首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Bacterial binding phenomena among different bacterial genera or species play an important role in bacterial colonization in a mixed microbiota such as in the human oral cavity. The coaggregation reaction between two gram-negative anaerobes, Treponema medium and Porphyromonas gingivalis, was characterized using fimbria-deficient mutants of P. gingivalis and specific antisera against purified fimbriae and bacterial whole cells. T. medium ATCC 700273 strongly coaggregated with fimbriate P. gingivalis strains ATCC 33277 and 381, but not with afimbriate strains including transposon-induced fimbria-deficient mutants and KDP98 as a fimA-disrupted mutant of P. gingivalis ATCC 33277. In the P. gingivalis-T. medium coaggregation assay, the presence of rabbit antiserum against the purified fimbriae or the whole cells of P. gingivalis ATCC 33277 produced different "aggregates" consisting predominantly of P. gingivalis cells with few spirochetes, but both preimmune serum and the antiserum against the afimbriate KDP98 cells did not inhibit the coaggregation reaction. Heated P. gingivalis cells lost their ability to bind both heated and unheated T. medium cells. This T. medium-P. gingivalis coaggregation reaction was inhibited by a cysteine proteinase inhibitor, leupeptin, and also by arginine and lysine, but not by EDTA or sugars including lactose. A binding assay on nitrocellulose membranes and immunoelectron microscopy demonstrated that a heat-stable 37 kDa surface protein on the T. medium cell attached to the P. gingivalis fimbriae.  相似文献   

2.
Binding of Porphyromonas gingivalis to the host cells is an essential step in the pathogenesis of periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are thought to be involved in this process. In our earlier studies, two major epithelial cell components of 40 and 50 kDa were identified as potential fimbrial receptors. Sequencing of a cyanogen bromide digestion fragment of the 50-kDa component resulted in an internal sequence identical to keratin I molecules, and hence this cytokeratin represents one of the epithelial cell receptors for P. gingivalis fimbriae. In this study, the 40-kDa component of KB cells was isolated and its amino-terminal sequence determined. The N-terminal amino sequence was found to be GKVKVGVNGF and showed perfect homology with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Furthermore, purified P. gingivalis fimbriae were found to bind to rabbit muscle GAPDH. Antibodies directed against internal peptide 49-68 and 69-90 of fimbrillin were shown to inhibit the binding of P. gingivalis and of fimbriae to epithelial cells. Antibodies against these peptides also inhibited the binding of fimbriae to GAPDH. Our results confirmed that the amino-terminal domain corresponding to amino residues 49-68 of the fimbrillin protein is the major GAPDH binding domain. These studies point to GAPDH as a major receptor for P. gingivalis major fimbriae and, as such, GAPDH likely plays a role in P. gingivalis adherence and colonization of the oral cavity, as well as triggering host cell processes involved in the pathogenesis of P. gingivalis infections.  相似文献   

3.
Porphyromonas gingivalis and Treponema denticola are major pathogens of periodontal disease. Coaggregation between microorganisms plays a key role in the colonization of the gingival crevice and the organization of periodontopathic biofilms. We investigated the involvement of surface ligands of P. gingivalis in coaggregation. Two triple mutants of P. gingivalis lacking Arg-gingipain A (RgpA), Lys-gingipain (Kgp) and Hemagglutinin A (HagA) or RgpA, Arg-gingipain B (RgpB) and Kgp showed significantly decreased coaggregation with T. denticola, whereas coaggregation with a major fimbriae (FimA)-deficient mutant was the same as that with the P. gingivalis wild-type parent strain. rgpA, kgp and hagA code for proteins that contain 44 kDa Hgp44 adhesin domains. The coaggregation activity of an rgpA kgp mutant was significantly higher than that of the rgpA kgp hagA mutant. Furthermore, anti-Hgp44 immunoglobulin G reduced coaggregation between P. gingivalis wild type and T. denticola. Treponema denticola sonicates adhered to recombinant Rgp domains. Coaggregation following co-culture of the rgpA kgp hagA mutant expressing the RgpB protease with the rgpA rgpB kgp mutant expressing the unprocessed HagA protein was enhanced compared with that of each triple mutant with T. denticola. These results indicate that the processed P. gingivalis surface Hgp44 domains are key adhesion factors for coaggregation with T. denticola.  相似文献   

