首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Confocal laser scanning microscopy (CLSM) was used to study the distribution of polymers and cross-linking ions in alginate-poly-L-lysine (PLL) -alginate microcapsules made by fluorescent-labeled polymers. CLSM studies of Ca-alginate gel beads made in the presence and absence of non-gelling sodium ions revealed a more inhomogeneous distribution of alginate in beads formed in the absence of non-gelling ions. In the formation of alginate-PLL capsules, the polymer gradients in the preformed gel core were destabilized by the presence of non-gelling ions in the washing step and in the PLL solution. Ca-alginate gels preserved the inhomogeneous structure by exposure to ion-free solution in contrast to exposure to non-gelling ions (Na(+)). By exchanging Ca(2+) with Ba(2+) (10 mM), extremely inhomogeneous gel beads were formed that preserved their structure during the washing and exposure to PLL in saline. PLL was shown to bind at the very surface of the alginate core, forming a shell-like membrane. The thickness of the PLL-layer increased about 100% after 2 weeks of storage, but no further increase was seen after 2 years of storage. The coating alginate was shown to overlap the PLL layer. No difference in binding could be observed among coating alginates of different composition. This paper shows an easy and novel method to study the distribution of alginate and PLL in intact microcapsules. As the labeling procedures are easy to perform, the method can also be used for a variety of other polymers in other microencapsulation systems.  相似文献   

2.
We studied the blocking actions of external Ca2+, Mg2+, Ca2+, and other multivalent ions on single Ca channel currents in cell-attached patch recordings from guinea pig ventricular cells. External Cd or Mg ions chopped long-lasting unitary Ba currents promoted by the Ca agonist Bay K 8644 into bursts of brief openings. The bursts appear to arise from discrete blocking and unblocking transitions. A simple reaction between a blocking ion and an open channel was suggested by the kinetics of the bursts: open and closed times within a burst were exponentially distributed, the blocking rate varied linearly with the concentration of blocking ion, and the unblocking rate was more or less independent of the blocker concentration. Other kinetic features suggested that both Cd2+ and Mg2+ lodge within the pore. The unblocking rate was speeded by membrane hyperpolarization or by raising the Ba concentration, as if blocking ions were swept into the myoplasm by the applied electric field or by repulsive interaction with Ba2+. Ca ions reduced the amplitude of unitary Ba currents (50% inhibition at approximately 10 mM [Ca]o with 50 mM [Ba]o) without detectable flicker, presumably because Ca ions exit the pore very rapidly following Ba entry. However, Ca2+ entry and exit rates could be resolved when micromolar Ca blocked unitary Li+ fluxes through the Ca channel. The blocking rate was essentially voltage independent, but varied linearly with Ca concentration (rate coefficient, 4.5 X 10(8) M-1s-1); evidently, the initial Ca2+-pore interaction is outside the membrane field and much faster than the overall process of Ca ion transfer. The unblocking rate did not vary with [Ca]o, but increased steeply with membrane hyperpolarization, as if blocking Ca ions were driven into the cell. We suggest that Ca is both an effective permeator and a potent blocker because it dehydrates rapidly (unlike Mg2+) and binds to the pore with appropriate affinity (unlike Cd2+). There appears to be no sharp dichotomy between "permeators" and "blockers," only quantitative differences in how quickly ions enter and leave the pore.  相似文献   

3.
Electrothermal atomic absorption spectroscopy was employed for measuring barium in beta-cell-rich pancreatic islets microdissected from ob/ob-mice. Both the uptake and efflux of barium displayed two distinct phases. There was a 4-fold accumulation of barium into intracellular stores when its extracellular concentration was 0.26 mM. Unlike divalent cations with more extensive intracellular accumulation, the washout of Ba2+ was not inhibited by D-glucose. Ba2+ served as a substitute for Ca2+ both in maintaining the glucose metabolism after removal of extracellular Ca2+ and making it possible for glucose to stimulate insulin release. Furthermore, Ba2+ elicited insulin release in the absence of glucose and other secretagogues. The latter effect was reversible and was markedly potentiated under conditions known to increase the beta-cell content of cyclic AMP. It is likely that the observed actions of Ba2+ are mediated by Ca2+, since Ca2+ -dependent regulatory proteins, such as calmodulin, apparently cannot bind Ba2+ specifically.  相似文献   

