calmodulin is highly conserved among higher plants and that detailed sequence analysis is required before significant differences, if any, can be assigned to barley or other higher plant calmodulins. These studies suggest that calmodulin's fundamental importance to the eukaryotic cell may have been established prior to the evolutionary emergence of higher plants.  相似文献   

4.
Calmodulin, a calcium-binding protein with no known enzymatic activity but multiple, in vitro effector activities, has been purified to apparent homogeneity from the unicellular green alga Chlamydomonas reinhardtii and compared to calmodulin from vertebrates and higher plants. Chlamydomonas calmodulin was characterized in terms of electrophoretic mobility, amino acid composition, limited amino acid sequence analysis, immunoreactivity, and phosphodiesterase activation. Chlamydomonas calmodulin has two histidine residues similar to calmodulin from the protozoan Tetrahymena. However, unlike the protozoan calmodulin, only one of the histidinyl residues of Chlamydomonas calmodulin is found in the COOH-terminal third of the molecule. Chlamydomonas calmodulin lacks trimethyllysine but does have a lysine residue at the amino acid sequence position corresponding to the trimethyllysine residue in bovine brain and spinach calmodulins. The lack of this post-translational modification does not prevent Chlamydomonas calmodulin from quantitatively activating bovine brain phosphodiesterase. These studies also demonstrate that this unique calmodulin from a phylogenetically earlier eukaryote may be as similar to vertebrate calmodulin as it is to higher plant calmodulins, and suggest that Chlamydomonas calmodulin may more closely approximate the characteristics of a putative precursor of the calmodulin family than any calmodulin characterized to date.  相似文献   

5.
In plants Ca2+ plays a crucial role as second messenger. Thus calmodulin is one of the most important signal transducing molecules for metabolic regulation in plants. Previously we showed that bovine testis calmodulin can be covalently coupled at one site to ubiquitin in a Ca2(+)-dependent manner in the presence of ATP/Mg2+ by ubiquityl-calmodulin synthetase. Since calmodulin from spinach has 13 amino acid sequence differences to bovine calmodulin - two of them in Ca2(+)-binding loops - it was unclear, whether a conjugation of ubiquitin to this molecule would be possible. In this paper it is shown that calmodulin from spinach and a similar calmodulin from the mold Neurospora crassa can be covalently conjugated to ubiquitin in a Ca2(+)-dependent manner. It is shown that higher molecular mass conjugates containing up to three ubiquitin molecules per calmodulin are obtained. Experiments with methylated ubiquitin demonstrate that, as with vertebrate calmodulins, only one lysine residue is linked to ubiquitin and that the incorporation of additional ubiquitin molecules leads to a polyubiquitin chain.  相似文献   

6.
The heptapeptide AsnTyrGluGluPheValGlnNH2 corresponding to residues 137–143 of vertebrate calmodulin is as immunoreactive as the entire 148-residue protein. A reproducible and rapid procedure for producing antisera against vertebrate calmodulin has been previously described (L. J. Van Eldik and D. M. Watterson (1981) J. Biol. Chem.256, 4205–4210). Most of the antisera elicited by this method react with a major immunoreactive region (residues 127–144) in the COOH-terminal domain of vertebrate calmodulin. In this report, the minimum segment of calmodulin required for reactivity with an antiserum that readily distinguishes various types of calmodulins is defined. These studies demonstrate that a linear segment of seven amino acid residues shows a competition curve in radioimmunoassay resembling the competition curve of intact calmodulin. This heptapeptide is the smallest calmodulin segment and the only sevenresidue segment in the 135–145 region that shows quantitative immunoreactivity with the anti-calmodulin serum. These data demonstrate that this heptapeptide is a major immunoreactive site of calmodulin. However, when this immunoreactive site heptapeptide is conjugated to a carrier and injected into rabbits, it does not elicit antisera that react with the native protein. These studies demonstrate that quantitative immunoreactivity of antisera produced in animals can be found in small peptide segments and that, for calmodulin, the requirements for production of anti-peptide antibodies that react with the native protein molecule are not as simple as surface exposure of the peptide region.  相似文献   