4.
M C Shih  G Lazar  H M Goodman 《Cell》1986,47(1):73-80
We report nucleotide sequences of cDNAs for the nuclear genes encoding chloroplast (GapA and GapB) and cytosolic (GapC) glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from N. tabacum. Comparison of nucleotide sequences indicates that the GapA and GapB genes evolved following duplication of an ancestral gene about 450 million years ago. However, the divergence of GapA/B and GapC occurred much earlier in evolution than the divergence of GapC and GAPDH genes of animals and fungi, suggesting that chloroplast and cytosolic GAPDHs evolved from different lineages. Comparison of amino acid sequences shows that the chloroplast GAPDHs are related to GAPDHs found in thermophilic bacteria, while the cytosolic GAPDH is related to the GAPDH found in mesophilic prokaryotes. These results strongly support the symbiotic origin of chloroplasts.  相似文献   

5.
Genetically engineering bacteria to express surface proteins which can antagonize the colonization of other microorganisms is a promising strategy for altering bacterial environments. The fimbriae of Porphyromonas gingivalis play an important role in the pathogenesis of periodontal diseases. A structural subunit of the P. gingivalis fimbriae, fimbrillin, has been shown to be an important virulence factor, which likely promotes adherence of the bacterium to saliva-coated oral surfaces and induces host responses. Immunization of gnotobiotic rats with synthetic peptides based on the predicted amino acid sequence of fimbrillin has also been shown to elicit a specific immune response and protection against P. gingivalis-associated periodontal destruction. In this study we engineered the human oral commensal organism Streptococcus gordonii to surface express subdomains of the fimbrillin polypeptide fused to the anchor region of streptococcal M6 protein. The resulting recombinant S. gordonii strains expressing P. gingivalis fimbrillin bound saliva-coated hydroxyapatite in a concentration-dependent manner and inhibited binding of P. gingivalis to saliva-coated hydroxyapatite. Moreover, the recombinant S. gordonii strains were capable of eliciting a P. gingivalis fimbrillin-specific immune response in rabbits. These results show that functional and immunologically reactive P. gingivalis fimbrillin polypeptides can be expressed on the surface of S. gordonii. The recombinant fimbrillin-expressing S. gordonii strains may provide an effective vaccine or a vehicle for replacement therapy against P. gingivalis. These experiments demonstrated the feasibility of expressing biologically active agents (antigens or adhesin molecules) by genetically engineered streptococci. Such genetically engineered organisms can be utilized to modulate the microenvironment of the oral cavity.  相似文献   

6.
C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (KD = 0.34–2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response.  相似文献   

7.
Two cDNA clones, encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from mustard (Sinapis alba), have been identified and sequenced. Comparison of the deduced amino acid sequences with one another and with the GAPDH sequences from animals, yeast and bacteria demonstrates that nucleus-encoded subunit A of chloroplast GAPDH is distinct from its cytosolic counterpart and the other eukaryotic sequences and relatively similar to the GAPDHs of thermophilic bacteria. These results are compatible with the hypothesis that the nuclear gene for subunit A of chloroplast GAPDH is of prokaryotic origin. They are in puzzling contrast with a previous publication demonstrating that Escherichia coli GAPDH is relatively similar to the eukaryotic enzymes [Eur. J. Biochem. 150, 61-66 (1985)].  相似文献   

8.
Coaggregation of Porphyromonas gingivalis and Prevotella intermedia.   总被引:1,自引:0,他引:1  
Porphyromonas gingivalis cells coaggregated with Prevotella intermedia cells. The coaggregation was inhibited with L-arginine, L-lysine, Nalpha-p-tosyl-L-lysine chloromethyl ketone, trypsin inhibitor, and leupeptin. Heat- and proteinase K-treated P. gingivalis cells showed no coaggregation with P. intermedia cells, whereas heat and proteinase K treatments of P. intermedia cells did not affect the coaggregation. The vesicles from P. gingivalis culture supernatant aggregated with P. intermedia cells, and this aggregation was also inhibited by addition of L-arginine or L-lysine and by heat treatment of the vesicles. The rgpA rgpB, rgpA kgp, rgpA rgpB kgp, and rgpA kgp hagA mutants of P. gingivalis did not coaggregate with P. intermedia. On the other hand, the fimA mutant lacking the FimA fimbriae showed coaggregation with P. intermedia as well as the wild type parent. These results strongly imply that a heat-labile and proteinous factor on the cell surface of P gingivalis, most likely the gingipain-adhesin complex, is involved in coaggregation of P. gingivalis and P. intermedia.  相似文献   