4.
Endplate potentials (EPP) were recorded from the frog sartorius neuromuscular junction under conditions of low quantal content to study the effect of Ba2+, Sr2+, and Ca2+ on the changes in evoked transmitter release that occur during and after repetitive stimulation. The addition of 0.1-1 mM Ba2+ or Sr2+ to the Ca2+-containing bathing solution, or the replacement of Ca2+ with 0.8-1.4 mM Sr2+, led to a greater increase in EPP amplitudes during and immediately after repetitive stimulation. These changes in release were analyzed in terms of the four apparent components of increased transmitter release that have previously been distinguished on the basis of their kinetic properties. The Ba2+-induced increase in EPP amplitudes was associated with an increase in the magnitude but not the time constant of decay of augmentation. Ba2+ had little effect on potentiation or the first and second components of facilitation. The Sr2+-induced increase in EPP amplitudes was associated with an increase in the magnitude and the time constant of decay of the second component of facilitation. Sr2+ had little effect on potentiation, augmentation, or the first component of facilitation. The selective effects of Ba2+ on augmentation and of Sr2+ on the second component of facilitation were reversible and could be obtained in the presence of the other ion. The addition of 0.1-0.3 mM Ca2+ to the bathing solution had little effect on potentiation, augmentation, or the two components of facilitation. These results provide pharmacological support for the proposal that there are four different components of increased transmitter release associated with repetitive stimulation and suggest that the underlying factors in the nerve terminal that give rise to these components can act somewhat independently of one another.  相似文献   

5.
Structural polysaccharides of the alginate family form gels in aqueous Ca2+-containing solutions by lateral association of chain segments. The effect of adding oligomers of alpha-l-guluronic acid (G blocks) to gelling solutions of alginate was investigated using rheology and atomic force microscopy (AFM). Ca-alginate gels were prepared by in situ release of Ca2+. The gel strength increased with increasing level of calcium saturation of the alginate and decreased with increasing amount of free G blocks. The presence of free G blocks also led to an increased gelation time. The gel point and fractal dimensionalities of the gels were determined based on the rheological characterization. Without added free G blocks the fractal dimension of the gels increased from df = 2.14 to df = 2.46 when increasing [Ca2+] from 10 to 20 mM. This increase was suggested to arise from an increased junction zone multiplicity induced by the increased concentration of calcium ions. In the presence of free G blocks (G block/alginate = 1/1) the fractal dimension increased from 2.14 to 2.29 at 10 mM Ca2+, whereas there was no significant change associated with addition of G blocks at 20 mM Ca2+. These observations indicate that free G blocks are involved in calcium-mediated bonds formed between guluronic acid sequences within the polymeric alginates. Thus, the added oligoguluronate competes with the alginate chains for the calcium ions. The gels and pregel situations close to the gel point were also studied using AFM. The AFM topographs indicated that in situations of low calcium saturation microgels a few hundred nanometers in diameter develop in solution. In situations of higher calcium saturation lateral association of a number of alginate chains are occurring, giving ordered fiber-like structures. These results show that G blocks can be used as modulators of gelation kinetics as well as local network structure formation and equilibrium properties in alginate gels.  相似文献   

6.
Strontium and barium can substitute for calcium at different levels of the excitation-contraction-relaxation cycle. The problem of sequestration of these ions in cellular microcompartments may be settled only by direct evidence obtained with analytical methods. Isolated frog twitch muscle fibres were perfused with increasing concentrations of potassium in Ca-free solution supplemented with Sr2+ (10 mmol/l) or Ba2+ (5 mmol/l). After equilibration in a Ca-free Ringer with Sr2+ or Ba2+ for 30 to 60 min the fibres were frozen in liquid propane (at 80 K) to immobilise ions. Ultrathin (150 nm) cryosections were cut at 170 K, freeze-dried, carbon-coated and analysed in an electron microscope equipped with an X-ray spectrometer. The ultrastructure of the superficial layer of the fibres was satisfactorily preserved. The terminal cisternae (t.c.) of the sarcoplasmic reticulum (SR) were dark and contained various amounts of Sr or Ba in addition to Ca. In Sr loaded fibres the longitudinal SR occasionally showed electron dense content with significant amounts of Ca; no Sr was present. The results suggest that t.c. is the common sequestering compartment for Ca, Sr and Ba. Essentially the same distribution pattern of Sr was found following precipitation of Sr with a solution containing digitonin and Koxalate.  相似文献   