7.
A gene coding for a calmodulin was synthesized and expressed in Escherichia coli. The gene was produced by the enzymatic ligation of 61 chemically synthesized DNA fragments. The gene possesses 27 unique, regularly spaced, restriction endonuclease cleavage sites to facilitate gene mutagenesis by the replacement of specific gene segments with synthetic double-stranded DNA. An expression vector containing the calmodulin gene was used to transform E. coli. Purification and characterization of calmodulin (VU-1 calmodulin) expressed by these transformants showed that it lacks two posttranslational modifications: an amino-terminal blocking group and N epsilon, N epsilon, N epsilon-trimethyllysine at position 115. The cyclic nucleotide phosphodiesterase activator properties of VU-1, higher plant, and vertebrate calmodulins were not statistically different. However, VU-1 calmodulin was found to activate nicotinamide adenine dinucleotide (NAD) kinase to a maximal level that was at least 3-fold higher than that found with higher plant and vertebrate calmodulins. This higher level of activation is also characteristic of calmodulins from Dictyostelium discoideum and Chlamydomonas reinhardtii [Roberts, D. M., Burgess, W. H., & Watterson, D. M. (1984) Plant Physiol. 75, 796-798; Marshak, D. R., Clarke, M., Roberts, D. M., & Watterson, D. M. (1984) Biochemistry 23, 2891-2899]. The only common feature among Dictyostelium, Chlamydomonas, and VU-1 calmodulins not found in higher plant and vertebrate calmodulins is an unmethylated lysine at position 115. The results indicate that the lack of methylation of lysine-115 may contribute to the maximal level of NAD kinase activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
《The Journal of cell biology》1990,111(6):2537-2542
The ability of microinjected calmodulin to temporarily restore an ion channel-mediated behavioral phenotype of a calmodulin mutant in Paramecium tetraurelia (cam1) is dependent on the amino acid side chain that is present at residue 101, even when there is extensive variation in the rest of the amino acid sequence. Analysis of conservation of serine-101 in calmodulin suggests that the ability of calmodulin to regulate this ion channel-associated cell function may be a biological role of calmodulin that is widely distributed phylogenetically. A series of mutant calmodulins that differ only at residue-101 were produced by in vitro site-specific mutagenesis and expression in Escherichia coli, purified to chemical homogeneity, and tested for their ability to temporarily restore a wild-type behavioral phenotype to cam1 (pantophobiacA1) Paramecium. Calmodulins with glycine-101 or tyrosine-101 had minimal activity; calmodulins with phenylalanine-101 or alanine-101 had no detectable activity. However, as a standard of comparison, all of the calmodulins were able to activate a calmodulin- regulated enzyme, myosin light chain kinase, that is sensitive to point mutations elsewhere in the calmodulin molecule. Overall, these results support the hypothesis that the structural features of calmodulin required for the transduction of calcium signals varies with the particular pathway that is being regulated and provide insight into why inherited mutations of calmodulin at residue 101 are nonlethal and selective in their phenotypic effects.  相似文献   

