首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the human fetal brain cDNA library constructed by our lab, a novel variant cDNA of a human gene was successfully cloned and identified. Because the gene has been named N-acetylneuraminate pyruvate lyase (NPL), accordingly we term our splice variant NPL_v2. The cDNA of NPL_v2 has a full-length open reading frame (ORF) from the nucleotide position 320 to 1225 that encodes a protein comprising 301 amino acids. SMART analysis showed that our hypothetical protein has one dihydrodipicolinate synthase (DHDPS) domain. Phosphorylation analysis of the deduced protein show that there are five phosphorylation sites including three "serine" and two "threonine" at the region that are not found in other splice variant. RT-PCR experiment revealed that our splice variant of the gene is mainly expressed in human placenta, liver, kidney, pancreas, spleen, thymus, ovary, small intestine and peripheral blood leukocyte.  相似文献   

2.
The membrane-associated guanylate kinase protein, MAGI-1, has been shown to be a component of epithelial tight junctions in both Madin-Darby canine kidney cells and in intestinal epithelium. Because we have previously observed MAGI-1 expression in glomerular visceral epithelial cells (podocytes) of the kidney, we screened a glomerular cDNA library to identify the potential binding partners of MAGI-1 and isolated a partial cDNA encoding a novel protein. The partial cDNA exhibited a high degree of identity to an uncharacterized human cDNA clone, KIAA0989, which encodes a protein of 780 amino acids and contains a predicted coiled-coil domain in the middle of the protein. In vitro binding assays using the partial cDNA as a GST fusion protein confirm the binding to full-length MAGI-1 expressed in HEK293 cells, as well as endogenous MAGI-1, and also identified the first WW domain of MAGI-1 as the domain responsible for binding to this novel protein. Although a conventional PPxY binding motif for WW domains was not present in the partial cDNA clone, a variant WW binding motif was identified, LPxY, and found to be necessary for interacting with MAGI-1. When expressed in Madin-Darby canine kidney cells, the full-length novel protein was found to colocalize with MAGI-1 at the tight junction of these cells and the coiled-coil domain was found to be necessary for this localization. Because of its interaction with MAGI-1 and its localization to cell-cell junctions, this novel protein has been given the name MAGI-1-associated coiled-coil tight junction protein (MASCOT).  相似文献   

3.
In all vertebrates, GnRH regulates gonadotropin secretion through binding to a specific receptor on the surface of pituitary gonadotropes. At least two forms of GnRH exist within a single species, and several corresponding GnRH receptors (GNRHRs) have been isolated with one form being pituitary specific. In chickens, only one type of widely expressed GNRHR has previously been identified. The objectives of this study were to isolate a chicken pituitary-specific GNRHR and to determine its expression pattern during a reproductive cycle. Using a combined strategy of PCR and rapid amplification of cDNA ends (RACE), a new GNRHR (chicken GNRHR2) and two splice variants were isolated in domestic fowl (Gallus gallus domesticus). Full-length GNRHR2 and one of its splice variant mRNAs were expressed exclusively in the pituitary, whereas mRNA of the other splice variant was expressed in most brain tissues examined. The deduced amino acid sequence of full-length chicken GNRHR2 reveals a seven transmembrane domain protein with 57%-65% homology to nonmammalian GNRHRs. Semiquantitative real-time PCR revealed that mRNA levels of full-length chicken GNRHR2 in the pituitary correlate with the reproductive status of birds, with maximum levels observed during the peak of lay and 4 wk postphotostimulation in females and males, respectively. Furthermore, GnRH stimulation of GH3 cells that were transiently transfected with cDNA that encodes chicken GNRHR2 resulted in a significant increase in inositol phosphate accumulation. In conclusion, we isolated a novel GNRHR and its splice variants in chickens, and spatial and temporal gene expression patterns suggest that this receptor plays an important role in the regulation of reproduction.  相似文献   