7.
The FT-IR spectra of galactaric acid and its K+, NH4+, Ca2+, Ba2+, and La3+ salts have been recorded and interpreted. Spectroscopic evidence shows that the dimeric carboxylic groups of the free acid are dissociated upon formation of the salt, and the asymmetric and symmetric stretching vibrations of the anionic COO- group in these salts are observed at about 1600 and 1400 cm-1, respectively. The two carboxylic groups of the galactarate coordinate with Ca2+ ions in a monodentate form. One of the carboxylic groups in the Ba2+ salt coordinates in a monodentate state; another group interacts with three cations in a tetradentate form. In the K+, NH4+, and La3+ salts, the COO- groups coordinate in a polydentate manner with the cations. By comparison of the spectra of the salts with that of the free acid, it is concluded that the hydroxyl groups of the galactarate skeleton take part in metal-oxygen interaction, and the hydrogen-bonding network is rearranged upon sugar metalation. The degree of participation of the sugar OH groups in metal-galactarate interaction is varied from the K+ and NH4+ salts to the Ca2+, Ba2+, and La3+ salts.  相似文献   

8.
The interaction of Mg2+, Ca2+, Zn2+, and Cd2+ with calf thymus DNA has been investigated by Raman spectroscopy. These spectra reveal that all of these ions, and particularly Zn2+, bind to phosphate groups of DNA, causing a slight structural change in the polynucleotide at very small metal: DNA (P) concentration ratio (ca. 1:30). This results in increased base-stacking interactions, with negligible change of the B conformation of DNA. Contrary to Zn2+ and Cd2+, which interact extensively with the nucleic bases (particularly at the N7 position of guanine), the alkaline-earth metal ions are bound almost exclusively to the phosphate groups. The affinity of both the Zn2+ and Cd2+ ions for G.C base pairs is comparable, but the Cd2+ ions interact more extensively with A.T pairs than Zn2+ ions. Interstrand cross-linking through the N3 atom of cytosine is suggested in the presence of Zn2+, but not Cd2+.  相似文献   

9.
Saccharomyces cerevisiae (yeast) cells were employed as a source of alcohol dehydrogenase in the NAD(+)-to-NADH reaction. The cells were immobilized in calcium alginate monofilament fibers and used in a biological reactor. The alginate could not be heat sterilized since temperatures above 80 degrees C caused the polymer chains to degrade. The same proved true for the high pH necessary for the reaction, but the alginate strength was increased by Ba(2+) solution treatment. X-ray probe analysis showed that about 30% of the Ca(2+) sites exchanged with the Ba(2+) ions. The Ba(2+) ions (as well as the Ca(2+) ions) permeabilized the cells and increased the reaction rate. Long term trials showed that Ba(2+) ions were slowly elutriated from the fiber biocatalyst, causing a drop in reaction rate. The trend certainly was reversible as far as the fiber was concerned. It is assumed that the permeabilization of the cells by the Ba(2+) ions was a reversible process.  相似文献   

10.
Ba2+ ions inhibit the release of Ca2+ ions from rat liver mitochondria   总被引:1,自引:0,他引:1  
The release of Ca2+ from respiring rat liver mitochondria following the addition of either ruthenium red or an uncoupler was measured by a Ca2+-selective electrode or by 45Ca2+ technique. Ba2+ ions are asymmetric inhibitors of both Ca2+ release processes. Ba2+ ions in a concentration of 75 microM inhibited the ruthenium red and the uncoupler induced Ca2+ release by 80% and 50%, respectively. For the inhibition, it was necessary that Ba2+ ions entered the matrix space: Ba2+ ions did not cause any inhibition of Ca2+ release if addition of either ruthenium red or the uncoupler preceded that of Ba2+. The time required for the development of the inhibition of the Ca2+ release and the time course of 140Ba2+ uptake ran in parallel. Ba2+ accumulation is mediated through the Ca2+ uniporter as 140Ba2+ uptake was competitively inhibited by extramitochondrial Ca2+ and prevented by ruthenium red. Due to the inhibition of the ruthenium red insensitive Ca2+ release, Ba2+ shifted the steady-state extramitochondrial Ca2+ concentration to a lower value. Ba2+ is potentially a useful tool to study mitochondrial Ca2+ transport.  相似文献   