9.
A lambda gt11 cDNA library from Candida albicans ATCC 26555 was screened by using pooled sera from two patients with systemic candidiasis and five neutropenic patients with high levels of anti-C. albicans immunoglobulin M antibodies. Seven clones were isolated from 60,000 recombinant phages. The most reactive one contained a 0.9-kb cDNA encoding a polypeptide immunoreactive only with sera from patients with systemic candidiasis. The whole gene was isolated from a genomic library by using the cDNA as a probe. The nucleotide sequence of the coding region showed homology (78 to 79%) to the Saccharomyces cerevisiae TDH1 to TDH3 genes coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and their amino acid sequences showed 76% identity; thus, this gene has been named C. albicans TDH1. A rabbit polyclonal antiserum against the purified cytosolic C. albicans GAPDH (polyclonal antibody [PAb] anti-CA-GAPDH) was used to identify the GAPDH in the beta-mercaptoethanol extracts containing cell wall moieties. Indirect immunofluorescence demonstrated the presence of GAPDH at the C. albicans cell surface, particularly on the blastoconidia. Semiquantitative flow cytometry analysis showed the sensitivity of this GAPDH form to trypsin and its resistance to be removed with 2 M NaCl or 2% sodium dodecyl sulfate. The decrease in fluorescence in the presence of soluble GAPDH indicates the specificity of the labelling. In addition, a dose-dependent GAPDH enzymatic activity was detected in intact blastoconidia and germ tube cells. This activity was reduced by pretreatment of the cells with trypsin, formaldehyde, and PAb anti-CA-GAPDH. These observations indicate that an immunogenic, enzymatically active cell wall-associated form of the glycolytic enzyme GAPDH is found at the cell surface of C. albicans cells.  相似文献   

10.
S Fabry  R Hensel 《Gene》1988,64(2):189-197
The gene for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the thermophilic methanogenic archaebacterium Methanothermus fervidus (growth optimum at 84 degrees C) was cloned in Escherichia coli and the nucleotide sequence was determined. A striking preference for adenine and thymidine bases was found in the gene, which is in agreement with the low G + C content of the M. fervidus DNA. The deduced amino acid sequence indicates an Mr of 37,500 for the protein subunit. Alignment with the amino acid sequences of GAPDHs from other organisms shows that the archaebacterial GAPDH is homologous to the respective eubacterial and eukaryotic enzymes, but the similarity between the archaebacterial enzyme and the eubacterial or eukaryotic GAPDHs is much less than that between the latter two.  相似文献   

11.
Porphyromonas (Bacteroides) gingivalis adheres to gram-positive bacteria, such as Actinomyces viscosus, when colonizing the tooth surface. However, little is known of the adhesins responsible for this interaction. A series of experiments were performed to determine whether P. gingivalis fimbriae function in its coadhesion with A. viscosus. Fimbriae typical of P. gingivalis were isolated from strain 2561 (ATCC 33277) by the method of Yoshimura et al. (F. Yoshimura, K. Takahashi, Y. Nodasaka, and T. Suzuki, J. Bacteriol. 160:949-957, 1984) in fractions enriched with a 40-kDa subunit, the fimbrillin monomer, P. gingivalis-A. viscosus coaggregation was inhibited by purified rabbit antifimbrial immunoglobulin G (IgG) at dilutions eightfold higher than those of preimmune IgG, providing indirect evidence implicating P. gingivalis fimbriae in coadhesion. Three types of direct binding assays further supported this observation. (i) Mixtures of isolated P. gingivalis fimbriae and A. viscosus WVU627 cells were incubated for 1 h, washed vigorously with phosphate-buffered saline (pH 7.2), and subjected to electrophoresis. Transblots onto nitrocellulose were probed with antifimbrial antiserum. Fimbrillin labeled positively on these blots. No reaction occurred with the control protein, porcine serum albumin, when blots were exposed to anti-porcine serum albumin, (ii) A. viscosus cells incubated with P. gingivalis fimbriae were agglutinated only after the addition of antifimbrial antibodies. (iii) Binding curves generated from an enzyme immunoassay demonstrated concentration-dependent binding of P. gingivalis fimbriae to A. viscosus cells. From these lines of evidence, P. gingivalis fimbriae appear to be capable of binding to A. viscosus and mediating the coadhesion of these species.  相似文献   