4.
5.
Growth differentiation factor-9 (GDF-9), a member of the transforming growth factor-β (TGF-β) superfamily, is expressed exclusively in the oocyte within the ovary and plays essential roles in the ovarian function in mammals. However, a possible involvement of GDF-9 in canine ovarian physiology that has a unique ovulation process among mammals has not been studied. Interestingly, we have isolated two types of cDNA clones generated by an alternative splicing from a canine ovarian total RNA. The predominant long form cDNA shares a common precursor structure with GDF-9s in other species whereas the minor short form cDNA has a 172 amino acid truncation in the proregion. Using a transient expression system, we found that the long form cDNA has a defect in mature protein production whereas the short form cDNA readily produces mature protein. However, mutations at one or two N-glycosylation sites in the mature domain of the short form GDF-9 caused a loss in mature protein production. These results suggest that the prodomain and N-linked glycosylation of the mature domain regulate proper processing and secretion of canine GDF-9. Based on the biological functions of GDF-9, these characteristics of canine GDF-9 could be causatively linked to the unique ovulation process in the Canidae.  相似文献   

6.
7.
RLF (relaxin-like factor), also known as INSL3 (insulin-like peptide 3), is a novel member of the relaxin/insulin gene family that is expressed in testicular Leydig cells. Despite the implicated role of RLF/INSL3 in testis development, its native conformation remains unknown. In the present paper we demonstrate for the first time that boar testicular RLF/INSL3 is isolated as a monomeric structure with full biological activity. Using a series of chromatography steps, the native RLF/INSL3 was highly purified as a single peak in reverse-phase HPLC. MS/MS (tandem MS) analysis of the trypsinized sample provided 66% sequence coverage and revealed a distinct monomeric structure consisting of the B-, C- and A-domains deduced previously from the RLF/INSL3 cDNA. Moreover, the N-terminal peptide was four amino acid residues longer than predicted previously. MS analysis of the intact molecule and PMF (peptide mass fingerprinting) analysis at 100% sequence coverage confirmed this structure and indicated the existence of three site-specific disulfide bonds. RLF/INSL3 retained full bioactivity in HEK (human embryonic kidney)-293 cells expressing RXFP2 (relaxin/insulin-like family peptide receptor 2), the receptor for RLF/INSL3. Furthermore, RLF/INSL3 was found to be secreted from Leydig cells into testicular venous blood. Collectively, these results indicate that boar RLF/INSL3 is secreted from testicular Leydig cells as a B-C-A monomeric structure with full biological activity.  相似文献   

8.
9.
A cDNA selection technique has been used to isolate full-length human cDNAs of the phosphodiesterase 1 (PDE1) calcium calmodulin (CaM)-regulated phosphodiesterase gene family. We isolated cDNAs representing multiple splice variants of PDE1A, 1B and 1C from a variety of tissues. Included among these were two novel splice variants for PDE1A and 1B. The first, PDE1A5, encodes a 519-residue protein, which is different from PDE1A1 by the insertion of 14 residues, a divergent carboxy terminus and also differs from PDE1A3 through a divergent amino terminus. Our second novel splice variant represents the first occurrence of a splice variant of the PDE1B gene. PDE1B2 encodes a 516-residue protein and diverges from PDE1B1 by the replacement of the first 38 residues by an alternative 18, which is predicted to be functionally significant. Using the splice variant sequence differences to perform comparative Northern analysis, we have demonstrated that each variant has a differential tissue distribution.  相似文献   