11.
Initial rate kinetics of polysaccharide formation indicate that Zn2+, Ni2+, and Co2+ inhibit dextransucrase [sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase, EC 2.4.1.5] by binding to two types of metal ion sites. One type consists of a single site and has a low apparent affinity for Ca2+. At the remaining site(s), Ca2+ has a much higher apparent affinity than Zn2+, Ni2+, or Co2+, and prevents inhibition by these metal ions. These findings are consistent with a two-site model previously proposed from studies with Ca2+ and EDTA. Initial rate kinetics also show that Tris is competitive with sucrose, but that, unlike Zn2+, Tris does not bind with significant affinity to a second site. This argues that there is a site which is both the sucrose binding site and a general cation site.  相似文献   

12.
Miniature endplate potentials (MEPPs) were recorded from frog sartorious neuromuscular junctions under conditions of reduced quantal contents to study the effect of repetitive nerve stimulation on asynchronous (tonic) quantal transmitter release. MEPP frequency increased during repetitive stimulation and then decayed back to the control level after the conditioning trains. The decay of the increased MEPP frequency after 100-to 200-impulse conditioning trains can be described by four components that decayed exponentially with time constants of about 50 ms, 500 ms, 7 s, and 80 s. These time constants are similar to those for the decay of stimulation-induced changes in synchronous (phasic) transmitter release, as measured by endplate potential (EPP) amplitudes, corresponding, respectively, to the first and second components of facilitation, augmentation, and potentiation. The addition of small amounts of Ca2+ or Ba2+ to the Ca2+-containing bathing solution, or the replacement of Ca2+ with Sr2+, led to a greater increase in the stimulation-induced increases in MEPP frequency. The Sr-induced increase in MEPP frequency was associated with an increase in the second component of facilitation of MEPP frequency; the Ba-induced increase with an increase in augmentation. These effects of Sr2+ and Ba2+ on stimulation-induced changes in MEPP frequency are similar to the effects of these ions on stimulation- induced changes in EPP amplitude. These ionic similarities and the similar kinetics of decay suggest that stimulation induced changes in MEPP frequency and EPP amplitude have some similar underlying mechanisms. Calculations are presented which show that a fourth power residual calcium model for stimulation-induced changes in transmitter release cannot readily account for the observation that stimulation- induced changes in MEPP frequency and EPP amplitude have similar time- courses.  相似文献   

13.
Ca2+-triggered exocytosis of synaptic vesicles is controlled by the Ca2+-binding protein synaptotagmin (syt) I. Fifteen additional isoforms of syt have been identified. Here, we compared the abilities of three syt isoforms (I, VII, and IX) to regulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in vitro in response to divalent cations. We found that different isoforms of syt couple distinct ranges of Ca2+, Ba2+, and Sr2+ to membrane fusion; syt VII was approximately 400-fold more sensitive to Ca2+ than was syt I. Omission of phosphatidylserine (PS) from both populations of liposomes completely abrogated the ability of all three isoforms of syt to stimulate fusion. Mutations that selectively inhibit syt.target-SNARE (t-SNARE) interactions reduced syt stimulation of fusion. Using Sr2+ and Ba2+, we found that binding of syt to PS and t-SNAREs can be dissociated from activation of fusion, uncovering posteffector-binding functions for syt. Our data demonstrate that different syt isoforms are specialized to sense different ranges of divalent cations and that PS is an essential effector of Ca2+.syt action.  相似文献   

14.
Patch-clamp whole-cell and single-channel current recordings were made from pig pancreatic acinar cells to test the effects of quinine, quinidine, Ba2+ and Ca2+. Voltage-clamp current recordings from single isolated cells showed that high external concentrations of Ba2+ or Ca2+ (88 mM) abolished the outward K+ currents normally associated with depolarizing voltage steps. Lower concentrations of Ca2+ only had small inhibitory effects whereas 11 mM Ba2+ almost blocked the K+ current. 5.5 mM Ba2+ reduced the outward K+ current to less than 30% of the control value. Both external quinine and quinidine (200-500 microM) markedly reduced whole-cell outward K+ currents. In single-channel current studies it was shown that external Ba2+ (1-5 mM) markedly reduced the probability of opening of high-conductance Ca2+ and voltage-activated K+ channels whereas internal Ba2+ (6 X 10(-6) to 3 X 10(-5) M) caused activation at negative membrane potentials and inhibition at positive potentials. Quinidine (200-400 microM) evoked rapid chopping of single K+ channel openings acting both from the outside and inside of the membrane and in this way markedly reduced the total current passing through the channels.  相似文献   