9.
Koehler S  Ho TH 《Plant physiology》1988,87(1):95-103
Using in series ammonium sulfate precipitation, gel filtration, and DEAE anion exchange high performance liquid chromatography, we have purified to homogeneity a protease of Mr 37,000 secreted from barley (Hordeum vulgare L. cv Himalaya) embryoless half-seeds. This protease exists in three isozymic forms whose synthesis and secretion from barley aleurone layers was shown to be a gibberellic acid (GA3)-dependent process (R Hammerton, T-HD Ho 1986 Plant Physiol 80: 692-697). This protease constitutes a major portion of the protease activity secreted from half-seeds between 72 to 96 hours of incubation in the presence of GA3 as detected on activity gels containing hemoglobin as the substrate. Analysis of digestion products by urea/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration indicated that this protease is an endoprotease, therefore it is designated as barley endoprotease-A (EP-A). Inhibitor studies demonstrated that EP-A belongs to the cysteine class of endoproteases. The optimum pH for EP-A activity was 5.0, and the temperature optimum was 45°C. Comparison of cyanogen bromide generated peptide fragments and NH2-terminal sequence analyses of the three individual EP-A isozymes demonstrates that they are very similar to each other. The NH2-terminal sequence shows extensive sequence homology to the NH2-terminal sequence of papain and several other cysteine proteinases. We also provide evidence that EP-A is not `aleurain,' a putative cysteine proteinase encoded by a GA3-induced barley cDNA clone (JC Rogers, D Dean, GR Heck 1985 Proc Natl Acad Sci USA 82:6512-6516).  相似文献   

10.
The T domain of diphtheria toxin, which extends from residue 202 to 378, causes the translocation of the catalytic A fragment (residues 1–201) across endosomal membranes and also forms ion-conducting channels in planar phospholipid bilayers. The carboxy terminal 57-amino acid segment (322–378) in the T domain is all that is required to form these channels, but its ability to do so is greatly augmented by the portion of the T domain upstream from this. In this work, we show that in association with channel formation by the T domain, its NH2 terminus, as well as some or all of the adjacent hydrophilic 63 amino acid segment, cross the lipid bilayer. The phenomenon that enabled us to demonstrate that the NH2-terminal region of the T domain was translocated across the membrane was the rapid closure of channels at cis negative voltages when the T domain contained a histidine tag at its NH2 terminus. The inhibition of this effect by trans nickel, and by trans streptavidin when the histidine tag sequence was biotinylated, clearly established that the histidine tag was present on the trans side of the membrane. Furthermore, the inhibition of rapid channel closure by trans trypsin, combined with mutagenesis to localize the trypsin site, indicated that some portion of the 63 amino acid NH2-terminal segment of the T domain was also translocated to the trans side of the membrane. If the NH2 terminus was forced to remain on the cis side, by streptavidin binding to the biotinylated histidine tag sequence, channel formation was severely disrupted. Thus, normal channel formation by the T domain requires that its NH2 terminus be translocated across the membrane from the cis to the trans side, even though the NH2 terminus is >100 residues removed from the channel-forming part of the molecule.  相似文献   

11.
12.
The NH2-terminal amino acid of highly purified thyroxine-binding globulin has been identified by dansyl chloride, cyanate and Edman degradation methods. All three gave alanine as the only amino terminal residue. Carbamylation and Edman degradation of the denatured protein yielded 0.86 and 0.98 – 1.05 mole of alanine per mole of protein, respectively. These data further indicate that thyroxine-binding globulin is composed of a single polypeptide chain. Automated Edman degradation gave the partial sequence as: Ala-Ser-Pro-Glu-Gly-Lys-Val-Thr-Ala-Asp-Ser-Ser-Ser-Gln-(Pro)-X-Ala-(Ser)-Leu-Tyr- A computer search revealed no homology of the NH2-terminal segment of thyroxine-binding globulin with human prealbumin. The NH2-terminal portion of prealbumin contains part of the thyroxine binding site.  相似文献   

13.
Solutions of native Type III collagen (chain composition, [α1(III)]3) exhibit a rapid and dramatic decrease in relative viscosity when incubated with trypsin. Cleavage products of the reaction were precipitated with ammonium sulfate and isolated in denatured form by molecular sieve chromatography. They were found to be comprised of: α1(III)-T1 (molecular weight, 71,000) derived from the NH2-terminal portion of the Type III molecule; and α1(III)-T2 (molecular weight, 24,000) from the COOH-terminal portion of the molecule. Determination of the amino acid sequence at the NH2-terminal portion of α1(III)-T2 as well as at the COOH-terminus of α(III)-T1 demonstrated that the products arose from specific cleavage of the type III molecule at an arginine-glycine bond corresponding to residues 780–781 in the repetitive triplet sequence of the α1(III) chain. The results suggest that the trypsin-susceptible bond in the native Type III collagen molecule resides in a region characterized by a relative lack of the normal collagen helicity.  相似文献   