10.
11.
12.
GREAT/LGR8 is the only receptor for insulin-like 3 peptide   总被引:11,自引:0,他引:11  
During male development testes descend from their embryonic intraabdominal position into the scrotum. Two genes, encoding the insulin-like 3 peptide (INSL3) and the GREAT/LGR8 G protein-coupled receptor, control the differentiation of gubernaculum, the caudal genitoinguinal ligament critical for testicular descent. It was established that the INSL3 peptide activates GREAT/LGR8 receptor in vitro. Mutations of Insl3 or Great cause cryptorchidism (undescended testes) in mice. Overexpression of the transgenic Insl3 causes male-like gubernaculum differentiation, ovarian descent into lower abdominal position, and reduced fertility in females. To address the question whether Great deletion complements the mutant female phenotype caused by the Insl3 overexpression, we have produced Insl3 transgenic mice deficient for Great. Such females had a wild-type phenotype, demonstrating that Great was the only cognate receptor for Insl3 in vivo. We have established that pancreatic HIT cells, transfected with the INSL3 cDNA, produce functionally active peptide. Analysis of five INSL3 mutant variants detected in cryptorchid patients showed that P49S substitution renders functionally compromised peptide. Therefore, mutations in INSL3 might contribute to the etiology of cryptorchidism. We have also showed that synthetic insulin-like peptides (INSL4 and INSL6) were unable to activate LGR7 or GREAT/LGR8.  相似文献   

13.
We have characterized the gene for human phosphodiesterase 8B, PDE8B, and cloned the full-length cDNA for human PDE8B (PDE8B1) and two splice variants (PDE8B2 and PDE8B3). The PDE8B gene is mapped to the long arm of chromosome 5 (5q13) and is composed of 22 exons spanning over approximately 200kb. The donor and acceptor splice site sequences match the consensus sequences for the exon-intron boundaries of most eukaryotic genes. PDE8B1 encodes an 885 amino acid enzyme, containing an N-terminal REC domain, a PAS domain, and a C-terminal catalytic domain. PDE8B2 and PDE8B3 both have deletion in the PAS domain and encode 838 and 788 amino acid proteins, respectively. RT-PCR analysis revealed that while PDE8B1 is the most abundant variant in thyroid gland, PDE8B3, but not PDE8B1, is the most abundant form in brain. These findings suggest that selective usage of exons produces three different PDE8B variants that exhibit a tissue-specific expression pattern.  相似文献   

14.
We have analyzed four full-length cDNA clones to porcine urokinase-like plasminogen activator (uPA) mRNA. DNA sequencing revealed a deletion of 27 nucleotides in one cDNA. The comparison of cDNA and genomic sequences indicated that this length polymorphism was due to an alternative splicing of two potential 5' splice sites to a unique 3' splice site. As the difference was 27 nucleotides (corresponding to 9 amino acids) and there was no termination codon within the same reading frame in this region, the two different mRNAs might be equally biologically active.  相似文献   

15.
16.
通过电子克隆和RACE相结合的方法,从陆地棉中克隆到一个新ARF基因。序列分析表明,该基因序列全长为2393其中包括87bp的5′非编码区(5′UTR),1941bp的蛋白质编码区,终止密码子TAA和362bp的3′非编码区。该基因可编码647个氨基酸的蛋白质,分子量为71.9kD,等电点(PI)为8.2。该基因含有一个与拟南芥中ARF基因相似的B3结构域和一个Auxin_resp结合位点,表明该基因与拟南芥ARF基因有很高的同源性,推测具有相似或相同的功能。  相似文献   

17.
18.
Characterization of murine erythropoietin receptor genes   总被引:12,自引:0,他引:12  
We have isolated and characterized the murine genomic and complementary DNAs encoding erythropoietin (Epo) receptor from Epo-responsive and unresponsive mouse erythroleukemia cells. Two classes of Epo receptor cDNAs were isolated from Epo-responsive cells. One is a 55,000 Mr membrane-bound Epo receptor, and the other is a 29,000 Mr soluble Epo receptor lacking the transmembrane and cytoplasmic domains. As a result of alternative splicing, two insert sequences containing termination codons are produced, and the encoded polypeptide diverges four amino acids upstream from the transmembrane domain, adding 20 new amino acids before terminating. Amino acid sequence of the Epo receptor cDNA isolated from Epo-responsive cells was identical with that of Epo-unresponsive cells, indicating that Epo-responsiveness does not depend upon the primary structure of the Epo receptor (binding) protein. Analysis of 6.6 x 10(3) base-pairs (kb) genomic DNA segments covering complete Epo receptor gene and promoter regions revealed that potential regulatory elements (NF-E1, GF-1 or Eryf 1) for erythroid-specific and differentiation stage-specific gene expression are located in the promoter and 3' noncoding regions.  相似文献   