15.
It has been previously demonstrated that calcium alginate gels prepared by dialysis often exhibit a concentration inhomogeneity being the polymer concentration considerably lower in the center of the gel than at the edges. Inhomogeneity may be a preferred structure in microcapsules due to low porosity and higher stability so that it is interesting to evaluate the polymer gradient in spherically symmetrical small alginate beads (1.0-0.7 mm diameter) obtained in different conditions. In this paper, two complementary techniques have been used to investigate this aspect. The concentration gradient of alginate has been analyzed by measuring both the spatial distribution of calcium ions in sections of alginate gel spheres, by means of x-ray fluorescence spectroscopy, and the T2 relaxation behavior on intact gel beads using magnetic resonance microimaging. The experimentally determined gradients from three-dimensional gels provide data to reevaluate the parameter estimates in the recently reported mathematical model for alginate gel formation (A. Mikkaelsen and A. Elgsaeter, Biopolymers, 1995, Vol. 36, pp. 17-41). The model may account for the gels being less inhomogeneous when nongelling sodium or magnesium ions are added during gelation.  相似文献   

16.
C2 domains regulate numerous eukaryotic signaling proteins by docking to target membranes upon binding Ca(2+). Effective activation of the C2 domain by intracellular Ca(2+) signals requires high Ca(2+) selectivity to exclude the prevalent physiological metal ions K(+), Na(+), and Mg(2+). The cooperative binding of two Ca(2+) ions to the C2 domain of cytosolic phospholipase A(2) (cPLA(2)-alpha) induces docking to phosphatidylcholine (PC) membranes. The ionic charge and size selectivities of this C2 domain were probed with representative mono-, di-, and trivalent spherical metal cations. Physiological concentrations of monovalent cations and Mg(2+) failed to bind to the domain and to induce docking to PC membranes. Superphysiological concentrations of Mg(2+) did bind but still failed to induce membrane docking. In contrast, Ca(2+), Sr(2+), and Ba(2+) bound to the domain in the low micromolar range, induced electrophoretic mobility shifts in native polyacrylamide gels, stabilized the domain against thermal denaturation, and induced docking to PC membranes. In the absence of membranes, the degree of apparent positive cooperativity in binding of Ca(2+), Sr(2+), and Ba(2+) decreased with increasing cation size, suggesting that the C2 domain binds two Ca(2+) or Sr(2+) ions, but only one Ba(2+) ion. These stoichiometries were correlated with the abilities of the ions to drive membrane docking, such that micromolar concentrations of Ca(2+) and Sr(2+) triggered docking while even millimolar concentrations of Ba(2+) yielded poor docking efficiency. The simplest explanation is that two bound divalent cations are required for stable membrane association. The physiological Ca(2+) ion triggered membrane docking at 20-fold lower concentrations than Sr(2+), due to both the higher Ca(2+) affinity of the free domain and the higher affinity of the Ca(2+)-loaded domain for membranes. Kinetic studies indicated that Ca(2+) ions bound to the free domain are retained at least 5-fold longer than Sr(2+) ions. Moreover, the Ca(2+)-loaded domain remained bound to membranes 2-fold longer than the Sr(2+)-loaded domain. For both Ca(2+) and Sr(2+), the two bound metal ions dissociate from the protein-membrane complex in two kinetically resolvable steps. Finally, representative trivalent lanthanide ions bound to the domain with high affinity and positive cooperativity, and induced docking to PC membranes. Overall, the results demonstrate that both cation charge and size constraints contribute to the high Ca(2+) selectivity of the C2 domain and suggest that formation of a cPLA(2)-alpha C2 domain-membrane complex requires two bound multivalent metal ions. These features are proposed to stem from the unique structural features of the metal ion-binding site in the C2 domain.  相似文献   