14.
The linear arrangement of the three fragments of Ca2+-ATPase from rabbit skeletal muscle sarcoplasmic reticulum with molecular weights of 20,000, 30,000, and 45,000 obtained by limited tryptic hydrolysis was determined by locating the NH2-terminal acetylated methionyl residue of the original peptide in the Mr = 20,000 fragment. Since both the Mr = 20,000 and 30,000 polypeptides originate from a Mr = 55,000 fragment which is distinct from the Mr = 45,000 polypeptide, the sequence of these three fragments was determined to be 20,000, 30,000, and 45,000. The Mr = 20,000 fragment was further cleaved by cyanogen bromide to yield a Mr = 7,000 COOH-terminal fragment which is relatively hydrophilic. The NH2-terminal portion is rich in glutamyl residues. The COOH-terminus of the Mr = 30,000 fragment was determined by both digestion with carboxypeptidases and cyanogen bromide cleavage. Using the partial amino acid sequence of the Ca2+-ATPase, it was deduced that the active site phosphoaspartyl residue is 154 amino acids from the COOH-terminus of the Mr = 30,000 fragment and hence approximately 35,000 Mr from the NH2-terminus of the original Ca2+-ATPase molecule. Furthermore, it was shown that the two tryptic cleavages of the Ca2+-ATPase generating these three large fragments were both single hydrolyses of arginylalanine peptide bonds.  相似文献   

15.
Automated Edman degradation of reduced and carboxymethylated phospholipase A2-α from Crotalus adamanteus venom revealed a single amino acid sequence extending 30 residues into the protein from the amino terminus. The singularity of the sequence and the yields of the phenylthiohydantoin amino acids thus obtained indicate that the subunits comprising the phospholipase dimer are identical. Further chemical evidence in support of subunit identity was obtained by cleavage of phospholipase A2-α with cyanogen bromide. Compositional analysis of the protein revealed one residue of methionine per monomer and the sequence determination placed this amino acid at position 10 in the sequence of 133 amino acids. Cyanogen bromide cleavage of the protein, followed by reduction and carboxymethylation afforded the expected 2 fragments: an NH2-terminal decapeptide (CNBr-1) and a larger COOH-terminal fragment of 123 residues (CNBr-II). Automated Edman degradation of the latter has extended the sequence analysis to 54 residues in the NH2-terminal segment of the monomer chain. Comparison of this sequence with those derived for phospholipases from other snake venoms, from bee venom, and from porcine pancreas has revealed striking homologies in this region of the molecules. As expected on the basis of their phylogenetic classification, the phospholipases from the pit vipers C. adamanteus and Agkistrodon halys blomhoffii are more similar to one another in sequence than to the enzyme from the more distantly related viper, Bitis gabonica. Furthermore, the very close similarities in sequence observed among all of these phospholipases in regions corresponding to residues 24 through 53 in the C. adamanteus enzyme suggest that this segment of the polypeptide plays an important role in phospholipase function and probably constitutes part of the active site.  相似文献   

16.
The complete amino acid sequence of calmodulin from Euglena gracilis was determined by isolation and sequence analyses of peptides derived from calmodulin by digestion with trypsin and Staphylococcus aureus V8 protease. Euglena calmodulin consists of 148 amino acid residues; it lacks tryptophan and cysteine and contains one tyrosine, three histidine and two NE-trimethyllysine residues/molecule of the protein. Its N-terminus was blocked with an acetyl group and C-terminal lysine was trimethylated. Euglena calmodulin is the first calmodulin so far examined in which the C-terminal lysine is trimethylated. The comparison of amino acid sequences between Euglena and human brain calmodulins indicated 17 amino acid substitutions in Euglena calmodulin.  相似文献   