19.
Prostaglandin E2 (PGE2) is an important mediator of diverse biologic functions in many tissues and binds with high affinity to four cell surface, seven-transmembrane domain, G protein-coupled receptors (EP1-EP4). The EP4 receptor subtype has a long intracellular carboxy-terminal region and is functionally coupled to adenylate cyclase, resulting in elevated intracellular cyclic adenosine 5' monophosphate (cAMP) levels upon activation. To further study EP4 receptor subtype function, a canine kidney cDNA library was screened and three clones were isolated and sequenced. The longest clone was 3,103 bp and contained a single open reading frame of 1,476 bp, potentially encoding a protein of 492 amino acids with a predicted molecular weight of 53.4 kDa. Sequence analysis of this open reading frame reveals 89% identity to the human EP4 protein coding region at the nucleotide level and 90% identity when the putative canine and human protein sequences are compared. Northern blot analysis showed relatively high levels of canine EP4 expression in heart, lung and kidney, while Southern blot analysis of canine genomic DNA suggests the presence of a single copy gene. Following transfection of canine EP4 into CHO-KI cells, Scatchard analysis revealed a dissociation constant of 24 nM for PGE, while competition binding studies using 3H-PGE2 as ligand demonstrated specific displacement by PGE2 prostaglandin E, (PGE1), and prostaglandin A3 (PGA3). Treatment with PGE2 also resulted in increased levels of cAMP in transfected, but not in parental, CHO-KI cells. In contrast, butaprost, an EP2 selective ligand, and sulprostone, an EP1/EP3 selective ligand, did not bind to this receptor at the maximal concentration used (320 nM). To further investigate secondary signaling, the canine EP4 cDNA was truncated to produce an 1,117 bp fragment encoding a 356 amino acid protein lacking the intracellular carboxy-terminus. When transfected, this truncated cDNA produced a protein with a dissociation constant of 11 nM for PGE2 and a binding and cAMP accumulation profile similar to that of the full-length protein. Both full-length and truncated canine EP4 underwent short term PGE2-induced desensitization as shown by a lack of continuing cAMP accumulation after the initial PGE2 stimulation, suggesting no involvement of the C-terminal intracellular tail. This result is in contrast to that reported for the human EP4 receptor, where residues within the C-terminal intracellular tail were shown to mediate short term, ligand induced desensitization.  相似文献   

20.
The microtubule-binding domain of MAP4, a ubiquitous microtubule-associated protein, contains a region rich in proline and basic residues (proline-rich region). We searched the bovine adrenal gland for MAP4 isoforms, and identified a novel variant lacking 72 consecutive amino acid residues within the proline-rich region, as compared with the full-length MAP4. The amino acid sequence of the missing region was highly conserved (about 85% identity/similarity) among the corresponding regions of bovine, human, mouse, and rat MAP4, which suggested the functional significance of this region. A comparison of the genomic sequence with the cDNA sequence revealed that the missing region is encoded by a single exon. A MAP4 variant cDNA homologous to the bovine form was also detected in rat cells, suggesting that the new variant can be generated by alternative splicing, not only in bovine but also in other mammalian species. The mRNA expression of the novel isoform was restricted to the brain and the adrenal medulla, suggesting that this isoform is specific to a certain cell type. Using a bacterially expressed fragment corresponding to the microtubule-binding domain of the novel isoform, we analyzed its in vitro characteristics. The fragment induced microtubule assembly and bound to preformed microtubules, but the activities were slightly lower than those of the conventional MAP4 fragment, which carries the full-length proline-rich region. The microtubules assembled in the presence of the fragment failed to be bundled. Instead, a constant spacing between neighboring microtubules was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号