17.
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+).  相似文献   

18.
Using the patch-clamp whole-cell recording technique, we investigated the influence of external Ca2+, Ba2+, K+, Rb+, and internal Ca2+ on the rate of K+ channel inactivation in the human T lymphocyte-derived cell line, Jurkat E6-1. Raising external Ca2+ or Ba2+, or reducing external K+, accelerated the rate of the K+ current decay during a depolarizing voltage pulse. External Ba2+ also produced a use-dependent block of the K+ channels by entering the open channel and becoming trapped inside. Raising internal Ca2+ accelerated inactivation at lower concentrations than external Ca2+, but increasing the Ca2+ buffering with BAPTA did not affect inactivation. Raising [K+]o or adding Rb+ slowed inactivation by competing with divalent ions. External Rb+ also produced a use-dependent removal of block of K+ channels loaded with Ba2+ or Ca2+. From the removal of this block we found that under normal conditions approximately 25% of the channels were loaded with Ca2+, whereas under conditions with 10 microM internal Ca2+ the proportion of channels loaded with Ca2+ increased to approximately 50%. Removing all the divalent cations from the external and internal solution resulted in the induction of a non-selective, voltage-independent conductance. We conclude that Ca2+ ions from the outside or the inside can bind to a site at the K+ channel and thereby block the channel or accelerate inactivation.  相似文献   

19.
Treatment of isolated myofibrils with Ca2+-activated neutral proteinase (CANP) results in specific removal of Z-line and of alpha-actinin. To investigate the ionic requirement for these processes, we measured Z-line removal by phase-contrast and interference microscopy and alpha-actinin removal by sodium dodecyl sulphate/polyacrylamide-gel electrophoretic analysis of myofibrillar proteins. The proteolytic digestion of native purified proteins was measured directly on polyacrylamide gels and by the fluorescamine technique. We found that the removal of Z-line and alpha-actinin as well as the release of proteolytic degradation products from isolated myofibrils by CANP occur only in the presence of Ca2+; Sr2+, Ba2+, Mn2+, Mg2+, Co2+ and Zn2+ are all ineffective. In contrast with this stringent requirement for Ca2+, the proteolytic activity of CANP measured with denatured casein, native and denatured haemoglobin, native actin and tropomyosin also occurs in the presence of other bivalent cations, in the following order: Ca2+ greater than Sr2+ greater than Ba2+. These data suggest that only Ca2+ can produce the conformational change in myofibrils that renders them susceptible to the action of CANP, whereas its proteolytic activity is stimulated by several bivalent ions.  相似文献   

20.
DNase requires Ca2+ for activity against DNA with Mg2+. The Ca2+ selective chelating agent, ethylene glycol bis(beta-aminoethyl ether)-N, N'-tetraacetic acid, (EGTA) inhibits DNase completely at pH 7 or 8, and subsequent addition of excess Ca2+ reverses inhibition in less than one second. DNase action can be stopped at any point by the addition of excess EGTA over Ca2+. Ca2+ is required for DNase to bind substrate. Gel filtration experiments fail to show DNase binding to 0.2 mg per ml of DNA at 5 mm Mg2+ and 10-4 M EGTA. The concentration of Ca2+ needed for half of maximum DNase activity decreases with increases DNA concentration, from 1.2 times 10-5 M Ca2+ at 2.3 times 10-5 M DNA-P to about 4 times 10-7 M Ca2+ at 2.3 DNA-P. Kinetic analysis by the titrametic assay of protons releases shows that V max is independent of Ca2+ concentration while Km increases from 7.7 times 10-5 M DNA-P at 5 times 10-4 M Ca2+ to 3.4 times 10-4 M DNA-P at 5 times 10-6 M Ca2+. Both of these results are predicted by a rate equation which is derived from the assumption that DNase must bind Ca2+ before it can bind DNA. The essential Ca2+ atom probably binds to the one of two high affinity Ca2+ binding sites on DNase which cannont bind Mg2+ or Mn2+. The only other divalent metal ions which can bind to this site, Sr2+ and Ba2+, are also the only metal ions which can substitute for Ca2+ in DNase action against DNA with Mg2+. Some DNase activity is obtained in the absence of added Ca2+ with Mg2+ at pH 6 or below and with Mn2+ or Co2+ at pH 8. These assay solutions are contaminated by 1 to 3 muM Ca2+, which may be sufficient to account for the observed activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号