12.
The normally cytosolic glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, (GAPDH) has been reported to be expressed on the surface of Streptococcus pyogenes, group A, where it can act as a plasmin binding protein (Plr), and potentially a signaling molecule. In studies of wild-type and isogenic mutants, an association between surface expression of antigenic GAPDH/Plr and M and M-related fibrinogen-binding proteins was identified. Inactivation of the mga gene, whose product controls expression of M and M-related proteins also influenced expression of surface GAPDH/Plr. Revertants or pseudorevertants of mga mutants led to concomitant re-expression of surface GAPDH/Plr and M and M-related proteins. Using surface enhanced laser desorption ionization (SELDI) mass spectroscopy, a physical association between GAPDH/Plr and streptococcal fibrinogen-binding proteins was demonstrated. These studies support the hypothesis that surface M and M-related proteins are involved in anchoring GAPDH/Plr on the surface of group A streptococci.  相似文献   

13.
Streptococci and actinomyces that initiate colonization of the tooth surface frequently coaggregate with each other as well as with other oral bacteria. These observations have led to the hypothesis that interbacterial adhesion influences spatiotemporal development of plaque. To assess the role of such interactions in oral biofilm formation in vivo, antibodies directed against bacterial surface components that mediate coaggregation interactions were used as direct immunofluorescent probes in conjunction with laser confocal microscopy to determine the distribution and spatial arrangement of bacteria within intact human plaque formed on retrievable enamel chips. In intrageneric coaggregation, streptococci such as Streptococcus gordonii DL1 recognize receptor polysaccharides (RPS) borne on other streptococci such as Streptococcus oralis 34. To define potentially interactive subsets of streptococci in the developing plaque, an antibody against RPS (anti-RPS) was used together with an antibody against S. gordonii DL1 (anti-DL1). These antibodies reacted primarily with single cells in 4-h-old plaque and with mixed-species microcolonies in 8-h-old plaque. Anti-RPS-reactive bacteria frequently formed microcolonies with anti-DL1-reactive bacteria and with other bacteria distinguished by general nucleic acid stains. In intergeneric coaggregation between streptococci and actinomyces, type 2 fimbriae of actinomyces recognize RPS on the streptococci. Cells reactive with antibody against type 2 fimbriae of Actinomyces naeslundii T14V (anti-type-2) were much less frequent than either subset of streptococci. However, bacteria reactive with anti-type-2 were seen in intimate association with anti-RPS-reactive cells. These results are the first direct demonstration of coaggregation-mediated interactions during initial plaque accumulation in vivo. Further, these results demonstrate the spatiotemporal development and prevalence of mixed-species communities in early dental plaque.  相似文献   

14.
The Mfa1 protein of Porphyromonas gingivalis is the structural subunit of the short fimbriae and mediates coadhesion between P. gingivalis and Streptococcus gordonii. We utilized a promoter-lacZ reporter construct to examine the regulation of mfa1 expression in consortia with common oral plaque bacteria. Promoter activity of mfa1 was inhibited by S. gordonii, Streptococcus sanguinis and Streptococcus mitis. In contrast, Streptococcus mutans, Streptococcus cristatus, Actinomyces naeslundii, Actinobacillus actinomycetemcomitans and Fusobacterium nucleatum did not affect mfa1 expression. Expression of SspA/B, the streptococcal receptor for Mfa1, was not required for regulation of mfa1 promoter activity. Proteinaceous molecule(s) in oral streptococci may be responsible for regulation of Mfa1 expression. Porphyromonas gingivalis is capable of detecting heterologous organisms, and responds to selected organisms by specific gene regulation.  相似文献   