17.
Calmodulin was purified from the eukaryotic microorganism Dictyostelium discoideum and characterized in terms of its nearly complete primary structure and quantitative activator activity. The strategy for amino acid sequence analysis took advantage of the highly conserved structure of calmodulin and employed a new procedure for limited cleavage of calmodulin that uses a protease from mouse submaxillary gland. Fourteen amino acid sequence differences between Dictyostelium and bovine calmodulin were identified unequivocally, as well as an unmethylated lysine at residue 115 instead of N epsilon, N epsilon, N epsilon-trimethyllysine. Seven of the amino acid substitutions in Dictyostelium calmodulin are novel in that the residues at these positions are invariant in all calmodulin sequences previously examined, most notably an additional residue at the carboxy terminus. Comparison of the Dictyostelium calmodulin sequence with other calmodulin sequences shows that the region with the greatest extended sequence identity includes parts of the first and second structural domains and the interdomain region between domains 1 and 2. Dictyostelium calmodulin activated bovine brain cyclic nucleotide phosphodiesterase in a manner indistinguishable from that of bovine brain calmodulin. However, Dictyostelium calmodulin activated pea NAD kinase to a maximal level 4.6-fold greater than that produced by bovine brain calmodulin. This functional difference demonstrates the potential biological importance of the limited number of amino acid sequence differences between Dictyostelium calmodulin and other calmodulins and provides further insight into the structure, function, and evolution of the calmodulin family of proteins.  相似文献   

18.
Isolation of prolactin from equine pituitary glands has been described. It has a potency of 42 IU/mg in the pigeon crop-sac test and consists of 199 amino acids. The hormone has only four half-cystine residues in contrast to other mammalian prolactins which have six residues. From NH2-terminal sequence analysis and amino acid composition of cyanogen bromide fragments, the NH2-terminal disulfide loop is missing in the equine prolactin molecule. Circular dichroism spectra indicate that the α-helical content of equine prolactin appears to be lower (50%) than that found in the ovine hormone (65%).  相似文献   

19.
The NH2-terminal amino acid sequence of the three anti-tumor proteins, alfa-sarcin, mitogillin and restrictocine, has been determined for 20 cycles by automated sequencing procedure. A high degree of sequence homology was observed in this region of the molecule. In addition, extensive sequence homology, ranging from 65 to 100% was found in three other carboxymethylcysteine-containing peptides isolated and sequenced from each molecule.  相似文献   

20.
A unique phosphoribulokinase (ADP:D-ribulose 5-phosphate 1-phosphotransferase, EC 2.7.1.19) has been purified to homogeneity from the green alga Selenastrum minutum. The enzyme has a native molecular mass of about 83 kilodaltons and a native isoelectric point of 5.1. The enzyme consists of two different-sized subunits of 41 and 40 kilodaltons, implying that it is a heterodimer. This is the first report of a eukaryotic heterodimeric phosphoribulokinase. The in vivo existence of two nonidentical subunits of S. minutum phosphoribulokinase was confirmed by western blot analysis of crude protein extracts from trichloroacetic acid-killed cells. These two subunits were immunologically similar, as rabbit immunoglobulin G affinity purified against the 41 kilodalton subunit of S. minutum phosphoribulokinase (PRK) cross-reacts with the 40 kilodalton subunit and vice versa. Antibodies against S. minutum phosphoribulokinase also cross-react with the spinach enzyme. NH2-terminal sequencing revealed that the two S. minutum PRK subunits shared a considerable degree of structure homology with each other and with the enzymes from spinach and Chlamydomonas reinhardtii, but not with PRK from Rhodobacter sphaeroides. There are, however, differences between the NH2-terminal amino acid sequences of the two S. minutum PRK subunits, that imply that they are the products of separate genes or products of two different mRNAs spliced from a single gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号