15.
We previously reported the existence of two different kinds of fimbriae expressed by Porphyromonas gingivalis ATCC 33277. In this study, we isolated and characterized a secondary fimbrial protein from strain FPG41, a fimA-inactivated mutant of P. gingivalis 381. FPG41 was constructed by a homologous recombination technique using a mobilizable suicide vector, and failed to express the long fimbriae (41-kDa fimbriae) that were produced on the cell surface of P. gingivalis 381. However, short fimbrial structures were observed on the cell surface of FPG41 by electron microscopy. The fimbrial protein was purified from FPG41 by DEAE-Sepharose CL-6B column chromatography. The secondary fimbrial protein was eluted at 0.15 M NaCl, and the molecular mass of this protein was approximately 53 kDa as estimated by SDS-PAGE. An antibody against the 53-kDa fimbrial protein reacted with the short fimbriae of the FPG41 and the wild-type strain. However, the 41-kDa long fimbriae of the wild-type strain and the 67-kDa fimbriae of ATCC 33277 did not react with the same antibody. Moreover, the N-terminal amino acid sequence of the 53-kDa fimbrial protein showed only 2 of 15 residues that were identical to those of the 41-kDa fimbrial protein. These results show that the properties of the 53-kDa fimbriae are different from those of the 67-kDa fimbriae of ATCC 33277 as well as those of the 41-kDa fimbriae.  相似文献   

16.
Streptococcus pyogenes is an important pathogen that causes pharyngitis, sepsis, and rheumatic fever. Cell-associated streptococcal C5a peptidase (ScpA) protects S. pyogenes from phagocytosis and has been suggested to interrupt host defenses by enzymatically cleaving complement C5a, a major factor in the accumulation of neutrophils at sites of infection. How S. pyogenes recognizes and binds to C5a, however, is unclear. We detected a C5a-binding protein in 8 M urea extracts of S. pyogenes by ligand blotting using biotinylated C5a. Searching of genome databases showed that the C5a-binding protein is identical to the streptococcal plasmin receptor (Plr), also known as streptococcal surface dehydrogenase (SDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In the present study we identified a novel function of this multifunctional protein. Western blotting and immunofluorescence microscopy with anti-Plr/SDH/GAPDH showed that Plr/SDH/GAPDH is located on the bacterial surface and released into the culture supernatant. Next, we examined whether the streptococcal Plr/SDH/GAPDH inhibits the biological effects of C5a on human neutrophils. We found that soluble Plr/SDH/GAPDH inhibits C5a-activated chemotaxis and H2O2 production. Furthermore, our results suggested that soluble Plr/SDH/GAPDH captures C5a, inhibiting its chemotactic function. Also, cell-associated Plr/SDH/GAPDH and ScpA were both necessary for the cleavage of C5a on the bacterial surface. Together, these results indicate that the multifunctional protein Plr/SDH/GAPDH has additional functions that help S. pyogenes escape detection by the host immune system.  相似文献   

17.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) was purified from two amphibian species, Xenopus laevis and Pleurodeles waltl. Comparative studies revealed that the two proteins differ by their subunit molecular masses, pI values and V8 digested peptide maps. The effect of zinc, cadmium and copper ions on GAPDH enzymatic activity has been examined in vitro. A time, metal concentration and metal type dependent inhibition was observed for both enzymes. X. laevis and P. waltl GAPDHs exhibit a much greater sensitivity to copper than to cadmium or zinc ions. Different half-lives and differential sensitivity to various metals was observed between the two enzymes with P. waltl GAPDH being remarkably tolerant to cadmium ions compared to the X. laevis enzyme. In order to understand the differential sensitivity of the two enzymes to metals, we produced 3D models of both X. laevis and P. waltl GAPDH structures based upon known 3D structures of GAPDHs from other species. This necessitated, in a first step, to clone a 900 bp cDNA fragment encoding the nearly full-length P. waltl GAPDH. Spatial motif searches on the homology models indicated potential metal binding sites involving cysteine and histidine residues outside the catalytic sites, existing only in either the X. laevis or the P. waltl GAPDH sequences.  相似文献   

18.
Photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Spinacia oleracea belongs to a wide group of GAPDHs found in most organisms displaying oxygenic photosynthesis, including cyanobacteria, green and red algae, and higher plants. As a major catalytic difference with respect to glycolytic GAPDH, photosynthetic GAPDH exhibits dual cofactor specificity toward pyridine nucleotides with a preference for NADP(H). Here we report the crystal structure of NAD-complexed recombinant A(4)-GAPDH (NAD-A(4)-GAPDH) from Spinacia oleracea, expressed in Escherichia coli. Its superimposition onto native A(4)-GAPDH complexed with NADP (NADP-A(4)-GAPDH) pinpoints specific conformational changes resulting from cofactor replacement. In photosynthetic NAD-A(4)-GAPDH, the side chain of Asp32 is oriented toward the coenzyme to interact with the adenine ribose diol, similar to glycolytic GAPDHs (NAD-specific). On the contrary, in NADP-A(4)-GAPDH Asp32 moves away to accommodate the additional 2'-phosphate group of the coenzyme and to minimize electrostatic repulsion. Asp32 rotation is allowed by the presence of the small residue Ala40, conserved in most photosynthetic GAPDHs, replacing bulky amino acid side chains in glycolytic GAPDHs. While in NADP-A(4)-GAPDH two amino acids, Thr33 and Ser188, are involved in hydrogen bonds with the 2'-phosphate group of NADP, in the NAD-complexed enzyme these interactions are lacking. The crystallographic structure of NAD-A(4)-GAPDH highlights that four residues, Thr33, Ala40, Ser188, and Ala187 (Leu, Leu, Pro, and Leu respectively, in glycolytic Bacillus stearothermophilus GAPDH sequence) are of primary importance for the dual cofactor specificity of photosynthetic GAPDH. These modifications seem to trace the minimum evolutionary route for a primitive NAD-specific GAPDH to be converted into the NADP-preferring enzyme of oxygenic photosynthetic organisms.  相似文献   

19.
This is the first report describing the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a protein associated with the cell envelope of a gram-negative bacterium (Aeromonas hydrophila). Dose-dependent GAPDH activity was detected in whole bacterial cells from exponentially growing cultures, indicating that an active form of GAPDH is located outside the plasma membrane. This activity represents roughly 10–20% of total cell activity, and it is not reduced by pretreatment of the cells with trypsin. Assays with soluble GAPDH indicate that the activity measured in intact cells does not originate by rebinding to intact cells of cytosolic enzyme released following cell lysis. GAPDH activity levels detected in intact cells varied during the growth phase. The relationship between GAPDH activity and cell culture density was not linear, showing this activity as a major peak in the late-logarithmic phase (A600 = 1.1–1.3), and a decrease when cells entered the stationary phase. The late exponential growing cells showed a GAPDH activity 3 to 4-fold higher than early growing or stationary cells. No activity was detected in culture supernatants. Enzymatic and Western-immunoblotting analysis of subcellular fractions (cytosol, whole and outer membranes, and periplasm) showed that GAPDH is located in the cytosol, as expected, and also in the periplasm. These results place the periplasmic GAPDH of A. hydrophila into the family of multifunctional microbial cell wall-associated GAPDHs which retain their catalytic activity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Various phosphono-phosphates and diphosphonates were synthesized as 1,3-diphosphoglycerate (1,3-diPG) analogues by using a beta-ketophosphonate, an alpha-fluoro,beta-ketophosphonate or a beta-ketophosphoramidate to mimic the unstable carboxyphosphate part of the natural substrate. The inhibitory effect of these analogues on glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from Trypanosoma brucei (Tb) and rabbit muscle were measured with respect to both substrates, glyceraldehyde-3-phosphate (GAP) and 1,3-diPG. Interestingly, all 1,5-diphosphono,2-oxopentanes without substitution at the C-3 position selectively inhibit the Tb GAPDH with respect to 1,3-diPG and are without effect on Rm GAPDH. All 1-phospho,3-oxo,4-phosphonobutanes show themselves to be non-selective inhibitors either with regard to substrates or organisms, but they will be of a great interest as 1,3-diPG stable models for structural studies of co-crystals with GAPDHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号